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Abstract Soft, disordered, micro-structured materials
are ubiquitous in nature and industry, and are different
from ordinary fluids or solids, with unusual, interest-
ing static and flow properties. The transition from fluid
to solid – at the so-called jamming density – features
a multitude of complex mechanisms, but there is no
unified theoretical framework that explains them all.
In this study, a simple yet quantitative and predictive
model is presented, which allows for a variable, chang-
ing jamming density, encompassing the memory of the
deformation history and explaining a multitude of phe-
nomena at and around jamming. The jamming density,
now introduced as a new state-variable, changes due to
the deformation history and relates the system’s macro-
scopic response to its micro-structure. The packing ef-
ficiency can increase logarithmically slow under gentle
repeated (isotropic) compression, leading to an increase
of the jamming density. In contrast, shear deformations
cause anisotropy, changing the packing efficiency expo-
nentially fast with either dilatancy or compactancy. The
memory of the system near jamming can be explained
by a micro-statistical model that involves a multiscale,
fractal energy landscape and links the microscopic par-
ticle picture to the macroscopic continuum description,
providing a unified explanation for the qualitatively dif-
ferent flow-behavior for different deformation modes. To
complement our work, a recipe to extract the history-
dependent jamming density from experimentally acces-
sible data is proposed, and alternative state-variables
are compared. The proposed simple macroscopic con-
stitutive model is calibrated with the memory of mi-
crostructure. Such approach can help understanding
predicting and mitigating failure of structures or geo-
physical hazards, and will bring forward industrial pro-
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cess design and optimization, and help solving scientific
challenges in fundamental research.

Keywords jamming · structure · anisotropy · dila-
tancy · creep/relaxation · memory, critical state

1 Introduction

Granular materials are a special case of soft-matter
with micro-structure, as also foams, colloidal systems,
glasses, or emulsions [1–3]. Particles can flow through a
hopper or an hour-glass when shaken, but jam (solidify)
when the shaking stops [4]. These materials jam above a
“certain” volume fraction, or jamming density, referred
to as the “jamming point” or “jamming density” [3, 5–
23], and become mechanically stable with finite bulk-
and shear-moduli [8, 9, 12, 15, 24–27]. Notably, in the
jammed state, these systems can “flow” by reorgani-
zations of their micro-structure [28, 29]. Around the
jamming transition, these systems display considerable
inhomogeneity, such as reflected by over-population of
weak/soft/slow mechanical oscillation modes [11], force-
networks [10, 30, 31], diverging correlation lengths and
relaxation time-scales [9, 13, 22, 32–35], and some uni-
versal scaling behaviors [36, 37]. Related to jamming,
but at all densities, other phenomena occur, like shear-
strain localization [12, 16, 38–40], anisotropic evolution
of structure and stress [7, 9, 11, 13, 30, 31, 38–46], and
force chain inhomogeneity [7, 19, 28]. To gain a better
understanding of the jamming transition concept, one
needs to consider both the structure (positions and con-
tacts) and contact forces. Both of them illustrate and
reflect the transition, e.g., with a strong force chain net-
work percolating the full system and thus making unsta-
ble packings permanent, stable and rigid [7, 19, 47–49].

For many years, scientists and researchers have con-
sidered the jamming transition in granular materials
to occur at a particular volume fraction, φJ [50]. In
contrast, over the last decade, numerous experiments
and computer simulations have suggested the existence
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of a broad range of φJ , even for a given material.
It was shown that the critical density for the jam-
ming transition depends on the preparation protocol
[12, 18, 22, 23, 36, 51–58], and that this state-variable
can be used to describe and scale macroscopic proper-
ties of the system [26]. For example, rheological studies
have shown that φJ decreases with increasing compres-
sion rate [8, 57, 59, 60] (or with increasing growth rate
of the particles), with the critical scaling by the distance
from the jamming point (φ−φJ) being universal and in-
dependent of φJ [20, 36, 51, 61, 62] Recently, the notion
of an a-thermal isotropic jamming “point” was chal-
lenged due to its protocol dependence, suggesting the
extension of the jamming point, to become a J-segment
[42, 60, 63]. Furthermore, it was shown experimentally,
that for a tapped, unjammed frictional 2D systems,
shear can jam the system (known as “shear jamming”),
with force chain networks percolating throughout the
system, making the assemblies jammed, rigid and sta-
ble [7, 29, 47, 48, 64, 65], all highlighting a memory that
makes the structure dependent on historyH. But to the
best of our knowledge, quantitative characterization of
the varying/moving/changing transition points, based
on H, remains a major open challenge.

1.1 Application examples

In the fields of material science, civil engineering and
geophysics, the materials behave highly hysteretic, non-
linear and involve irreversibility (plasticity), possibly al-
ready at very small deformations, due to particle rear-
rangements, more visible near the jamming transition
[66–69]. Many industrial and geotechnical applications
that are crucial for our society involve structures that
are designed to be far from failure (e.g. shallow foun-
dations or underlying infrastructure), since the under-
standing when failure and flow happens is not sufficient,
but is essential for the realistic prediction of ground
movements [70]. Finite-element analyses of, for exam-
ple tunnels, depend on the model adopted for the pre-
failure soil behavior; when surface settlement is con-
sidered, the models predicting non-linear elasticity and
history dependence become of utmost importance [71].
Design and licensing of infrastructure such as nuclear
plants and long span bridges are dependent on a robust
knowledge of elastic properties in order to predict their
response to seismic ground motion such as the risk of
liquefaction and the effect of the presence of anisotropic
strata. (Sediments are one example of anisotropic gran-
ular materials of particles of organic or inorganic origin
that accumulate in a loose, unconsolidated form before
they are compacted and solidified. Knowing their me-
chanical behavior is important in industrial, geotechni-
cal and geophysical applications. For instance, the elas-
tic properties of high-porosity ocean-bottom sediments
have a massive impact on unconventional resource ex-
ploration and exploitation by ocean drilling programs.)

When looking at natural flows, a complete descrip-
tion of the granular rheology should include an elastic
regime [72], and the onset of failure (flow or unjam-
ming) deserves particular attention in this context. The
material parameters have a profound influence on the
computed deformations prior to failure [73, 74], as the
information on the material state is usually embedded
in the parameters. Likewise, also for the onset of flow,
the state of the material is characterized by the value of
the macroscopic friction angle, as obtained, e.g., from
shear box experiments or tri-axial tests. Since any pre-
dictive model must describe the pre-failure deformation
[75] as well as the onset of flow (unjamming) of the
material, many studies have been devoted to the char-
acteristics of geomaterials (e.g., tangent moduli, secant
moduli, peak strength) and to the post-failure regime
[76] or the steady (critical) state flow rheology, see Refs.
[40, 77] and references therein.

1.2 Approach of this study

Here, we consider frictionless sphere assemblies in a pe-
riodic system, which can help to elegantly probe the
behavior of disordered bulk granular matter, allowing
to focus on the structure [3], without being disturbed
by other non-linearities [7, 29, 78] (as e.g. friction, co-
hesion, walls, environmental fluids or non-linear inter-
action laws). For frictionless assemblies, it is often as-
sumed that the influence of memory is of little impor-
tance, maybe even negligible. If one really looks close
enough, however, its relevance becomes evident. We
quantitatively explore its structural origin in systems
where the re-arrangements of the micro-structure (con-
tact network) are the only possible mechanisms leading
to the range of jamming densities (points), i.e. a vari-
able state-variable jamming density.

In this study, we probe the jamming transition con-
cept by two pure deformation modes: isotropic compres-
sion or “tapping” and deviatoric pure shear (volume
conserving), which allow us to combine the J-segment
concept with a history dependent jamming density 1.
Assuming that all other deformations can be superim-
posed by these two pure modes, we coalesce the two
concepts of isotropic and shear induced jamming, and

1 Tapping or compression may not be technically equivalent
to the protocol isotropic compression. In soil mechanics, the
process of tapping may involve anisotropic compression or
shear. The process of compression may be either isotropic or
anisotropic or even involving shear. For example, a typical soil
tests may include biaxial compression, conventional triaxial
compression and true triaxial compression. In this work, in
the context of compression, we always mean true isotropic in
strain. In the context of tapping, we assume that the granular
temperature, which is often assumed isotropic, does the work,
even though the tapping process is normally not isotropic. So
this is an oversimplification, and subject to future study since
it was not detailed here.
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provide the unified model picture, involving a multi-
scale, fractal-type energy landscape [18, 79–81]; in gen-
eral, deformation (or the preparation procedure) mod-
ify the landscape and its population; considering only
changes of the population already allows to establish
new configurations and to predict their evolution. The
observations of different φJ of a single material require
an alternative interpretation of the classical “jamming
diagram” [5].

Our results will provide a unified picture, includ-
ing some answers to the open questions from literature:
(i) What lies in between the jammed and flowing (un-
jammed) regime? – as posed by Ciamarra et al. [63]. (ii)
Is there an absolute minimum jamming density? – as
posed by Ciamarra et al. [63]. (iii) What protocols can
generate jammed states?– as posed by Torquato et al.
[56]. (iv) What happens to the jamming and shear jam-
ming regime in 3D and is friction important to observe
it? – as posed by Bi et al. [7]. Eventually, accepting the
fact that the jamming density is changing with defor-
mation history, significant improvement of continuum
models is expected, not only for classical elasto-plastic
or rheology models, but also, e.g., for anisotropic con-
stitutive models [41, 68, 82, 83], GSH rate type mod-
els [84, 85], Cosserat micro-polar or hypoplastic models
[86–88] or continuum models with a length scale and
non-locality [89, 90]. For this purpose we provide a sim-
ple (usable) analytical macro/continuum model as gen-
eralization of continuum models by adding one isotropic
state-variable. Only allowing φJ(H) to be dependent on
history H, as key modification, explains a multitude of
reported observations and can be significant step for-
ward to solve real-world problems in e.g. electronic in-
dustry related novel materials, geophysics or mechanical
engineering.

Recent works showed already that, along with the
classical macroscopic properties (stress and volume
fraction), the structural anisotropy is an important
[41, 45, 46, 91–94] state-variable for granular materials,
as quantified by the fabric tensor [43, 68] that character-
izes, on average, the geometric arrangement of the parti-
cles, the contacts and their network, i.e. the microstruc-
ture of the particle packing. Note that the anisotropy
alone is not enough to characterize the structure, but
also an isotropic state-variable is needed, as is the main
message of this study.

1.3 Overview

The paper continues with the simulation method in
section 2, before the micromechanical particle- and
contact-scale observations are presented in section 3,
providing analytical (quantitative) constitutive expres-
sions for the change of the jamming density with dif-
ferent modes of deformation. Section 4 is dedicated
to a (qualitative) meso-scale stochastic model that ex-
plains the different (slow versus fast) change of φJ(H)

for different deformation modes (isotropic versus de-
viatoric/shear). A quantitative predictive macroscale
model is presented in section 5 and verified by com-
parison with the microscale simulations, before an ex-
perimental validation procedure is discussed in section 6
and the paper is summarized and conclusions are given
in section 7.

2 Simulation method

Discrete Element Method (DEM) simulations are used
to model the deformation behavior of systems with
N = 9261 soft frictionless spherical particles with av-
erage radius 〈r〉 = 1 [mm], density ρ = 2000 [kg/m3],
and a uniform polydispersity width w = rmax/rmin = 3,
using the linear visco-elastic contact model in a 3D box
with periodic boundaries [44, 68]. The particle stiffness
is k = 108 [kg/s2], contact viscosity is γ = 1 [kg/s]. A
background dissipation force proportional to the mov-
ing velocity is added with γb = 0.1 [kg/s]. The parti-
cle density is ρ = 2000 [kg/m3]. The smallest time of
contact is tc = 0.2279 [µs] for a collision between two
smallest sized particles [41].

2.1 Preparation procedure and main experiments

For the preparation, the particles are generated with
random velocities at volume (solid) fraction φ = 0.3
and are isotropically compressed to φt = 0.64, and later
relaxed. From such a relaxed, unjammed, stress free ini-
tial state with volume fraction, φt = 0.64 < φJ , we com-
press isotropically further to a maximum volume frac-
tion, φmax

i , and decompress back to φt, during the latter
unloading φJ is identified. This process is repeated over
M (100) cycles, which provides different isotropic jam-
ming densities (points) φJ =: MφJ,i, related with φmax

i
and M (see section 3.1).

Several isotropic configurations φ, such that φt <
φ < 1φJ,i from the decompression branch are chosen
as the initial configurations for shear experiments. We
relax them and apply pure (volume conserving) shear

(plane-strain) with the diagonal strain-rate tensor Ė =
±ε̇d (−1, 1, 0), for four cycles 2. The x and y walls move,
while the z wall is stationary. The strain rate of the

2 This deformation mode represents the only fundamental
deviatoric deformation motion (complementary to isotropic
deformation), since axial strain can be superposed by two
plane-strain modes, and because the plane-strain mode allows
to study the non-Newtonian out-of-shear-plane response of
the system (pressure dilatancy), whereas the axial mode does
not. If superposition is allowed, as it seems to be the case
for frictionless particles, studying only these two modes is
minimal effort, however, we cannot directly extrapolate to
more realistic materials.
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(quasi-static) deformation is small, ε̇dtc < 3.10−6, to
minimize transient behavior and dynamic effects 3.

2.2 Macroscopic (tensorial) quantities

Here, we focus on defining averaged tensorial macro-
scopic quantities – including strain-, stress- and fabric
(structure) tensors – that provide information about the
state of the packing and reveal interesting bulk features.

From DEM simulations, one can measure the ‘static’
stress in the system [95] as

σ = (1/V )
∑
c∈V

lc ⊗ f c, (1)

average over all the contacts in the volume V of the
dyadic products between the contact force f c and the
branch vector lc, where the contribution of the kinetic
fluctuation energy has been neglected [41, 91]. The dy-
namic component of the stress tensor is four orders of
magnitude smaller than the former and hence its con-
tribution is neglected. The isotropic component of the
stress is the pressure P = tr(σ)/3.

In order to characterize the geometry/structure of
the static aggregate at microscopic level, we will mea-
sure the fabric tensor, defined as

F =
1

V

∑
P∈V

V P
∑
c∈P

nc ⊗ nc, (2)

where V P is the volume relative to particle P, which
lies inside the averaging volume V , and nc is the nor-
mal unit branch-vector pointing from center of particle
P to contact c [91, 96, 97]. Isotropic part of fabric is
Fv = tr(F). The corrected coordination number [7, 41]
is C∗ = M4/N4, where, M4 is total contacts of the N4

particles having at least 4 contacts, and the non-rattler
fraction is fNR = N4/N . C is the ratio of total non-
rattler contacts M4 and total number of particles N ,
i.e., C = M4/N = (M4/N4) (N4/N) = C∗fNR, with
corrected coordination number C∗ and fraction of non-
rattlers fNR. The isotropic fabric Fv is given by the re-
lation Fv = g3φC, as taken from Imole et al. [41], with
g3 ∼= 1.22 for the polydispersity used in the present

3 For the isotropic deformation tests, we move the (vir-
tual) walls and for the shear tests, we move all the grains
according to an affine motion compatible with the (virtual)
wall motion. When only the (virtual) walls moves, some arch-
ing near the corners can be seen when there is a huge particle
size dispersity or if there is a considerable particle friction
(data not shown). For the small polydispersity and the fric-
tionless spheres considered in this work, the system is and
remains homogeneous and the macroscopic quantities are in-
distinguishable between the two methods, however, this must
not be taken for granted in the presence of friction or cohe-
sion, where wall motions other than by imposed homogeneous
strain, can lead to undesired inhomogeneities in the periodic
representative volume element.

work. For any tensor Q, its deviatoric part can be de-
fined as Qd = sgn (qyy − qxx)

√
3qijqij/2, where qij are

the components of the deviator of Q, and the sign func-
tion accounts for the shear direction, in the system con-
sidered here, where a more general formulation is given
by [68]. Both pressure P and shear stress Γ are non-
dimensionalized by 2〈r〉/k to give dimensionless pres-
sure p and shear stress τ.

3 Micromechanical results

3.1 Isotropic deformation

In this section, we present a procedure to identify the
jamming densities and their range. We also show the
effect of cyclic over-compression to different target vol-
ume fractions and present a model that captures this
phenomena.

3.1.1 Identification of the jamming density

When a sample is over-compressed isotropically, the
loading and unloading paths are different in pressure p.
This difference is most pronounced near the jamming
density φJ , and for the first cycle. It brings up the first
question of how to identify a jamming density, φJ . The
unloading branch of a cyclic isotropic over-compression
along volume fraction φ is well described by a linear
relation in volumetric strain, with a tiny quadratic cor-
rection [44, 98, 99]:

p =
φC

φJ
p0(−εv) [1− γp(−εv)] , (3)

where p0, γp, as presented in Table 1, and the jamming
density φJ are the fit parameters, and −εv = log(φ/φJ)
is the true or logarithmic volumetric strain of the sys-
tem, defined relative to the reference where p → 0, i.e.
jamming volume fraction.

Eq. (3), quantifies the scaled stress and is propor-
tional to the dimensionless deformation (overlap per
particle size), as derived analytically [98] from the def-
inition of stress and converges to p → 0 when φ → φJ .

We apply the same procedure for different over-
compressions, φmax

i , and many subsequent cycles M to
obtain MφJ,i, for which the results are discussed below.
The material parameter p0 is finite, almost constant,
whereas γp is small, sensitive to history and contributes
mainly for large−εv, with values ranging around 0±0.1;
in particular, it is dependent on the over-compression
φmax
i (data not shown). Unless strictly mentioned, we

shall be using the values of p0 and γp given in Table 1.
Fig. 1(a) shows the behavior of p with φ during

one full over-compression cycle to display the depen-
dence of the jamming density on the maximum over-
compression volume fraction and the number of cycles.
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Quantity Isotropic Shear

p p0 = 0.042; γp = 0± 0.1* p0 = 0.042; γp = 0± 0.1*

C∗ C1 = 8.5± 0.3*; θ = 0.58 C1 = 8.5± 0.3*; θ = 0.58

fNR ϕc = 0.13; ϕv = 15 ϕc = 0.16; ϕv = 15

Table 1 Parameters used in Eqs. (9), (10) and (11), where ‘*’ represents slightly different values than from Imole et al.
[41], modified slightly to have more simple numbers, without big deviation, and without loss of generality.

With increasing over-compression amplitude, e.g. com-
paring φmax

i = 0.68 and φmax
i = 0.82, the jamming

density, as realized after unloading, is increasing. Also,
with each cycle, from M = 1 to M = 100, the jam-
ming density moves to larger values. Note that the dif-
ference between the loading and the unloading curves
becomes smaller for subsequent over-compressions. Fig.
1(b) shows the scaled pressure, i.e., p normalized by
φC/φJ , which removes its non-linear behavior. p repre-
sents the average deformation (overlap) of the particles
at a given volume fraction, proportional to the distance
from the jamming density φJ

4. In the small strain re-
gion, for all over-compression amplitude and cycles, the
datasets collapse on a line with slope p0 ∼ 0.042. Only
for very strong over-compression, −εv > 0.1, a small de-
viation (from linear) of the simulation data is observed
due to the tiny quadratic correction in Eq. (3).

3.1.2 Isotropic cyclic over-compression

Many different isotropic jamming densities can be found
in real systems and – as shown here – also for the
simplest model material in 3D. Fig. 2(a) shows the
evolution of these extracted isotropic jamming den-
sities MφJ,i, which increase with increasing M and
with over-compression φmax

i , for subsequent cycles M
of over-compressions, the jamming density MφJ,i grows
slower and slower and is best captured by a Kohlrausch-
Williams-Watts (KWW) stretched exponential relation:

MφJ,i : = φJ(φ
max
i ,M)

= ∞φJ,i − (∞φJ,i − φc) exp
[
− (M/µi)

βi

]
,

(4)

with the three universal “material”-constants φc =
0.6567 (section 3.2.2), µi = 1, and βi = 0.3, the
lower limit of possible φJ ’s, the relaxation (cycle) scale
and the stretched exponent parameters, respectively.
Only ∞φJ,i, the equilibrium (steady-state or shake-
down [100]) jamming density limit (extrapolated for
M → ∞), depends on the over-compressions φmax

i . φc

4 The grains are soft and overlap δ increases with increas-
ing compression (φ). For a linear contact model, it has been
shown in Refs. [98, 99] that 〈δ〉/〈r〉 ∝ ln (φ/φJ) = −εv (vol-
umetric strain).

is the critical density in the zero pressure limit with-
out previous history, or after very long shear without
temperature (which all are impossible to realize with ex-
periments or simulation–only maybe with energy mini-
mization).

Very little over-compression, φmax
i & φc, does not

lead to a significant increase in φJ,i, giving us infor-
mation about the lower limits of the isotropic jamming
densities achievable by shear, which is the critical jam-
ming density φc = 0.6567. With each over-compression
cycle, MφJ,i increases, but for large M it increases less
and less. This is analogous to compaction by tapping,
where the tapped density increases logarithmically slow
with the number of taps. The limit value ∞φJ,i with
φmax
i can be fitted with a simple power law relation:

∞φJ,i = φc + αmax (φ
max
i /φc − 1)

β
, (5)

where the fit works perfect for φc < φmax
i ≤ 0.9, with

parameters φc = 0.6567, αmax = 0.02 ± 2%, and β =
0.3, while the few points for φmax

i ∼ φc are not well
captured. The relation between the limit-value ∞φJ,i

and 1φJ,i is derived using Eq. (4):

∞φJ,i − φc =
1φJ,i − φc

1− e−1
∼= 1.58

(
1φJ,i − φc

)
, (6)

only by setting M = 1, as shown in Fig. 2(b), with
perfect match. With other words, using a single over-
compression, Eq. (6) allows to predict the limit value
after first over-compression 1φJ,i (or subsequent over-
compression cycles, using appropriate M).

Thus, the isotropic jamming density φJ is not a
unique point, not even for frictionless particle systems,
and is dependent on the previous deformation history
of the system [63, 81, 101], e.g. over-compression or tap-
ping/driving (data not shown). Both (isotropic) modes
of deformation lead to more compact, better packed
configurations [7, 47, 102]. Considering different sys-
tem sizes, and different preparation procedures, we con-
firmed that the jamming regime is the same (within
fluctuations) for all the cases considered (not shown).
All our data so far, for the material used, are consis-
tent with a unique limit density φc that is reached after
large strain, very slow shear, in the limit of vanishing
confining pressure. Unfortunately this limit is vaguely
defined, since it is not directly accessible, but rather cor-
responds to a virtual stress-free state. The limit density
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Fig. 1 (a) Dimensionless pressure p plotted against volume
fraction φ and for an isotropic compression starting from
φt = 0.64 to φmax

i = 0.68 (green ‘H’) and φmax
i = 0.82 (red

‘•’) and decompression back to φt for M = 1, leading to
1φJ(φmax

i = 0.68) = 0.66 and 1φJ(φmax
i = 0.82) = 0.6652.

The blue ‘�’ data points represent cyclic over-compression
to φmax

i = 0.82 for M = 100, leading to 100φJ(φmax
i =

0.82) = 0.6692. The MφJ,i are extracted using a fit to Eq.
(3). The upward arrow indicates the loading path (small sym-
bols) while the downward arrow indicates the unloading path
(big symbols). The inset is the zoomed in regime near the
jamming density, and lines are just connecting the datasets.
(b) Scaled pressure pφJ/φC plotted against volumetric strain
−εv = log(φ/φJ) for the same simulations as (a). Lines repre-
sents the scaled pressure, when Eq. (3) is used, with different
γp = -0.1, 0.07 and -0.01 for green, red and blue lines respec-
tively. The inset is the zoomed in regime for small −εv.

is hard to determine experimentally and numerically as
well. Reason is that any slow deformation (e.g. com-
pression from below jamming) also leads to perturba-
tions (like tapping leads to granular temperature): the
stronger the system is perturbed, the better it will pack,
so that usually φJ > φc is established. Repeated pertur-
bations, lead to a slow stretched exponential approach

to an upper-limit jamming density φJ → φmax
J that it-

self increases slowly with perturbation amplitude, see
Fig. 2(b). The observation of different φJ of a single
material, was referred to as J-segment [63, 101], and
requires an alternative interpretation of the classical
“jamming diagram” [5, 7, 65], giving up the miscon-
ception of a single, constant jamming “density”. Note
that the J-segment is not just due to fluctuations, but it
is due to the deformation history, and with fluctuations
superposed. The state-variable φJ varies due to defor-
mation, but possibly has a unique limit value that we
denote for now as φc. Jammed states below φc might
be possible too, but require different protocols [103],
or different materials, and are thus not addressed here.
The concept of shear jammed states [7] below φJ , is
discussed next.

3.2 Shear deformation

To study shear jamming, we choose several unjammed
states with volume fractions φ below their jamming
densities 1φJ,i, which were established after the first
compression-decompression cycle, for different history,
i.e., various previously applied over-compression to
φmax
i . Each configuration is first relaxed and then sub-

jected to four isochoric (volume conserving) pure shear
cycles ((see section 2.1)).

3.2.1 Shear jamming below φJ (H)

We confirm shear jamming, e.g., by a transition in the
coordination number C∗, from below to above its iso-
static limit, C∗

0 = 6, for frictionless grains [13, 31,
38, 41]. This was consistently (independently) recon-
firmed by using percolation analysis [7, 30], allowing us
to distinguish the three different regimes namely, un-
jammed, fragile and shear jammed states during (and
after) shear [65], as shown in Fig. 3(a). For this, first
we study the percolation analysis, that allows to dis-
tinguish the three regimes namely, unjammed, fragile
and shear jammed states during (and after) shear, as
shown in Fig. 3(a). We study how the k−cluster, de-
fined as the largest force network, connecting strong
forces, f ≥ kfavg [107, 108], with k = 2.2, differ-
ent from k = 1 for 2D frictional systems [7], perco-
lates when the initially unjammed isotropic system is
sheared. More quantitatively, for an exemplary volume
fraction φ (φmax

i = 0.82,M = 1) = 0.6584, very close to
φc, Fig. 3(b) shows that fNR increases from initially
zero to large values well below unity due to the al-
ways existing rattlers. The compressive direction per-
colating network ξy/Ly grows faster than the exten-
sion direction network ξx/Lx, while the network in the
non-mobile direction, ξz/Lz, lies in between them. For
fNR > 0.82 ± 0.01, we observe that the growing force
network is percolated in all three directions (Fig. 3(a)),
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Fig. 2 (a) Evolution of isotropic jamming densities MφJ,i after performing M isotropic compression-decompression cycles
up to different maximum volume fractions φmax

i , as given in the inset. With increasing φmax
i , the range of the established

jamming densities MφJ,i = φJ(M,φmax
i ) increases. The minimum (lower bound) of all MφJ,i is defined as the critical jamming

limit point, φc = 0.6567. The solid lines through the data are universal fits to a stretched exponential [102, 104–106] with only
one single variable parameter φmax

J , i.e., the upper limit jamming density for M → ∞, which depends on φmax
i . (b) The first

jamming density 1φJ,i (blue ‘�’) and after many over-compression ∞φJ,i (brown ‘•’) are plotted against over-compression
amplitude φmax

i . Solid lines represent Eqs. (5) for ∞φJ,i and (6) for 1φJ,i. The shaded region is the explorable range of
jamming densities MφJ,i, denoted as J-segment. The red base line indicates the critical jamming density φc.
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Fig. 3 (a) Snapshots of unjammed, fragile and shear jammed states, when the force networks are percolated in none, one or
two, and all the three directions, respectively. Only the largest force network, connecting strong forces, f ≥ k〈f〉, with k = 2.2
are shown for the three states for clarity, and hence the white spaces in the background. (b) Plot of C∗ and cluster sizes
ξ/L in the three directions for extension in x− and compression in y− directions against the non-rattler fraction fNR, along
the loading path for an isotropic unjammed initial state with volume fraction φ = 0.6584 and φJ (φmax

i = 0.82,M = 1) =:
1φJ,i = 0.6652. The upward arrow indicates the direction of loading shear strain.

which is astonishingly similar to the value reported for
the 2D systems [7]. The jamming by shear of the mate-
rial corresponds (independently) to the crossing of C∗

from the isostatic limit of C∗
0 = 6, as presented in Fig.

3(b).

From this perspective, when an unjammed material
is sheared at constant volume, and it jams after applica-
tion of sufficient shear strain, clearly showing that the

jamming density has moved to a lower value. Shearing
the system also perturbs it, just like over-compression;
however, in addition, finite shear strains enforce shape-
and structure-changes and thus allow the system to ex-
plore new configurations; typically, the elevated jam-
ming density φJ of a previously compacted system will
rapidly decrease and exponentially approach its lower-
limit, the critical jamming density φc, below which no



8

shear jamming exists. Note that we do not exclude
the possibility that jammed states below φc could be
achieved by other, special, careful preparation proce-
dures [109].

Next, we present the evolution of the strong force
networks in each direction during cyclic shear, as shown
in Fig. 4, for the same initial system. After the first load-
ing, at reversal fNR drops below the 0.82 threshold,
which indicates the breakage/disappearance of strong
clusters, i.e. the system unjams. The new extension di-
rection ξy/Ly drops first with the network in the non-
mobile directions, ξz/Lz, lying again in between the
two mobile direction. With further applied strains, fNR

increases and again, the cluster associated with the
compression direction grows faster than in the exten-
sion direction. For fNR above the threshold, the clus-
ter percolates the full system, leading to shear jammed
states again. At each reversal, the strong force network
breaks/fails in all directions, and the system gets “soft”
or even unjams temporarily. However, the network is
rapidly re-established in the perpendicular direction,
i.e., the system jams and the strong, anisotropic force
network again sustains the load. Note that some sys-
tems with volume fraction higher and away from φc can
resist shear strain reversal as described and modeled in
section 5.1.3.

3.2.2 Relaxation effects on shear jammed states

Here, we will discuss the system stability by looking at
the macroscopic quantities in the saturation state (af-
ter large shear strain), by relaxing them sufficiently long
to have non-fluctuating values in the microscopic and
macroscopic quantities. Every shear cycle after defining
e.g. the y−direction as the initial active loading direc-
tion, has two saturation states, one during loading and,
after reversal, the other during unloading. In Fig. 5, we
show values attained by the isotropic quantities pres-
sure p, isotropic fabric Fv and the deviatoric quantities
shear stress τ, shear stress ratio τ/p, and deviatoric fab-
ric Fd for various φ given the same initial jamming den-
sity φJ (φmax

i = 0.82,M = 1) =: 1φJ,i = 0.6652. Data
are shown during cyclic shear as well as at the two
relaxed saturation states (averaged over four cycles),
leading to following observations:
(i) With increasing volume fraction, p, Fv and τ in-
crease, while a weak decreasing trend in stress ratio
τ/p and deviatoric fabric Fd is observed.
(ii) There is almost no difference in the relaxed states
in isotropic quantities, p and Fv for the two directions,
whereas it is symmetric about zero for deviatoric quan-
tities, τ, τ/p, and Fd. The decrease in pressure during
relaxation is associated with dissipation of kinetic en-
ergy and partial opening of the contacts to “dissipate”
the related part of the contact potential energy. How-
ever, Fv remains at its peak value during relaxation.
It is shown in section 2.2 that Fv = g3φC, as taken

from Imole et al. [41], with g3 ∼= 1.22 for the poly-
dispersity used in the present work. Thus we conclude
that the contact structure is almost unchanged and the
network remains stable during relaxation, since during
relaxation φ does not change.
(iii) For small volume fractions, close to φc, the system
becomes strongly anisotropic in stress ratio τ/p, and
fabric Fd rather quickly, during (slow) shear (envelope
for low volume fractions in Figs. 5(d) and 5(e)), before
it reaches the steady state [49].
(iv) It is easy to obtain the critical (shear) jamming
density φc from the relaxed critical (steady) state pres-
sure p, and shear stress τ, by extrapolation to zero, as
the envelope of relaxed data in Figs. 5(a) and 5(c).

We use the same methodology using Eq. (3), to ex-
tract the critical jamming density φc. When the relaxed
p is normalized with the contact density φC, we obtain
φc = 0.6567± 0.0005 by linear extrapolation. A similar
value of φc is obtained from the extrapolation of the
relaxed τ data set, and is consistent with other meth-
ods using the coordination number C∗, or the energy
[110]. The quantification of history dependent jamming
densities φJ(H), due to shear complementing the slow
changes by cyclic isotropic (over)compression in Eq. (4),
is discussed next.

3.3 Jamming phase diagram with history H

We propose a jamming phase diagram with shear strain,
and present a new, quantitative history dependent
model that explains jamming and shear jamming, but
also predicts that shear jamming vanishes under some
conditions, namely when the system is not tapped, tem-
pered or over-compressed before shear is applied. Using
εd and φ as parameters, Fig. 6(a) shows that for one ini-
tial the history dependent jamming state at 1φJ,i, there
exist sheared states within the range φc ≤ φ ≤ φJ(H),
which are isotropically unjammed. After small shear
strain they become fragile, and for larger shear strain
jam and remain jammed, i.e., eventually showing the
critical state flow regime [45, 46], where pressure, shear
stress ratio and structural anisotropy have reached their
saturation levels and forgotten their initial state (data
not shown). The transition to fragile states is accompa-
nied by partial percolation of the strong force network,
while percolation in all directions indicates the shear
jamming transition. Above jamming, the large fraction
of non-rattlers provides a persistent mechanical stabil-
ity to the structure, even after shear is stopped.

For φ approaching φc, the required shear strain to
jam εSJ

d increases, i.e., there exists a divergence “point”
φc, where ‘infinite’ shear strain might jam the system,
but below which no shear jamming was observed. The
closer the (constant) volume fraction φ is to the ini-
tial 1φJ,i, the smaller is εSJ

d . States with φ ≥ 1φJ,i are
isotropically jammed already before shear is applied.
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Fig. 4 Cluster sizes, fNR (top panel), over three strain cycles bottom for φ = 0.6584 and jamming density
φJ (φmax

i = 0.82,M = 1) =: 1φJ,i = 0.6652. Dashed horizontal black line represents transition from unjammed to shear
jammed states. The cluster sizes are smoothed averages over two past and future snapshots.

Based on the study of many systems, prepared via
isotropic over-compression to a wide range of volume
fractions φmax

i ≥ φc, and subsequent shear deformation,
Fig. 6(b) shows the strains required to jam these states
by applying pure shear. A striking observation is that
independent of the isotropic jamming density 1φJ,i, all
curves approach a unique critical jamming density at
φc ∼ 0.6567 (see section 3.2.2). When all the curves
are scaled with their original isotropic jamming density
MφJ,i as φsc = (φ− φc) /

(
MφJ,i − φc

)
they collapse on

a unique master curve(
εSJ
d /ε0d

)α
= − log φsc = − log

(
φ− φc

MφJ,i − φc

)
, (7)

shown in the inset of Fig. 6(b), with power α = 1.37±
0.01 and shear strain scale ε0d = 0.102± 0.001 as the fit
parameters. Hence, if the initial jamming density MφJ,i

or φJ(H) is known based on the past history of the
sample, the shear jamming strain εSJ

d can be predicted.
From the measured shear jamming strain, Eq. (7),

knowing the initial and the limit value of φJ , we
now postulate its evolution under isochoric pure shear
strain:

φJ(εd) = φc+(φ− φc) exp

[((
εSJ
d

)α − (εd)
α

(ε0d)
α

)]
. (8)

Inserting, εd = 0, εd = εSJ
d and εd = ∞ leads to φJ =

MφJ,i, φJ = φ and φJ = φc, respectively. This means
the jamming density evolution due to shear strain εd is
faster than exponential (since α > 1) decreasing to its
lower limit φc. This is qualitatively different from the
stretched exponential (slow) relaxation dynamics that
leads to the increase of φJ due to over-compression or
tapping, see Fig. 7(a) for both cases.

4 Meso-scale stochastic slow dynamics model

The last challenge is to unify the observations in a qual-
itative model that accounts for the changes in the jam-
ming densities for both isotropic and shear deforma-
tion modes. Over-compressing a soft granular assembly
is analogous to small-amplitude tapping [21, 47, 102]
of more rigid particles, in so far that both methods
lead to more compact (efficient) packing structures, i.e.,
both representing more isotropic perturbations, rather
than shear, which is deviatoric (anisotropic) in nature.
These changes are shown in Fig. 2(a), where the orig-
inally reported logarithmically slow dynamics for tap-
ping [105, 106, 111] is very similar to our results that
are also very slow, with a stretched exponential behav-
ior; such slow relaxation dynamics can be explained by
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Fig. 5 Scatter plots of isotropic quantities (a) pressure p, (b) isotropic fabric Fv and deviatoric quantities (c) shear stress τ,
(d) shear stress ratio τ/p, and (e) deviatoric fabric Fd for various φ and jamming density φJ (φmax

i = 0.82,M = 1) =: 1φJ,i =
0.6652. Black ‘x’ symbols represent the initial loading cycle, while the green ‘+’ and blue ‘∗’ represent states attained for
φ < φJ and φ > φJ , respectively for the subsequent shear. Cyan ‘•’ and the brown ‘�’ are states chosen after large strain
during loading and unloading shear respectively, and are relaxed. The red and purple lines indicate the critical jamming
density φc = 0.6567 and the jamming density 1φJ,i respectively.
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Fig. 6 Phase diagram and scaling with φc to replace the MφJ,i’s. (a) Phase diagram showing the different states: unjammed,
isotropic jammed, shear unjammed, fragile and shear jammed, for one particular case of φJ (φmax

i = 0.82,M = 1) =: 1φJ,i =
0.6652. (b) Plot of minimum strain needed to jam states prepared from the first over-compression cycle with different φmax

i ,
as given in the legend. The inset shows the collapse of the states using a scaled definition that includes distance from both
isotropic jamming density MφJ,i and critical jamming density φc, using Eq. (7). We only show data for the states for φ < 1φJ,i

that after the first isotropic compression decompression cycle jam by applying shear.
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Fig. 7 Relaxation mechanisms and dynamics in an energy landscape due to memory effects. (a) Schematic evolution of the
jamming densities φJ(H) due to history H. Solid lines represent many isotropic compression decompression cycles for three
different φmax

i , leading to an increase in φJ(H) by slow stretched exponential relaxation, see Eq. (4). Dashed lines represent
the much faster decrease in φJ(H) due to shear strain εd, using Eq. (8). (b) The sketch represents only a very small, exemplary
part of the hierarchical, fractal-type energy landscape. The red horizontal line represents the (quenched) average, while the
dotted horizontal line indicates the momentary average φJ(H) (of the ensemble of states, where the population is represented
by green circles). The blue solid arrows show (slow) relaxation due to perturbations, while the dashed arrows indicate (fast)
re-arrangements (re-juvenation) due to finite shear strain. The green dots represent with their size the population after some
relaxation, in contrast to a random, quenched population where all similar valleys would be equally populated [80].

a simple Sinai-Diffusion model of random walkers in
a random, hierarchical, fractal, free energy landscape
[104, 112] in the (a-thermal) limit, where the landscape
does not change – for the sake of simplicity.

The granular packing is represented in this picture
by an ensemble of random walkers in (arbitrary) con-
figuration space with (potential) energy according to
the height of their position on the landscape. (Their
average energy corresponds to the jamming density
and a decrease in energy corresponds to an increase
in φJ(H), thus representing the “memory” and his-
tory dependence with protocol H.) Each change of
the ensemble represents a rearrangement of packing
and units in ensemble represent sub-systems. Pertur-
bations, such as tapping with some small-amplitude
(corresponding to “temperature”) allow the ensemble
to find denser configurations, i.e., deeper valleys in
the landscape, representing larger (jamming) densities
[22, 81]. Similarly, over-compression is squeezing the en-
semble “down-hill”, also leading to an increase of φJ ,
as presented in Fig. 7(b). Larger amplitudes will allow
the ensemble to overcome larger barriers and thus find
even deeper valleys. Repetitions have a smaller chance
to do so – since the easy reorganizations have been re-
alized previously – which explains the slow dynamics
in the hierarchical multiscale structure of the energy
landscape.

In contrast to the isotropic perturbations, where
the random walkers follow the “down-hill” trend, shear
is anisotropic and thus pushing parts of the ensemble
in “up-hill’ direction’. For example, under planar sim-
ple shear, one (eigen) direction is extensive (up-hill)
whereas an other is compressive (down-hill). If the en-

semble is random, shear will only re-shuffle the popu-
lation. But if the material was previously forced or re-
laxed towards the (local) land-scape minima, shear can
only lead to a net up-hill drift of the ensemble, i.e., to
decreasing φJ , referred to as dilatancy under constant
stress boundary conditions.

For ongoing over-compression, both coordination
number and pressure slowly increase, as sketched in Fig.
8, while the jamming density drifts to larger values due
to re-organization events that make the packing more
effective, which moves the state-line to the right (also
shown in Fig. 7(a)). For decompression, we assume that
there are much less re-organization events happening, so
that the pressure moves down on the state-line, until the
system unjams. For ongoing perturbations, at constant
volume, as tapping or a finite temperature, Tg, both co-
ordination number and pressure slowly decrease (data
not shown), whereas for fixed confining pressure the vol-
ume would decrease (compactancy, also not shown).

For ongoing shear, the coordination number, the
pressure and the shear stress increase, since the jam-
ming density decreases, as sketched in Fig. 9 until a
steady state is reached. This process is driven by shear
strain amplitude and is much faster than the relaxation
dynamics. For large enough strain the system will be
sufficiently re-shuffled, randomized, or “re-juvenated”
such that it approaches its quenched, random state close
to φc (see Fig. 7(a)).

If both mechanisms, relaxation by temperature, and
continuous shear are occurring at the same time, one
can reach another (non)-“equilibrium” steady state,
where the jamming density remains constant, balanc-
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Fig. 8 Schematic sketch of the evolution of the system in stress-density space, e.g., pressure, (a) starting from a state
(point) slightly above jamming, under (b) isotropic compression, and (c) further compression, the system reaches a higher
stress level, while the jamming density moves to the right (larger densities). (d) For isotropic decompression (extension) the
system reduces pressure and the jamming density remains (almost) constant, until for (e) ongoing decompression, the system
unjams and reaches a density below the jamming density. (For tapping (not shown), the density of the system would remain
fixed, the jamming density would increase for ongoing perturbations, so that the stress would reduce and the system could
even unjam if the density is low enough.)
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Fig. 9 Schematic sketch of the evolution of the system under isochoric (volume conserving, represented by the dashed
vertical red line) shear in stress-density space, think of shear stress, which is just proportional to pressure, (a) starting from
the state (point 8(e)) slightly below jamming, which was previously over-compressed. Under shear (b) the jamming density
shifts to the left until it reaches the actual density, at which (c) shear jamming kicks in, i.e., stress increases above zero. From
this state, for (d) shear reversal, the jamming density moves to the right again and the system can unjam. For ongoing shear,
(e) at a higher density, at finite granular temperature Tg, the jamming density is increased by the perturbations due to Tg

while shear, at the same time, decreases the jamming density, as indicated by the two arrows, which resembles a steady state.
A change of either shear rate or temperature will then lead to either transient shear-thickening or shear-thinning, before a
new steady state path is reached.

ing the respective increasing and decreasing trends, as
sketched in Fig. 9(e).

5 Macroscopic constitutive model

In this section, we present the simplest model equa-
tions, as used for the predictions, involving a history
dependent φJ(H), as given by Eq. (4) for isotropic de-
formations and Eq. (8) for shear deformations. The only
difference to Imole et al. [41], where these relations are
taken from, based on purely isotropic unloading, is a
variable φJ = φJ(H).

5.1 Presentation and model calibration

5.1.1 During cyclic isotropic deformation

During (cyclic) isotropic deformation, the evolution
equation for the corrected coordination number C∗ is:

C∗ = C0 + C1

(
φ

φJ(H)
− 1

)θ

, (9)

with C0 = 6 for the frictionless case and parameters
C1 and θ are presented in Table 1. The fraction of non-
rattlers fNR is given as:

fNR = 1− ϕcexp

[
−ϕv

(
φ

φJ(H)
− 1

)]
, (10)

with parameters ϕc and ϕv presented in Table 1. We
modify Eq. (3) for the evolution of p together with the
history dependent φJ = φJ(H) so that,

p =
φC

φJ(H)
p0(−εv) [1− γp(−εv)] , (11)
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with parameters p0 and γp presented in Table 1, and
the true or logarithmic volume change of the system is
−εv = log(φ/φJ(H)), relative to the momentary jam-
ming density. The non-corrected coordination number
is C = C∗fNR, as can be computed using Eqs. (9) and
(10). Also the parameters C1, θ for C∗, ϕc, ϕv for fNR,
and p0, γp for pressure p are similar to Imole et al. [41],
with the second order correction parameter γp most sen-
sitive to the details of previous deformations; however,
not being very relevant since it is always a small cor-
rection due to the product γp(−εv).

The above relations are used to predict the behav-
ior of the isotropic quantities: dimensionless pressure p
and coordination number C∗, as shown in Fig. 11(a-b)
during isotropic compression, as well as for the fraction
of non-rattlers in Fig. 11(c) for cyclic shear, with cor-
responding parameters presented in Table 1. Note that
during isotropic deformation, φJ(H) was changed only
during the compression branch, using Eq. (4) for fixed
M = 1 using φmax

i as variable, but is kept constant
during unloading/expansion.

The above relations are used to predict the behavior
of the isotropic quantities: dimensionless pressure p and
coordination number C∗, by only adding the history
dependent jamming density φJ(H) to the constitutive
model, as tested below in section 5.2.

5.1.2 Cyclic (pure) shear deformation

During cyclic (pure) shear deformation, a simplified
equation for the shear stress ratio τ/p is taken from
Imole et al. [41], where the full model was introduced
as rate-type evolution equations, and further calibrated
and tested by Kumar et al. [68]:

τ/p = (τ/p)
max −

[
(τ/p)

max − (τ/p)
0
]
exp [−βsεd] ,

(12)

with (τ/p)
0

and (τ/p)
max

the initial and maximum
(saturation) shear stress ratio, respectively, and βs its
growth rate 5. Similarly, a simplified equation for the
deviatoric fabric Fd can be taken from Refs. [41, 68] as:

Fd = Fd
max −

[
Fd

max − Fd
0
]
exp [−βF εd] , (13)

with Fd
0 and Fd

max the initial and maximum (satura-
tion) values of the deviatoric fabric, respectively, and
βF its growth rate. The four parameters (τ/p)

max
, βs

for τ/p and Fd
max, βF for Fd are dependent on the vol-

ume fraction φ and are well described by the general
relation from Imole et al. [41] as:

Q = Qa +Qc exp

[
−Ψ

(
φ

φJ(H)
− 1

)]
, (14)

5 Note that the model in the form used here is ignoring the
presence of kinetic energy fluctuations, referred to as granular
temperature Tg, or fields like the so-called fluidity [89, 90,
113], that introduce an additional relaxation time-scale, as is
subject of ongoing studies.

Evolution parameters Qa Qc Ψ

(τ/p)max 0.12 0.091 7.9

βs 30 40 16

Fd
max 0 0.17 5.3

βF 0 40 5.3

Table 2 Parameters for Eqs. (12) and (13) using Eq. (14),
with slightly different values than from Imole et al. [41], that
are extracted using the similar procedure as in Imole et al.
[41], for states with volume fraction close to the jamming
volume fraction.

whereQa,Qc and Ψ are the fitting constants with values
presented in Table 2.

For predictions during cyclic shear deformation,
φJ(H) was changed with applied shear strain εd using
Eq. (8). Furthermore, the jamming density is set to a
larger value just after strain-reversal, as discussed next.

5.1.3 Behavior of the jamming density at strain
reversal

As mentioned in section 3.2, there are some states below
φJ , where application of shear strain jams the systems.
The densest of those can resist shear reversal, but below
a certain φcr ≈ 0.662 < φJ , shear reversal unjams the
system again [114]. With this information, we postulate
the following:
(i) After the first phase, for large strain pure shear, the
system should forget where it was isotropically com-
pressed to before i.e., MφJ,i is forgotten and φJ = φc is
realized.
(ii) There exists a volume fraction φcr, above which the
systems can just resist shear reversal and remain always
jammed in both forward and reverse shear.
(iii) Below this φcr, reversal unjams the system. There-
fore, more strain is needed to jam the system (when
compared to the initial loading), first to forget its state
before reversal, and then to re-jam it in opposite (per-
pendicular) shear direction. Hence, the strain necessary
to jam in reversal direction should be higher than for
the first shear cycle.
(iv) As we approach φc, the reverse strain needed to
jam the system increases.

We use these ideas and measure the reversal shear
strain εSJ,R

d , needed to re-jam the states below φcr, as
shown in Fig. 10. When they are scaled with φcr as
φsc = (φ− φc) / (φcr − φc), they collapse on a unique
master curve, very similar to Eq. (7):

(
εSJ,R
d /ε0,Rd

)α
= − log φsc = − log

(
φ− φc

φcr − φc

)
, (15)
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Fig. 10 Phase diagram showing the minimum reversal shear

strain εSJ,R
d needed to jam the states below φcr, for states

prepared from the first over-compression cycle with different
φmax
i , as given in the legend. The inset shows a collapse of the

states using a similar scaled definition as Eq. (7) that includes
the distance from both φcr and critical jamming density φc,
using Eq. (15).

shown in the inset of Fig. 6(b), with the same power
α = 1.37 ± 0.01 as Eq. (7). Fit parameter strain scale

ε0,Rd = 0.17± 0.002 > ε0d = 0.102, is consistent with the
above postulates (iii) and (iv).

The above relations are used to predict the isotropic
and the deviatoric quantities, during cyclic shear de-
formation, as described next, with the additional rule
that all the quantities attain value zero for φ ≤ φJ(H).
Moreover, for any state with φ ≤ φcr, shear strain rever-
sal moves the jamming density to φcr, and the evolution
of the jamming density follows Eq. (15).

Any other deformation mode, can be written as a
unique superposition of pure isotropic and pure and
axial shear deformation modes [115]. Hence the com-
bination of the above can be easily used to describe
any general deformation, e.g. uniaxial cyclic compres-
sion (data not presented) where the axial strain can be
decomposed in two plane strain modes.

5.2 Prediction: minimal model

Finally, we test the proposed history dependent jam-
ming density φJ(H) model, by predicting p and
C∗, when a granular assembly is subjected to cyclic
isotropic compression to φmax

i = 0.73 for M = 1 and
for M = 300 cycles, with ∞φJ,i = 0.667, as shown in
Fig. 11(a-b). It is observed that using the history depen-
dence of φJ(H), the hysteretic behavior of the isotropic
quantities, p and C∗, is very well predicted, qualita-
tively similar to isotropic compression and decompres-
sion of real 2D frictional granular assemblies, as shown
in by Bandi et al. [58] and Reichhardt and Reichhardt
[22].

In Fig. 11(c), we show the evolution of the devi-
atoric quantities shear stress ratio τ/p and deviatoric
fabric Fd, when a system with φ = 0.6584, close to
φc, and initial jamming density φJ(0) = 0.6652, is sub-
jected to three shear cycles (lowest panel). The shear
stress ratio τ/p is initially undefined, but soon estab-
lishes a maximum (not shown) and decays to its sat-
uration level at large strain. After strain reversal, τ/p
drops suddenly and attains the same saturation value,
for each half-cycle, only with alternating sign. The be-
havior of the anisotropic fabric Fd is similar to that
of τ/p. During the first loading cycle, the system is
unjammed for some strain, and hence Fd is zero in
the model (observations in simulations can be non-zero,
when the data correspond to only few contacts, mostly
coming from rattlers). However, the growth/decay rate
and the saturation values attained are different from
those of τ/p, implying a different, independent stress-
and structure-evolution with strain – which is at the ba-
sis of recently proposed anisotropic constitutive models
for quasi-static granular flow under various deforma-
tion modes [41]. The simple model with φJ(H), is able
to predict quantitatively the behavior the τ/p and Fd

after the first loading path, and is qualitatively close
to the cyclic shear behavior of real 2D frictional granu-
lar assemblies, as shown in Supplementary Fig. 7 by Bi
et al. [7].

At the same time, also the isotropic quantities are
very well predicted by the model, using the simple equa-
tions from section 5.1, where only the jamming density
is varying with shear strain, while all material parame-
ters are kept constant. Some arbitrariness involves the
sudden changes of φJ at reversal, as discussed in sec-
tion 5.1. Therefore, using a history dependent φJ(H)
gives hope to understand the hysteretic observations
from realistic granular assemblies, and also provides a
simple explanation of shear jamming. Modifications of
continuum models like anisotropic models [41, 68], or
GSH type models [84, 85], by including a variable φJ ,
can this way quantitatively explain various mechanisms
around jamming.

6 Towards experimental validation

The purpose of this section is two-fold: First, we pro-
pose ways to (indirectly) measure the jamming density,
since it is a virtual quantity that is hard to measure di-
rectly, just as the “virtual, stress-free reference state” in
continuum mechanics which it resembles. Second, this
way, we will introduce alternative state-variables, since
by no means is the jamming density the only possibility.
Measuring φJ from experiments
Here we show the procedure to extract the history
dependent jamming density φJ(H) from measurable
quantities, indirectly obtained via Eqs. (9), (10), (11),
and directly from Eq. (8). There are two reasons to do



15

 0

 0.01

 0.02

 0.03

 0.04

 0.64  0.66  0.68  0.7  0.72  0.74

p

φ
(a)

 6

 7

 8

 9

 0.64  0.66  0.68  0.7  0.72  0.74

C
*

φ
(b)

Fd

τ/P

-0.3

 0

 0.3

f N
R

 0.8

 0.9

 0.82

C
*

 5.4
 5.7

 6
 6.3

p

 0

 0.001

φ J
(H

)

φc
φ

ε d

t/tc x10
6

-0.16

 0

 0.28

0.00 0.11 0.29 0.46 0.64 0.81 0.99

(c)

Fig. 11 Model prediction of cyclic loading: (a) Dimensionless pressure p and (b) coordination number C∗ plotted against
volume fraction φ for an isotropic compression starting from φt = 0.64 to φmax

i = 0.73 (small symbols) and decompression
(big symbols) back to φt, with ∞φJ,i = 0.667, for M = 1 (red ‘•’) and for M = 300 (blue ‘�’). (c) Deviatoric stress
ratio τ/p and deviatoric fabric Fd, fraction of non-rattlers fNR, coordination number C∗, pressure p and history dependent
jamming density φJ(H) over three pure shear strain cycles (bottom panel) for φ = 0.6584 and initial jamming density
φJ (φmax

i = 0.82,M = 1) =: 1φJ,i = 0.6652. Solid lines through the data are the model prediction, involving the history
dependent jamming density φJ(H), using Eq. (4) for isotropic deformation and Eq. (8) for shear deformation, and others.
Dashed red lines in fNR and C∗ represent transition from unjammed to shear jammed states, whereas in φJ(H) the red line
indicates the critical jamming density φc.

so: (i) the jamming density φJ(H) is only accessible in
the unloading limit p → 0, which requires an exper-
iment or a simulation to “measure” it (however, dur-
ing this measurement, it might change again); (ii) de-
ducing the jamming density from other quantities that
are defined for an instantaneous snapshot/configuration
for p > 0 allows to indirectly obtain it – if, as
shown next, these indirect “measurements” are com-
patible/consistent: Showing the equivalence of all the

different φJ(H), proofs the consistency and complete-
ness of the model and, even more important, provides
a way to obtain φJ(H) indirectly from experimentally
accessible quantities.

For isotropic compression
Fig. 12 shows the evolution of φJ(H), measured from
the two experimentally accessible quantities: coordina-
tion number C∗ and pressure p, using Eqs. (9) and (11)
respectively for isotropic over-compression to φmax

i =
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Fig. 12 (a) Evolution of the history dependent jamming den-
sity φJ(H) during isotropic over-compression to φmax

i = 0.82
for two cycles, calculated back from the measured quantities:
coordination number C∗ (green) and pressure p (red), using
Eqs. (9) and (11) respectively. The ‘•’ and ‘�’ represent the
first and second cycle respectively. Solid lines are the loading
path while the dashed lines represent the unloading path for
the corresponding cycle. Evolution of history dependent jam-
ming density φJ(H) using (b) coordination number C∗ and
(c) pressure p for three levels of over-compression φmax

i , as
shown in the inset. Solid black line represents Eq. (4) with
M = 1, and ∞φJ,i calculated using Eq. (5).
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Fig. 13 Evolution of the history dependent jamming den-
sity φJ(H) during pure shear, calculated back from the
measured quantities: coordination number C∗, fraction of
non-rattlers fNR and pressure p, using Eqs. (9), (10), (11)
respectively, as marked with arrows. The volume fraction
is constant, φ = 0.66, and the initial jamming density
φJ (φmax

i = 0.82,M = 1) =: 1φJ,i = 0.6652 is greater than
φ (represented by horizontal cyan line). The solid black line
represents Eq. (8), and the dashed vertical line indicates the
shear strain needed to jam the system, εSJ

d , from which on –
for larger shear strain – the system is jammed.

0.82 over two cycles. Following observations can be
made: (i) φJ for isotropic loading and unloading can be
extracted from C∗ and p, (ii) it rapidly increases and
then saturates during loading, (iii) it mimics the frac-
tal energy landscape model in Fig. 4 from Luding et al.
[112] very well, (iv) while is was assumed not to change
for unloading, it even increases, which we attribute to
the perturbations and fluctuations (granular tempera-
ture) induced during the quasi-static deformations, (v)
the indirect φJ are reproducible and follow the same
master-curve for first over-compression as seen in Figs.
12, independent of the maximum – all following defor-
mation is dependent on the previous maximum density.

For shear deformation
Fig. 13 shows the evolution of φJ(H), measured

from the two experimentally accessible quantities: co-
ordination number C∗ and pressure p, using Eqs.
(9) and (11) respectively during volume conserving
shear with φ = 0.66, and the initial jamming density
φJ (φmax

i = 0.82,M = 1) =: 1φJ,i = 0.6652 > φ and
shows good agreement with the theoretical predictions
using Eq. (8) after shear jamming. Thus the indirect
measurements of φJ(H) can be applied if φJ(H) < φ;
the result deduced from pressure fits the best, i.e., it
interpolates the two others and is smoother.
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7 Summary, Discussion and Outlook

In summary, this study presents a quantitative, predic-
tive macroscopic constitutive model that unifies a va-
riety of phenomena at and around jamming, for quasi-
static deformation modes. The most important ingredi-
ent is a scalar state-variable that characterizes the pack-
ing “efficiency” and responds very slowly to (isotropic,
perturbative) deformation. In contrast, it responds ex-
ponentially fast to finite shear deformation. This differ-
ent response to the two fundamentally different modes
of deformation (isotropic or deviatoric, shear) is (qual-
itatively) explained by a stochastic (meso-scale) model
with fractal (multiscale) character. All simulation re-
sults considered here are quantitatively matched by the
macroscopic model including both the isotropic and
the anisotropic microstructure as state-variables. Dis-
cussing the equivalence of alternative state-variables
and ways to experimentally measure the model param-
eters and apply it to other, more realistic materials,
concludes the study. The following subsections wrap up
some major aspects of this study and also add some
partly speculative arguments about the wider conse-
quences of our results for rheology as well as an outlook.

7.1 Some questions answered

The questions posed in the introduction can now be
answered: (i) The transition between the jammed and
flowing (unjammed) regimes is controlled by a single
new, isotropic, history dependent state-variable, the
jamming density φJ(H) (with history H as shorthand
place-holder for any deformation path), which (ii) has
a unique lower critical jamming density φc when p → 0
without previous history H, or after very long shear
without temperature Tg, so that (iii) the history (proto-
col dependence) of jamming is completely encompassed
by this new state-variable, and (iv) jamming, unjam-
ming and shear jamming can all occur in 3D with-
out any friction, only by reorganizations of the micro-
structure.

7.2 Lower limit of jamming

The multiscale model framework implies now a mini-
mum φc that represents the (critical) steady state for a
given sample in the limit of vanishing confining stress,
i.e., the lower limit of all jamming densities. This is
nothing but the lowest stable random density a sheared
system “locally” can reach due to continuously ongoing
shear, in the limit of vanishing confining stress.

This lower limit is difficult to access in experiments
and simulations, since every shear also perturbs the sys-
tem leading at the same time to (slow) relaxation and
thus a competing increase in φJ(H). However, it can

be obtained from the (relaxed) steady state values of
pressure, extrapolated to zero, i.e., from the envelope
of pressure in Fig. 5. Note that special other deforma-
tion modes or careful preparation procedures e.g. en-
ergy minimization techniques or manual construction
[9, 23] may lead to jammed states at even lower density
than φc, from which starting to shear would lead to an
increase of the jamming density (a mechanism which we
could not clearly identify from our frictionless simula-
tions due to very long relaxation times near jamming for
soft particles). This suggests future studies in the pres-
ence of friction so that one has wider range of jamming
densities and lower density states might be much more
stable as compared to the frictionless systems. In this
work, we focused on fixed particle size polydispersity
with uniform size distribution. We expect the effects of
polydispersity [44] will have similar order of explorable
jamming range as in this work, whereas friction etc.
will cause larger explorable jamming range and bigger
changes in the calibrated parameters.

7.3 Shear jamming as consequence of a varying φJ(H)

Given an extremely simple model picture, starting from
an isotropically unjammed system that was previously
compressed or tapped (tempered), shear jamming is not
anymore a new effect, but is just due to the shift of the
state-variable (jamming density) to lower values during
shear. In other words, shear jamming occurs when the
state-variable φJ(H) drops below the density φ of the
system.

Even though dilatancy is that what is typically ex-
pected under shear (of a consolidated packing), also
compactancy is observed in some cases [41] and can be
readily explained by our model. Given a certain prepa-
ration protocol, typically a jamming density φJ > φc

will be reached for a sample, since the critical limit φc is
very difficult to reach. When next a shear deformation
is applied, it depends e.g. on the strain rate whether
dilatancy or compaction will be observed: if the shear
mode is “slower” than the preparation, or if φJ > φc,
dilatancy is expected as a consequence of the rapidly
decreasing φJ of the sample. In contrast, for a rela-
tively “fast”, violent shear test (relative to the previous
preparation and possibly relaxation procedure), com-
pactancy also can be the result, due to an increase of
φJ during shear.

7.4 Rheology

The multiscale models presented in this study, based on
data from frictionless particle simulations, implies that
a superposition of the two fundamental deformation
modes (isotropic and deviatoric, i.e. plane strain pure
shear) is possible or, with other words, that the respec-
tive system responses are mostly decoupled as shown
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for the non-Newtonian rheology of simple fluids in Ref.
[115]. Even though this decoupling is mostly consistent
with our present data (the responses to isotropic and de-
viatoric deformations are mostly independent and can
be measured independently), this separation and super-
position cannot be taken for granted for more realistic
granular and powder systems.

Nevertheless, the meso-scale model presented here,
as based on a multi-scale energy landscape, explains
compactancy and dilatancy, at constant confining
stress, as caused by an increasing jamming density, or a
decreasing jamming density, respectively (not shown).
Similarly, at constant volume, the pressure either de-
creases or increases (pressure-dilatancy) due to an in-
creasing or decreasing jamming density, respectively.

The model also allows to explain other rheologi-
cal phenomena as shear-thinning (e.g., due to an in-
creasing jamming density, at constant volume) or shear-
thickening (e.g., due to a decreasing jamming density,
at constant volume). As generalization of the present
work, also the (granular) temperature (fluctuations of
kinetic energy) can be considered, setting an additional
(relaxation) time-scale, which effects the interplay be-
tween (shear) strain-rate and the evolution of the jam-
ming density, so that even in a presumed “quasi-static”
regime interesting new phenomena can be observed and
explained.

7.5 Towards experimental validation

The history dependent jamming density φJ(H) is diffi-
cult to access directly, but can consistently be extracted
from other, experimentally measurable quantities, e.g.
pressure p, coordination number C∗ or fraction of non-
rattlers fNR. We explain the methodology to extract
φJ(H) experimentally, and confirm by indirect mea-
surement, as detailed in section 6, that the jamming
density is indeed increasing during isotropic deforma-
tion and decreasing during shear, consistently also when
deduced from these other quantities.

With other words, we do not claim that the jamming
density is the only choice for the new state-variable that
is needed. It can be replaced by any other isotropic
quantity as, e.g. the isotropic fabric, the fraction of
non-rattlers, the coordination number, or an empiri-
cal stress-free state that is extrapolated from pressure
(which can be measured most easily), as long as this
variable characterizes the packing “efficiency”.

Since an increased packing efficiency could be due
to ordering (crystallization), we tried to, but could not
trace any considerable crystallization and definitely no
phase-separation. We attribute this to the polydisper-
sity of the sizes of the particles used being in the range
to avoid ordering effects, as studied in detail in Ref.
[116]. Quantities like the coordination number, which
can tremendously increase due to crystallization, did

not display significant deviation from the random pack-
ing values and, actually, it even decreases in the un-
loading phases, relative to the initial loading phase, see
Fig. 11(b). This is not a proof that there is no crys-
tallization going on, it is just not strong enough to be
clearly seen. The reasons and micro-structural origin
of the increased packing efficiency, as quantified by the
new state-variable, are subject of ongoing research.

7.6 Outlook

Experiments should be performed to calibrate our
model for suspended soft spheres (e.g. gels, almost fric-
tionless) and real, frictional materials [117–119]. Over-
compression is possible for soft materials, but not ex-
pected to lead to considerable relaxation due to the
small possible compressive strain for harder materials.
However, tapping or small-amplitude shear can take the
role of over-compression, also leading to perturbations
and increasing φJ , in contrast, large-amplitude shear
leads to decreasing φJ and can be calibrated indirectly
from different isotropic quantities. Note that the ac-
cessible range of φJ − φc is expected to much increase
for more realistic systems, e.g., with friction, for non-
spherical particle shapes, or for cohesive powders.

From the theoretical side, a measurement of the
multiscale energy landscape, e.g. the valley width,
depth/shapes and their probabilities [80] should be
done to verify our model-picture, as it remains qual-
itative so far. Finally, applying our model to glassy
dynamics, ageing and re-juvenation, and frequency de-
pendent responses, encompassing also stretched expo-
nential relaxation, see e.g. Lieou and Langer [120], is
another open challenge for future research. All this in-
volves the temperature as a source of perturbations that
affect the jamming density, and will thus also allow to
understand more dynamic granular systems where the
granular temperature is finite and not negligible as im-
plied in most of this study for the sake of simplicity.
A more complete theory for soft and granular matter,
which involves also the (granular) temperature, is in
preparation.

Last, but not least, while the macro/continuum
model predicts a smooth evolution of the state vari-
ables, finite-size systems display (system-size depen-
dent) fluctuations that only can be explained by a meso-
scale stochastic model as proposed above, with particu-
lar statistics as predicted already by rather simple mod-
els in Refs. [28, 121, 122].
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