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The effect of friction on the quasi-static behavior of dense granular media is the subject of this work. The
system is studied in a split-bottom ring shear cell, using Discrete Element Method simulations (DEM).
When shear stress and deviatoric fabric are analyzed locally as functions of pressure and shear rate, they are
found to increase with contact friction; saturation is reached for high friction with the strong contact net-
work dominating. We start from this observation and look at the probability distribution functions (PDFs)
of both normal and tangential forces. They behave in a similar fashion, i.e., the probability of weak forces
and heterogeneity increase with friction. On the other hand, we find that the difference between the two di-
rections (anisotropy) increases with friction in the case of normal forces, whereas it stays almost unaffected
for tangential forces.

1 Introduction

What do sand, rice, coffee powders and cocoa pow-
der have in common? They all are granular ma-

terials: a collection of non-Brownian, macroscopic
particles with dissipative interactions. Their intrinsic
nature leads to great deal of interesting phenomena
like segregation, jamming, clustering, arching and
shear-band formation (Jaeger et al. 1996). It is now
well established that the microstructure of granular
matter plays a significant role in the overall consti-
tutive behavior. Finding a connection between the
continuum response and kinematics at microscale is
a great challenge and involves the so-called micro-
macro transition (Lätzel et al. 2000). Particle simu-
lations are relatively recent powerful tools that allow
to track individual particles with complex interaction
by solving Newton’s laws of motion. The micro-
macro transition is often applied on small, seem-
ingly homogeneous representative volume elements
(RVE)s. An alternative is to use an inhomogeneous
geometry where static and dynamic, flowing zones
i.e. high density and dilated zones coexist – at var-
ious confining pressure levels. In these kind of sys-
tems, by local averaging over adequate representa-
tive volume elements (RVE)s inside which all par-
ticles are assumed to behave similarly, one can ob-
tain local continuum relations covering a wide range
of system states. Such a procedure has been per-
formed systematically in two-dimensional Couette
ring shear cell (Lätzel et al. 2000), and three dimen-
sional split-bottom ring shear cell (Luding 2008b,
Luding and Alonso-Marroquı́n 2011). One special
property of this set-up is the fact that a wide, stable
shear band initiates at the bottom split and remains
far away from side walls. The free surface of the
split-bottom shear cell allows to scan a wide range of
confining pressure, due to the weight of the material
and determined by the filling height. Constitutive re-
lations involving densities, pressures and shear-rates

can be obtained from a single simulation by perform-
ing local and temporal averaging in the steady state.
Simulations of dry particles with and without friction
have been validated with experiments. A quantita-
tive agreement was found with deviations as small
being 10 % as reported in (Luding 2008b, Luding
2008a).

Under shear, the microstructure of a grain pack-
ing develops anisotropic features in both stress and
contact network. The anisotropy depends on prepa-
ration history of the material and at the same time on
the contact and particle properties such as stiffness,
roughness and angularity of particles. The effect of
particle friction on macroscopic quantities such as
shear strength has been the focus of our previous
studies (Luding 2008b, Singh et al. 2013). In this pa-
per, we focus on the problem at microlevel and study
the effect of particle friction on the steady state be-
havior by investigating the probability distribution of
forces along the eigen-directions of the local strain
rate tensors.

The paper is organized in 4 main parts. Section 2
describes the model system specifying the geometry,
particle properties and interaction laws. In section 3,
the results from samples with different inter-particles
friction on the force distribution are presented. Fi-
nally, 4 is the section dedicated to discussion of re-
sults.

2 Model System Geometry

In this section, the methodology of our molecular dy-
namics types simulations is briefly discussed. The
details about particle properties are presented in Sec.
2.1 and we show our numerical setup in Sec. 2.2. In
Sec. 2.3, we briefly discuss our averaging methodol-
ogy.
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Figure 1: A sketch of our numerical setup consisting
of a fixed inner part (light blue shade) and a rotating
outer part (white). The white part of the base and the
outer cylinder rotate with the same angular velocity
Ω around the symmetry axis. The inner, split, and
outer radii are given by Ri = 0.0147 m, Rs = 0.085 m,
and Ro = 0.11 m, respectively, where each radius is
measured from the symmetry axis. The gravity g

points downwards as shown by arrow.

2.1 Numerical simulations

Discrete Element Methods (DEM), provide numer-
ical solutions of Newton’s equations of motion
based on the specification of particle properties
viz. stiffness, density, radius and an interaction law
like Hertzian/Hookean (Cundall 1971). Simulation
methodology and material parameters used in this
study are the same as in our previous work (Lud-
ing 2008b). The normal contact force is related to
overlap through a linear contact law, fn = knδn, with
stiffness kn, if δ ≥ 0. In tangential direction, the
force ft = ktδt is also proportional to the tangential
displacement of the contact point, with a stiffness kt .
The tangential force is limited by Coulombs law for
sliding ft ≤ µp fn, i.e. for µp = 0 tangential forces do
not exist. For more details on the contact model see
(Luding 2008b) and references therein.

The system is filled with N ≈ 37000 spherical
particles with density ρ = 2000 kg/m3 = 2 g/cm3.
The average size of particles is a0 = 1.1 mm, with
a homogeneous size-distribution of the width 1 −
A = 1 − �a�2/�a2� = 0.18922 (with amin/amax =
1/2). The size of particles is chosen so as to mimic
the original experiments by Ref. (Fenistein et al.
2004). The stiffness constant of the particles is
k = 100 Nm−2. The rolling and torsion friction are
inactive. The normal and tangential viscosities are
γn = 0.002 kg s−1 and γt/γn = 1/4. In order to study
the influence of contact friction, we analyzed the sys-
tem for the following set of friction coefficients:
µp ∈ [0,0.005,0.01,0.02,0.05,0.1,0.2,0.5,1.0]

The initial state is prepared without any friction
between particles, and different values of µp are ac-
tivated at the onset of shearing. Details about initial
preparation of the packing are reported in (Luding
2008b, Luding 2008a).

2.2 Split-bottom ring shear cell
Figure 1 is a sketch of our numerical setup; the ge-
ometry of the system is described in detail in Ref.
(Fenistein et al. 2004)). In this figure, the inner,
split, and outer radii are given by Ri, Rs, and Ro, re-
spectively, where the concentric cylinders rotate rel-
ative to each other around the symmetry axis (the
dot-dashed line). The ring shaped split at the bot-
tom separates the moving and static parts of the sys-
tem, where a part of the bottom and the outer cylin-
der rotate at the same rate. The system is filled with
N ≈ 3.7× 104 spherical particles with density ρ =
2000 kg/m3 = 2 g/cm3 up to height H. The cylindri-
cal walls and the bottom are roughened due to some
(about 3% of the total number) attached/glued parti-
cles (Luding 2008b, Luding 2008a).

When there is a relative motion at the split, a shear
band propagates from split position Rs upwards and
inwards and remains far away from cylinder-walls
and bottom in most cases.

Since we are interested in the quasi-static regime,
the rotation rate of outer cylinder is chosen to be fo =
0.01 s−1, such that the inertial number I � 1.

2.3 Averaging and micro-macro proce-
dure

Translational invariance is assumed in the tangen-
tial φ−direction, the averaging is performed over
toroidal volumes over many snapshots in time. lead-
ing to field Q(r,z) as function of the radial and ver-
tical positions. The averaging procedure has been
explained in detail for 2D systems in (Lätzel et al.
2000), and three dimensional systems in (Luding
2008b, Luding 2008a), and will not be discussed
here. The simulation runs for more than 50 s. For
the spatial and time averaging, only large times are
taken into account, disregarding the transient behav-
ior at the onset of shear.

From the simulations, one can calculate the stress
tensor as

σi j =
1
V
[∑
p∈V

m
p(vi

p)(v j
p)− ∑

c∈V

ri
c

f j
c] (1)

with p particles, mass m
p, velocity v

p, force f
c

and branch vector r
c. The velocity v

p is relative
to the mean streaming velocity inside the averag-
ing volume V . The first term is the sum of ki-
netic energy fluctuations, and the second involves
the dyadic product of contact-force with the contact-
branch vector. The contribution of the kinetic energy
stress to the total shear stress σ is much smaller com-
pared to the contact stress (for the rotation rate we
are interested in). Hence, we ignore the dynamical
stress and concentrate on the contact stress.

The quantity which describes the local network of
contacts in a granular material is the fabric tensor
(Luding 2005), defined as

Fi j =
1
V

∑
p∈V

V
p ∑

c∈p

ni
c
n j

c (2)
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where V
p is the particle volume which lies in-

side the averaging volume V , n
c is the normal unit

branch-vector pointing from center of particle p to
contact c.

For both stress and fabric tensors, we can calcu-
late the eigenvalues and define the volumetric part
Tv = (T1 +T2 +T3)/3 (pressure p and Fv for stress
and fabric respectively) and deviatoric component
as Tdev =

�
((T1 −T2)2 +(T2 −T3)2 +(T3 −T1)2)/6

(σdev and Fdev for stress and fabric respectively).
The pressure is the isotropic stress, while σdev

quantifies the normal stress difference and the shear
stress. The volumetric fabric Fv represents the con-
tact number density, while the deviatoric fabric Fdev
quantifies anisotropy of the contact network.

Since we are interested in the flow behavior, the
data only inside the flowing part of the system i.e.,
inside the shear band is analyzed.

3 Results
For a given confining stress (and preparation his-
tory), the material can only resist shear up to certain
limit of (shear) stress, called as yield stress beyond
which it fails (Schwedes 2003). When yield points
(p

(y),σ (y)
dev) are collected in the σdev − p-plane, a

yield locus can be identified that fully describes the
failure behavior of the material. In addition, when
the material is sheared continuously for a long time,
it reaches a state which is characterized by a steady
state stress, i.e. the stress needed to keep the material
in motion, (p,σdev), also referred to as the critical
state. For simple granular materials, the termination
locus can be predicted from a Coulomb type criterion
as a straight line whose slope is macroscopic friction
coefficient µmacro = (σdev)/p.

In the following sections, we study the effect of
the particle friction coefficient on the macroscopic
behavior of the material and the probability density
functions (PDFs) for systems in steady state shear.

3.1 Effect of particle friction on macro-
scopic behavior

Our previous study has reported (Singh et al. 2013)
the effect of particle friction on the steady state shear
strength and contact anisotropy. We have shown that
volumetric fabric Fv decreases monotonically with
increasing µp. This was explained based on the
fact that for higher contact friction, a single parti-
cle needs less contacts to be in mechanical equilib-

rium. On the other hand, we have found that Fdev
remains almost constant against pressure, while its
value increases with contact friction until a satura-
tion value is reached. A similar behavior was ob-
served for µmacro vs contact friction µp. Here, we
go further and look in detail at the influence of fric-
tion on the steady state behavior, focusing on the
strong/weak force subnetworks and their contribu-
tion to both stress and fabric deviators. We split

the contacts into weak and strong subnetworks, char-
acterized by f

∗(P) = f (P)/� f (P)� smaller or larger
than 1, respectively.

Fig. 2 illustrates the relative contributions of sub-
networks with f

∗ < 1 and f
∗ > 1 to the deviatoric

stress σdev and deviatoric fabric Fdev, together with
the overall network. Fig. 2(a) clearly shows that
the contribution of the weak subnetwork to σdev is
negligible. In Fig. 2(b) we plot the contribution of
weak and strong subnetworks to Fdev. In agreement
with previous studies (Radjai et al. 1998, Thornton
and Antony 2000), a much stronger fabric anisotropy
characterizes the strong subnetwork, while the weak
subnetwork is mostly isotropic. It is noteworthy that
Fdev for both subnetworks is positive because of the
definition of deviator, but we expect the main eigen-
vectors of strong and weak subnetworks to have or-
thogonal directions.
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Figure 2: Contribution of weak, and strong subnet-
works to (a) σdev and (b)Fdev plotted against pressure
P.

Fig. 3(a) displays the normalized shear stress sD =
σdev/P as a function of µp for the two subnetworks
and the overall system. We observe that for the
whole range of particle friction µp, the strong sub-
network carries almost all sD. System with µp = 0
has finite sD due to interlocking of contacts (Singh
et al. 2013). The whole network and the strong sub-
network show similar variation in sD as a function
of µp, i.e. an initial increase and then saturation for
high µp.

Fig. 3(b), displays Fdev as a function of µp for the
strong and weak subnetworks and the complete net-
work. We observe that the strong subnetwork car-
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ries higher anisotropy than the overall network. It
is interesting to note that, in a similar manner Fdev
also starts with a non-zero value for zero µp i.e.
the contact network for frictionless particles is also
anisotropic. It increases with initial increase in µp
until it saturates for high µp ≥ 0.3.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  0.2  0.4  0.6  0.8  1

s D

µp

All Contacts
Strong Network
Weak Network

(a)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.2  0.4  0.6  0.8  1

F d
ev

µp

All Contacts
Strong Network
Weak Network

(b)

Figure 3: Contribution of weak, and strong subnet-
works to (a) sD = σdev/P and (b) Fdev plotted against
contact coefficient of friction µp.

3.2 Force Distribution
To better understand the macroscopic observations
in the previous section, we focus on its microme-
chanical origin and we extend our analysis by look-
ing not only at the two strong/weak subnetworks, but
also at the full probability distribution function of
forces, which carries the information about the in-
homogeneities of force network.

Pioneering work of Liu et al. (Liu et al. 1995) us-
ing carbon paper technique indicated that the num-
ber of contacts carrying a given force decreased as
the magnitude of the force increased. From the work
of (Silbert 2010), it was shown that the probability
distribution is also sensitive to preparation history,
packing disorder and various particle properties like
contact friction.

Normal forces The probability distributions for
normalized normal forces f

∗
n
= fn/� fn� are shown

in Fig. 4 for different values of µp (for the sake of
clarity we show only 4 values of µp). We observe a
very similar behavior for P( f

∗
n
) in the range of strong

forces f
∗
n
> 1, independent of friction. However,

the contact friction affects the distribution of weak
forces f

∗ < 1, as for µp = 0.0 and 0.01, the dis-
tribution bends down as f

∗
n
→ 0, but does not tend

to zero, while an opposite is observed for high µp.
The difference in shape of P( f

∗
n
) for f

∗
n
< 1 was

also observed in Refs. (Silbert 2010, Azéma et al.
2009). This shows that the fraction of contacts car-
rying weak forces increases with increasing µp, even
though the total number of contacts decrease. The
inset of the figure also shows that with increasing
friction, the tail of distribution in Fig. 4 gets longer
(from µp = 0.0 to 1.0), stating that the inhomogene-
ity in the contact network increases with friction.
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Figure 4: Probability density functions of normal-
ized normal forces. The inset shows the same on a
log-linear scale.

Furthermore, we look at P( f
∗
n
) along the princi-

pal eigen-directions of the local strain rate tensor of
the overall network (Duran et al. 2010). Fig. 5 dis-
plays P( f

∗
n
) of forces for contacts aligned with the

compressive directions of local strain rate tensor nor-
malized by the mean force of overall network. We
observe that the tail of the distribution gets longer,
with increasing µp, i.e. it leads to inhomogeneity in
the forces along the compressive direction. For all
range of particle friction, the tensile subnetwork (not
shown here) always stays more homogeneous than
the compressive. This implies that friction mainly
affects the force distribution along the compressive
direction.
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on a log-linear scale.
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Tangential forces Fig. 6 shows the distribution of
the tangential forces, that behaves very similarly to
P( f

∗
n
) for normal forces, with a friction dependent

head for f
∗ < 1 and no dependence for strong forces.
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Figure 6: Probability density functions of normal-
ized tangential forces. The inset shows the same on
a log-linear scale.

For the sake of completeness, we also analyze the
probability distribution of tangential forces along the
compressive and tensile directions, as done previ-
ously. Surprisingly, the behavior is now different be-
tween normal and tangential components, as the lat-
ter does not show any trend with friction in the com-
pressive direction ( Fig. 8). This implies that friction
does not affect the tangential forces along the eigen-
vectors, but only the whole distribution of forces,
displaying a different mechanism between normal
and tangential forces.

3.3 Anisotropy of force networks
Fig. 7 shows the P( f

∗
n
) for normal forces along the

eigen-directions for different values of µp. P( f
∗
n
) of

overall network lies in between the P( f
∗
n
) of forces

in compressive and tensile directions. For all val-
ues of µp, we observe that the P( f

∗
n
) of weak forces

( f
∗
n
< 1) along the tensile direction is higher com-

pared to that in the compressive direction, which is
intuitive as the majority of contacts will have small
forces in the tensile direction. However, as the value
of force increases, P( f

∗
n
> 1) the probability along

the compressive directions overcomes the one in ten-
sile direction. We also observe that with increasing
µp, the difference between the distributions along
compressive and tensile directions increases, indicat-
ing that the anisotropy in the force network (com-
pressive forces) increases.

Fig. 8 displays the same comparison for tangential
forces. Again, no clear trend of P( f

∗
t
) can be inferred

from the figure (besides the fluctuations), as a con-
firmation that friction does not affect the behavior of
the tangential component along the eigenvectors.

4 Discussion
The effect of contact friction on both macroscopic
and microscopic properties of a granular assembly
have been studied by means of the discrete element

method (DEM), in search of the connection between
them. While analyzing the contact network, split in
weak and strong subnetworks, we observe that the
latter carries the majority of the stress and fabric
anisotropy, having values increasing and then satu-
rating with friction.

Looking at the microscale, we find that friction af-
fects the probability distribution of normal and tan-
gential forces in a very similar fashion: the increase
of contact friction leads to an increase of the het-
erogeneity (width of the PDF) in both the force sub-
networks. However, when the focus moves on the
probability distributions along compressive and ten-
sile directions, a systematic increase in anisotropy
(difference between the mean values along the two
directions) is seen with increasing friction, but only
for normal forces. Surprisingly, no such anisotropy
is present for tangential forces. Thus, friction in-
fluences the behavior of the force network in both
its components moving from a Gaussian-like bell-
shaped distribution with a peak around the mean, for
weak friction to an exponential type with continu-
ously decreasing probability with force for stronger
friction. While this effect clearly shows up along
the eigen-direction for normal forces indicating that
friction strengthens the force chains and releases the
weak network, a different mechanism acts for the
tangential forces, which deserves further investiga-
tion in the future.

As a final conclusion, we show that the shear
strength of strong force network gets affected by par-
ticle friction because of change in the fabric F , while
in the case of weak force network both fabric and
force distributions (PDFs) are affected. This con-
clusion is consistent with a recent study (Azéma &
Radjaı̈ 2014).
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