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When a densely packed monolayer of macroscopic spheres floats on chaotic capillary Faraday
waves, a coexistence of large scale convective motion and caging dynamics typical for glassy systems
is observed. We subtract the convective mean flow using a coarse graining (homogenization) method
and reveal subdiffusion for the caging time scales followed by a diffusive regime at later times. We
apply the methods developed to study dynamic heterogeneity and show that the typical time and
length scales of the fluctuations due to rearrangements of observed particle groups significantly
increase when the system approaches its largest experimentally accessible packing concentration.
To connect the system to the dynamic criticality literature, we fit power laws to our results. The
resultant critical exponents are consistent with those found in densely packed suspensions of colloids.

PACS numbers: 47.57.Gc, 64.60.Ht, 64.70.qj, 83.80.Fg, 68.03.Cd

INTRODUCTION

Small-scale events can dominate statistical systems to
such an extent that one observes phenomena on a global
scale. From the classical to the quantum limit, micro-
scopic fluctuations may even change the phase of matter
when appropriate control parameters are tuned to critical
values [1, 2]. Even if their origin and nature are not al-
ways understood, these spatiotemporal microscopic fluc-
tuations can drive common observable behavior near to
such a phase transition. For classical particulate systems,
a vast range of materials exhibits a sudden change to a
rigid state called a glass or jamming transition. Thermal
systems [3–8], e.g., supercooled liquids near a transition
temperature, and emulsions and colloidal suspensions at
a critical packing fraction [5, 6, 8], exhibit a glass transi-
tion. Furthermore, athermal systems such as foams and
granulates experience a jamming transition, also at a crit-
ical packing fraction [9–13]. In all these systems, tran-
sient spatial fluctuations lead to a large scale cooperative
motion of their constituents near the transition [3–8, 14–
21].

In this paper, we investigate the dynamics of the col-
lective events near the critical density in an alternative
experiment: Macroscopic spheres floating on the surface
of capillary Faraday waves. Our control parameter is the
floating sphere concentration φ on the surface which is
varied from a moderate value, i.e., φ=0.65 to the max-
imum value attainable experimentally, i.e., φEXP=0.77.
Erratic forces due to the surface waves [22] and the at-
tractive capillary interaction among the spheres [23–25]
together make our system markedly different from the
previously studied ones [16, 17, 19, 26–28]: A distinct
feature is a large scale convection of the spheres on the
wave which (for all φ) forms naturally and strongly af-
fects the visible dynamics.

We aim to understand to what extent concepts from
the glass and jamming literature –such as dynamic het-
erogeneity and dynamic criticality – still hold in this con-
vective system. To do so we subtract the convective mean
flow using a coarse graining (or homogenization) method
and analyze the features of our system both before and
after this procedure. Recently, filtering long time con-
vection in displacement by a stroboscopic technique has
been described in the experimental granular literature
[28]. The current work however for the first time reports
a full study, comparing results with and without filtering.

Dynamic heterogeneity investigates the relation be-
tween the local dynamic events on the particle scale and
the resultant large-scale cooperative motion [3, 4, 6, 7,
28–33]. For its quantification two observables are intro-
duced: The four-point dynamic susceptibility χ4(τ), a
measure of to what extent the single particle dynamics
of the system is heterogeneous in space, i.e., fast and
slow flow regions present simultaneously, and irregular
in time, and the four-point correlation function g4(r, τ),
a measure of how often (τ) and from how far (r) two
arbitrarily chosen single particle dynamics correlate to
one another in time and two-points in space. The idea
behind this is first to capture and characterize locally
heterogeneous events and second to determine both for
how long and over what distance the local heterogeneity
cooperatively dominates the flow. Both quantities, χ4(τ)
and g4(r, τ), were calculated for colloids [5, 14, 15], driven
hard granulates [16–18, 27, 33–36], and foams [21]. For all
cases, the time and length scales and the number of col-
lective events, such as escaping from cages [33] and rear-
rangements of particle groups [14], dramatically increase
near the transition. In spite of the observed quantitative
similarities, the many different origins of dynamic het-
erogeneity summarized in Ref. [28] suggest that we are
far from a complete understanding.
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FIG. 1. (Color online) Left panel: Experimental setup: (a) Shaker, (b) far field light source, (c) transparent hydrophilic
glass container, (d) hydrophilic spheres, (e) high speed camera, (f) sample from a camera image for densely packed floater
configuration. The advantage of using far field light source is that all particles can be detected using the white spots in the
images. (g) Pinned brim-full boundary condition. Right panel: (h) Top view of capillary Faraday waves, with the elliptic
boundary containing the particles (red ellipse) and the field of view of the camera (yellow rectangle). (i-j) Sketch of the typical
meniscus around the hydrophilic floaters in moderate (i) and expected that in extremely densely packed (j) regimes.

The common nature of the behavior of classical partic-
ulate systems near transitions encourages to ask whether
there is universality. This has led to the concept of
dynamic criticality [17–19, 37–41], which postulates a
power-law relation between the (diverging) length and
time scales close to the phase transition. The uniqueness
of this –and other– exponents in different systems would
then support the existence of universality [17–19, 37–41].
There is evidence pointing to universality in the above
sense in various systems [17–19, 27]. However, investi-
gation is ongoing [32, 42–44]. Furthermore, increasing
the number of systems either obeying or disobeying the
universality and determining the universality class of the
transition are key to reach a more complete understand-
ing.
We will therefore analyze our system in the light of

both dynamic heterogeneity and dynamic criticality.

EXPERIMENT

A schematic illustration of the experimental setup,
which is the same one having been already used in our
earlier study [25], is shown in Fig. 1. A rectangular
container [Fig. 1(a)] is attached to a shaker providing
a vertical sinusoidal oscillation such that the vertical po-
sition of the container varies as a function of time t as
a0 sin(2πf0 t), where a0 is the shaking amplitude and f0
is the shaking frequency. Here, both a0 and f0 are fixed
to 0.1 mm and 250 Hz, respectively. This combination
is chosen to create capillary ripples on the water surface

with a wavelength in the order of the floater diameter
(≈ 0.62 mm). The container is filled with purified water
(Millipore water with a resistivity> 18 MΩ·cm) such that
the water level is perfectly matched with the container
edge as shown in Fig. 1(g) to create the brim-full bound-
ary condition [45]. Spherical hydrophilic polystyrene
floaters [Fig. 1(d)], contact angle 74◦ and density 1050
kg/m3, with an average radius R of 0.31 mm are carefully
distributed over the water surface to make a monolayer of
floaters [46]. The polydispersity of the floaters is approxi-
mately 14% and assumed to be just wide enough to avoid
crystallization [47]. To avoid any surfactant effects, both
the container and the floaters are cleaned by performing
the cleaning protocol as described in Ref. [48].

A continuous white fiber light source (Schott) is used
to illuminate the floaters from far away as shown in Fig.
1(b). The positions of the floaters are recorded with a
high-speed camera (Photron Fastcam SA.1) at 60-500
frames per second. The lens (Carl Zeiss 60mm) is ad-
justed such that it focuses on the floaters at the non-
deformed water surface. Here, we use the random cap-
illary Faraday waves to just agitate the densely packed
floaters so that there is no macroscopic apparent ampli-
tude observed. The wave amplitude is always consider-
ably smaller than the floater radius (≈ 0.31 mm).

The resultant capillary ripples on the water surface in
the container, made from transparent hydrophilic glass
with 10 mm height and a 81×45 mm2 rectangular cross
section, are shown in Fig. 1(h). To eliminate the bound-
ary effects due to the sharp corners of the container, an
elliptic rim made from plastic is used to contain the par-
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ticles. Each image taken with the high speed camera
is 512 × 640 px2 (36×28 mm2), where px means pixel,
as shown by the yellow rectangle (size ratios are pre-
served). The horizontal field of view is ∼ 35% of the
total area of the ellipse. Due to the asymmetric surface
deformation around each hydrophilic heavy sphere, there
is an attraction [23, 24] between the spheres so that the
floaters are cohesive [49]. For moderate φ, the mono-
layer can be considered two-dimensional [Fig. 1(i)]. In
the densely packed regime however [Fig. 1(j)], particles
are so close that the layer may (locally) buckle and have
three-dimensional aspects [50].
The control parameter of the experiment is the floater

(packing) concentration φ, which (ignoring buckling) is
measured by determining the area fraction covered by the
floaters in the area of interest [Fig. 1(h)]. In this study, φ
is increased from moderate to large concentrations, φ =
0.65− 0.77.

Under the influence of the erratic capillary waves and
the attractive capillary interaction, a large scale convec-
tive motion is observed with a typical length scale ∼ 60
times larger than the floater diameter, which is ∼ 1/2
of the system size, and a typical time scale ∼ 250 times
longer than that of the capillary Faraday waves.

DYNAMIC HETEROGENEITY AND DYNAMIC

CRITICALITY

To focus on microscopic fluctuations, we subtract the
displacement due to the large scale convective motion
from our experimental data. At first, we define the ve-
locity field by the coarse graining method [51–53] as

u(x, t) =

∑

i vi(t)ψd(|x− xi(t)|)
∑

i ψd(|x − xi(t)|)
(1)

with the position xi(t) and the velocity vi(t) of the i-

th floater, where we adopt both Gaussian [e−(x/d)2] and
Heaviside [Θd(x) = 1 (x ≤ d) and zero otherwise] as
coarse graining kernel functions ψd(x). Here, d is a length
scale of the order of the particle diameter. Subsequently,
we subtract the displacement li(t) =

∫ t

0
dsu(xi(s), s) due

to this macroscopic flow from the position as ri(t) ≡
xi(t)− li(t) and define an actual displacement during the
time interval τ as Di(t, τ) ≡ |ri(t+ τ) − ri(t)|.

First, we look at single particle dynamics. Approach-
ing high packing fractions, the particles experience caging
[33], i.e., a cage composed of a group of particles locally
trapped by their neighbors. The particles in the cages
are immobile. However, in the presence of fluctuations
near the critical packing density, escape jumps occurring
at a certain relaxation time create heterogeneous flow,
i.e., fast and slow flow regions appear simultaneously [3].
The caging and the successive jumps leave their tracks

in the mean-square displacement of individual particles:

It has been first theoretically suggested as a measure of
the relaxation time for densely packed suspensions ex-
hibiting jamming [41] and then also experimentally con-
firmed in both a jammed driven granular system [28, 41]
and colloidal glasses [54]. Unlike glassy systems, in
jammed systems there are no jumps and the particles
only do jittering motion in the cages [28, 41]. Therefore,
one can observe a very long plateau in the temporal evo-
lution of the mean-square displacement near the jamming
packing fraction [28] (or the plateau persists as long as
the simulation runs [41]). On the other hand, the plateau
in glasses either does not persist very long [5, 54] or may
not even exist at all near the critical packing fraction (or
the glass transition temperature). Moreover, two diffu-
sive regimes are observed [5, 54]. For our system, we find
very similar behavior to a glass transition: A subdiffusion
for short times and an ordinary diffusion at later times.
However, instead of observing the finite plateau, we ob-
serve an intermediate (a transient) regime to separate the
two diffusions.

Fig. 2(a) shows the mean-square displacement of the
floaters ∆(τ) =

〈
∑

iD
2
i (t, τ)/N

〉

t
, where the brackets

〈. . . 〉t represent an average over time t and N is the num-
ber of floaters in the sample [55]. In our experiment,
the floaters are transported by the large scale convec-
tion, and thus, the resultant motion is always ballistic.
Consequently, when we do not subtract the displacement
li(t) from the experimental data, ∆(τ) quadratically in-
creases with time with a slope 2 in the log-log plot [open
squares in Fig. 2(a)]. However, when we do subtract the
additional displacement due to the convection for a suit-
able value of d, both the initial subdiffusive and the later
diffusive regimes are found [56].

As shown in Fig. 2(b), the crossover time τα between
these subdiffusive and diffusive regimes, rapidly increases
with φ. Since the subdiffusion represents the cage ef-
fect of the floaters described above, it is plausible that
the crossover time diverges when the system is jammed,
where no floater can ever escape from the cage [28, 41].
On physical grounds, the jamming happens at a critical
density φc, e.g. if the system does not have tempera-
ture, φc is nearly equal to the random close packing of
polydisperse disks, φRCP ≈ 0.84, while the temperature
or external driving force slightly increases φc [40]. How-
ever, the capillary action keeps floaters at a distance,
which might compete against the increase of φc due to
the external driving [57]. In addition, φc needs to be
considerably larger than φEXP = 0.77, the largest ex-
perimental average at which we are able to measure, so
that we can assume the critical density is in the range,
φEXP = 0.77 < φc < φRCP.

By fitting a power law τα ∼ (φc − φ)α to our data
[58] we find that φc ≈ 0.82, which is consistent with the
above and leads us to conclude that φc = 0.82 ± 0.02.
It is worth mentioning that previous experiments found
a similar divergence of the relaxation time (associated
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FIG. 2. (Color online) (a) Mean-square displacement ∆(τ ) of the floaters for φ = 0.75. The open squares are obtained without
subtracting the displacement li(t) due to the large scale convection. The open circles and open triangles are the results with the
subtraction, where we use a Gaussian with d = σ and a step function with d = 1.6σ as coarse graining functions, respectively.
Here, σ is the floater diameter. The red solid and the green dotted lines have slopes 1.9 and 1.1, respectively. (b) Crossover
time τα plotted against φ, where the closed circles and squares are obtained using the Gaussian (d = σ) and the step (d = 1.6σ)
coarse graining functions, respectively. The solid line represents τα ∼ (φc − φ)−3.9 with φc = 0.82.

with the contact number) near the critical density, 0.8151
[28, 33]. Note that this value is considerably larger than
the suggested static buckling density of the attractive
monodisperse spheres [59], namely φb ≃ 0.71. Next, we
use this fixed value for φc in our power-law fit to obtain
the exponent α ≃ −3.9 ± 0.9, which is consistent with
the exponent α ≃ −4.0 ± 0.6 found in an earlier experi-
ment [27].

To quantify the heterogenous dynamics of the floaters,
we introduce the self-overlap order parameter qa(t, τ) =
∑

iwa(Di(t, τ))/N and the four-point dynamic suscepti-
bility χ4(τ) = N

[

〈q2a(t, τ)〉t − 〈qa(t, τ)〉
2
t

]

. Here, wa(x)

is the overlap function defined as a Gaussian e−(x/a)2 or
a Heaviside step function Θa(x) as defined previously (1
for x ≤ a and 0, otherwise). The width of the over-
lap function a is a measure for the typical distance over
which a single floater can move within time τ . To disre-
gard the motion of the floaters in the cages, a is chosen
to be larger than their typical displacement inside a cage
and also chosen to maximize [19] the extremal value of
the χ4(τ) as shown in the inset of Fig. 3(b).

The various coarse graining functions and overlap func-
tions in total give us six different manners of analyzing
the data, if we also include the possibility of not subtract-
ing the displacement due to the large scale convection
before the dynamic heterogeneity analysis. These are
summarized in Table I, together with the optimal values
of d and a obtained as described above [60]. When we
plot the χ4(τ) we obtain similar results in all six cases
[case (i) in Table I is shown in the inset of Fig. 3(b)].
In particular the location of the peak in χ4(τ) provides
us with an estimate of the typical time scale τ∗ of the
dynamic heterogeneity, which are plotted for all six cases
as functions of φ in Fig. 3(b).

To investigate the dynamic correlation length of the

TABLE I. Analysis methods: The set of the coarse graining
functions and the overlap functions, with d and a as described
in the main text, both in terms of the floater diameter σ.

coarse graining function overlap function d/σ a/σ
(i) none Gaussian − 0.49
(ii) none Heaviside − 0.52
(iii) Gaussian Gaussian 1.0 0.038
(iv) Gaussian Heaviside 1.0 0.042
(v) Heaviside Gaussian 1.6 0.042
(vi) Heaviside Heaviside 1.6 0.046

floaters, we apply the four-point correlation function [61]

g4(r, τ) =
1

2πrN

〈

∑

i,j

δ(r − rij(t))cij(t, τ)

〉

t

−ρ〈qa(t, τ)〉
2
t

(2)
satisfying χ4(τ) = 2π

∫

r g4(r, τ)dr, where ρ ≡ N/S and
S are the number density of the floaters and the area
of interest, respectively. N is the number of floaters as
introduced previously. In addition, we define rij(t) ≡
|ri(t) − rj(t)| and cij(t, τ) ≡ wa(Di(t, τ))wa(Dj(t, τ)).
Furthermore, we assume the Ornstein-Zernike form of the
four-point correlation function [61], in which the dynamic
correlation length ξ∗ is obtained considering the scaling
g4(r, τ

∗) = A(r/ξ∗)−βe−r/ξ∗ for some amplitude A and
exponent β, where τ∗ is the time scale obtained from
χ4(τ).
Fig. 3(a) shows the function G4(r/ξ

∗) ≡
(r/ξ∗)βg4(r, τ

∗)/A, where the (very weak) expo-
nent β = 0.01 is taken to be independent of φ. The
resultant G4(r/ξ

∗) successfully collapses onto a single
master curve e−r/ξ∗ for each φ except for the tails.
This procedure is repeated for each condition in Table
I. Remarkably, we find that neither the value of the
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FIG. 3. (Color online) (a) The scaled four-point correlation function G4(r/ξ
∗) ≡ (r/ξ∗)βg4(r, τ

∗)/A where we use Gaussians

for the coarse graining and overlap functions respectively [case (iii) in Table I] and the solid line represents e−r/ξ∗ . (b) The
time scale of the dynamic heterogeneity τ∗ vs. φ obtained from the four-point dynamic susceptibility χ4(τ ). The solid line
represents τ∗ ∼ (φc − φ)−3.9. Inset: χ4(τ ) for φ = 0.75, where the green dotted line is obtained without subtracting the
convective displacement li(t) [case (i) in Table I] and the red solid line with the subtraction [case (iii) in Table I]. (c) The
dynamic correlation length ξ∗ obtained from g4(r, τ ) for τ = τ∗. The solid line represents ξ∗ ∼ (φc − φ)−1.4. The legend in (c)
indicates the conditions described in Table I and explains the symbols in (b, c).

exponent nor the master curve presents any significant
difference.
Fig. 3 displays the time scale of the dynamic het-

erogeneity, τ∗ [Fig. 3(b)], and the dynamic correlation
length, ξ∗ [Fig. 3(c)], where both plotted versus φ and
increase strongly with φ. One can introduce the power
law fits [17–19, 27, 37–39]

τ∗ = C(φc − φ)η , (3)

ξ∗ = D(φc − φ)λ . (4)

Both the time exponent η and the length exponent λ are
calculated considering all conditions reported in Table
I. Fitting to the data we obtain η ≃ −3.9 ± 0.4 and
λ ≃ −1.4 ± 0.4 for each condition in Table I where we
again used φc ≃ 0.82± 0.02. Finally, combining Eqs. (3)
and (4) in the light of dynamic criticality [17–19, 37–39],
namely τ∗ ∼ ξ∗ν , we quantify the relation between η and
λ as ν = η/λ ≃ 2.7± 1.2.

CONCLUSION

Studying agitated floaters by the capillary Faraday
waves, after eliminating their naturally occurring large-
scale convection, their mean-square displacement dynam-
ics resembles caging as observed in glassy liquids: An
initial subdiffusion in earlier (short) times is followed by
an ordinary diffusion for later times. The crossover time
τα(φ) between the two regimes [Fig. 2(b)] drastically in-
creases near the estimated critical density φc.
Although we observe that the increase can be explained

by many functional forms, we force to fit a power law
to make the connection to the literature of glasses and
jammed systems, where power laws are both expected
and traditionally used for this purpose. Therefore, even
though the fit of τα(φ) works well, we can only claim an

apparent consistency. Thus, τα(φ) is fitted by a power
law (φc − φ)α with exponent α ≃ −3.9. In addition, a
second time scale τ∗ is that of the four-point dynamic
susceptibility χ4(τ) [Fig. 3(b)], which is also fitted by a
power law which remarkably has the very same exponent
η ≃ −3.9.

The typical distance between two correlated, succes-
sive events, the dynamic correlation length ξ∗ [Fig. 3(c)]
obtained from the scaled four-point correlation function
G4(r/ξ

∗) [Fig. 3(a)], presents a power law scaling with
exponent λ ≃ −1.4. Both of our dynamic exponents, η
and λ, are in a good agreement with the previous exper-
iment on sheared microgel spheres by Nordstrom et al.
[27], where the critical exponents of the time and length
scales were found to be −4 and −4/3, respectively.

The coarse graining procedure allows us to successfully
remove the convective mean flow, i.e., the large scale col-
lective motion observed for each φ. While this is indeed
necessary to study micro-fluctuations driven by diffusion,
paradoxically, one of our main results is that it is not nec-
essary to remove this mean flow for χ4(τ) and g4(r, τ).
These results only depend insignificantly on whether the
mean flow is subtracted or not, which has not been indi-
cated in previous reported analysis [28]. In addition, the
results do hardly depend on the choice of the coarse grain-
ing and overlap functions, as long as the length scales in
these test functions are optimized under physical con-
straints, e.g., the particle diameter, the typical particle
displacement inside a cage, etc. In fact, from Table I
it can be appreciated that the coarse-graining (smooth-
ing) length a must be an order of magnitude lower with
the convective mean flow subtraction (a ≃ 0.04σ) than
without (a ≃ 0.5σ).

Finally, we determine from the fits that φc = 0.82,
while close to the two-dimensional random close packing
(φRCP ≃ 0.84), being considerably larger than the sug-
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gested critical density for static monodisperse floaters
(φb = 0.71), and also larger than the largest pack-
ing density that we could reach experimentally, namely
φEXP ≃ 0.77. For larger φ, our layer of floating spheres is
not stable under driving. Understanding the difference
between φEXP ≃ 0.77 and φc requires further study. In
this respect, investigating the origins of the dynamic het-
erogeneity, of which it is known that there are many [33],
can give further information about our system and help
to clarify this difference.

We thank O. Dauchot, D. J. Durian, T. Hatano, H.
Hayakawa, H. Katsuragi, T. Kawasaki, D. Lohse, K.
Miyazaki, Y. Tagawa, and R. Yamamoto for fruitful dis-
cussions. This work is partially supported by the NWO-
STW VICI grant 10828 and is part of the research pro-
gram of the FOM, which is financially supported by
NWO; K. Saitoh and C. Sanlı acknowledge financial sup-
port. C. Sanlı acknowledges supports from the Okinawa
Inst. of Sci. and Tech. Graduate University (OIST),
the University of Namur, and the European Union 7th
Framework Programme OptimizR Project.

∗ ceyda.sanli@unamur.be; cedaysan@gmail.com
† k.saitoh@utwente.nl
‡ S.Luding@utwente.nl
§ d.vandermeer@utwente.nl

[1] R. K. Pathria, Statistical Mechanics (Butterworth-
Heinemann, Oxford & Woburn, 1996).

[2] L. Berthier and J. Kurchan, Nature Phys. 9, 310 (2013).
[3] M. D. Ediger, Ann. Rev. Phys. Chem. 51, 99 (2000).
[4] L. Berthier, G. Biroli, J.-P. Bouchaud, W. Kob,

K. Miyazaki, and D. R. Reichman, J. Chem. Phys. 126,
184503 (2007).

[5] L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587
(2011).

[6] G. Biroli and J. P. Garrahan, J. Chem. Phys. 138,
12A301 (2013).

[7] L. Berthier, Physics 4, 42 (2011).
[8] H. Mizuno and R. Yamamoto, J. Chem. Phys. 136,

084505 (2012).
[9] A. J. Liu and S. R. Nagel, Nature (London) 396, 21

(1998).
[10] C. S. O’Hern, S. A. Langer, A. J. Liu, and S. R. Nagel,

Phys. Rev. Lett. 88, 075507 (2002).
[11] C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel,

Phys. Rev. E 68, 011306 (2003).
[12] T. S. Majmudar, M. Sperl, S. Luding, and R. P.

Behringer, Phys. Rev. Lett. 98, 058001 (2007).
[13] M. van Hecke, J. Phys. Cond. Mat. 22, 033101 (2010).
[14] T. Narumi, S. V. Franklin, K. W. Desmond,

M. Tokuyama, and E. R. Weeks, Soft Matter 7, 1472
(2011).

[15] Y. Rahmani, K. van der Vaart, B. van Dam, Z. Hu,
V. Chikkadi, and P. Schall, Soft Matter 8, 4264 (2012).

[16] O. Dauchot, G. Marty, and G. Biroli, Phys. Rev. Lett.
95, 265701 (2005).

[17] A. S. Keys, A. R. Abate, S. C. Glotzer, and D. J. Durian,

Nature Phys. 3, 260 (2007).
[18] A. R. Abate and D. J. Durian, Phys. Rev. E 76, 021306

(2007).
[19] F. Lechenault, O. Dauchot, G. Biroli, and J. P.

Bouchaud, Euro. Phys. Lett. 83, 46003 (2008).
[20] F. Lechenault, R. Candelier, O. Dauchot, J. P. Bouchaud,

and G. Biroli, Soft Matter 6, 3059 (2010).
[21] P. Mayer, H. Bissig, L. Berthier, L. Cipelletti, J. P. Gar-

rahan, P. Sollich, and V. Trappe, Phys. Rev. Lett. 93,
115701 (2004).

[22] B. J. Gluckman, C. B. Arnold, and J. P. Gollub, Phys.
Rev. E 51, 1128 (1995).

[23] D. Vella and L. Mahadevan, Am. J. Phys. 73, 817 (2005).
[24] D. Y. C. Chan, J. J. D. Henry, and L. R. White, J.

Colloid Interface Sci. 79, 410 (1981).
[25] C. Sanlı, D. Lohse, and D. van der Meer, Phys. Rev. E

89, 053011 (2014).
[26] O. Herbst, R. Cafiero, A. Zippelius, H. J. Herrmann, and

S. Luding, Phys. of Fluids 17, 107102 (2005).
[27] K. N. Nordstrom, J. P. Gollub, and D. J. Durian, Phys.

Rev. E 84, 021403 (2011).
[28] C. Coulais, R. P. Behringer, and O. Dauchot, Soft Mat-

ter 10, 1519 (2014).
[29] L. Berthier, Phys. Rev. E (R) 69, 020201 (2004).
[30] L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D. E.
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