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Grains inside a vertically vibrated box undergo a transition from a density inverted and hor-
izontally homogeneous state, referred to as the granular Leidenfrost state, to a buoyancy-driven
convective state. We perform a simulational study of the precursors of such a transition, and
quantify their dynamics as the bed of grains is progressively fluidized. The transition is preceded
by transient convective states, which increase their correlation time as the transition point is ap-
proached. Increasingly correlated convective flows lead to density fluctuations, as quantified by the
structure factor, that also shows critical behaviour near the transition point. The amplitude of the
modulations in the vertical velocity field are seen to be best described by a quintic supercritical
amplitude equation with an additive noise term. The validity of such an amplitude equation, and
previously observed collective semi-periodic oscillations of the bed of grains, suggests a new inter-
pretation of the transition analogous to a coupled chain of vertically vibrated damped oscillators.
Increasing the size of the container shows metastability of convective states, as well as an overall
invariant critical behaviour close to the transition.

PACS numbers: 45.70.Qj, 46.65.+g, 05.40.-a

I. INTRODUCTION

Granular materials, defined as collections of dissipa-
tive particles large enough so that thermal fluctuations
can be ignored, are an archetypal study case of complex
dynamical systems. Decades of research have revealed
many novel non-equilibrium phase transitions and col-
lective behaviors [1–6], the study of which not only has
a fundamental physical interest, but is also relevant for
many industries [7–9]. Many of these behaviors show a
striking similarity with molecular fluids or solid phenom-
ena [10–13], and some have even been successfully de-
scribed by equilibrium theories [14]. Studying the origin
of these agreements advances our understanding of far-
from-equilibrium states, and explores the limits of contin-
uum descriptions of discrete systems. Furthermore, the
low number of constituents, when compared to molecu-
lar counterparts, makes granular materials particularly
suited for the study of noise effects in spatially extended
transitions, a subject of increasing physical interest due
to the ubiquitous presence of fluctuations in natural phe-
nomena [3, 15–18].

In order to keep granular media fluidized it is necessary
to provide energy to the system. Previously this has been
done in several distinct ways, as for example electromag-
netically [19, 20], by shearing [21], or by boundary forces
such as rotating a drum [22] or vibrating the grains’ con-
tainer [23]. In vertically vibrated systems several com-
plex collective dynamic behaviors have been observed,
such as segregation [24, 25], pattern formation [6] and
phase separation [2]. One particular case of the latter is
the granular Leidenfrost state, where a dense, solid- or
fluid-like region is sustained by a highly agitated low den-
sity gaseous region in contact with the vibrated bottom

wall [26, 27]. It is so called because of the clear anal-
ogy with the water-over-vapor phenomenon observed in
molecular fluids in contact with a high temperature sur-
face [28]. If the vibration strength is increased, the Lei-
denfrost state evolves to a buoyancy-driven convective
state [29], in analogy to Rayleigh-Bernard convection.

In the following work we study the precursors of the
transition from the granular Leidenfrost to the buoyancy-
driven convective state in the context of bifurcations and
critical theory. Previous experimental and simulational
works determined the transition points as a function of
the energy injection and the amount of particles in the
system [27, 29]. It was also shown that granular hydrody-
namics is able to quantitatively capture the critical points
of this instability, by performing a linear stability analysis
of perturbations over the Leidenfrost state [29, 30]. Here
we explore further the regions close to the transition,
motivated by the presence of complex transient dynamics
which are expected to be dominated by fluctuations. This
transition is an excellent candidate for studying the in-
fluence of fluctuations in hydrodynamic-like instabilities,
due in part to its similarity with the Rayleigh-Benard
instability present in regular fluids. Our goal is to in-
crease the knowledge about the origin and evolution of
the perturbations that lead to the instability, from both
the microscopic and macroscopic perspectives, and re-
late the transition to other analogous dynamics through
an unstable-mode amplitude equation.

After specifying the system and simulation methods
(Sec. II), we begin by characterizing the two states in-
volved in the transition (Sec. III A), and determining
the phase space of the system by means of a convec-
tion intensity order parameter (Sec. III B). With this, we
are then able to study time-dependent transient convec-
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tive states, that are present far below the transition and
show a critically increasing correlation time as the tran-
sition is approached (Sec. III C). Furthermore, the static
structure function allows us to study the evolution of the
relevant length-scale in this pattern formation scenario,
and see its behaviour prior to the transition (Sec. III D).
Finally, it is observed that the amplitude of the criti-
cal pattern follows a growth ratio that is consistent with
a quintic supercritical bifurcation, associated with para-
metrically driven spatially extended systems [17, 31, 32]
(Sec. III F). We suggest that the agreement with this
universality class comes from the presence of collective
semi-periodic oscillations, so called low-frequency oscil-
lations (LFOs), present in density inverted systems [33].
All results are presented for different boundary condi-
tions and sizes of the container, allowing us to observe
the influence of confinement and variations of the total
number of particles.

II. SYSTEM AND SIMULATIONS

The setup consists of a quasi-two-dimensional rectan-
gular box with open top, vibrated in the vertical direc-
tion. Two different box widths are considered, defining
the narrow system, with lx = 50, and the wide one, with
lx = 400. The depth of the container, on the other hand,
is kept constant, ly = 5; a schematic representation of the
studied geometries is shown in Fig. 1. Here, and in what
follows, we use dimensionless quantities with d as length-
scale and

√
d/g as timescale, and thus

√
g/d as velocity

units; when necessary, dimensional quantities will be dis-
tinguished by a tilde, i.e. l̃x = lxd. Grains are considered
to be perfectly spherical, frictionless and monodisperse in
size and mass. Their total number N is determined by
the number of filling layers F ≡ N/(lxly), which we fix at
F = 12. Previous studies show that both the Leidenfrost
and the buoyancy-driven convective states are observable
for this number of layers [34]. The whole box (base and
side walls) is vertically vibrated in a bi-parabolic, quasi-
sinusoidal way with a given frequency ω and amplitude
A. The use of a quadratic interpolation instead of a sine
function gives a considerable speed advantage in simula-
tions, as the collision times with the moving walls can be
predicted analytically. Previously, test simulations have
been done using a sine function for exemplary cases, and
no significant difference was observed [33, 35]. The am-
plitude of oscillation is kept fixed, A = 0.1, and thus the
energy injection is controlled by the angular frequency ω.
The low amplitude is chosen to reduce as much as possi-
ble geometrical effects of the moving boundary (such as
shock waves [36]), and approximate the limit of a temper-
ature boundary condition [37]. Moreover, low amplitudes
eliminate other inhomogeneous states for lower energies,
such as undulations [34], which are not the object of this
study. Overall, our selection of parameters is based on
previous experimental setups where the transition was
previously reported [29, 34].

lx = 50

lz

g
A sin(ωt)

z

x

narrow

ly = 5

lx = 400

lz

wide

y = 5l

FIG. 1: Schematic representation (not to scale) of the setup.
Two different geometries are considered: narrow (top) and
wide (bottom). Lengths are given in units of particle diame-
ters d.

The system is simulated using an event-driven (ED)
hard-sphere algorithm. The advantage of using ED sim-
ulations over regular time-stepping methods is straight-
forward: computational speed. Even though the number
of particles is relatively low (∼ 104), the high frequen-
cies and very long physical times, of the order of hours,
make the use of discrete particle methods (DPM) infea-
sible. In DPM simulations time-steps are constant and
should be at least one order of magnitude lower than the
collision time, which in itself must be at least an order of
magnitude smaller than the lowest relevant time-scale, in
our case T = 2π/ω [38]. Thus, for the high frequencies
considered in our study, the small time-step prohibits to
simulate in a practical time the long transients involved
near a transition. On the contrary, the average time-step
in ED is determined mainly by the density of the system,
and not directly dependent on the frequency of oscillation
of the container.

Collisions between particles are modeled by a normal
restitution coefficient, rp = 0.9 [39]. In order to avoid
inelastic collapse, the TC model is used, where particle
collisions are considered elastic if they occur within a
given time, which we take as tc = 10−5 [40]. This essen-
tially sets a lower limit for physically relevant velocities,
as also slightly decreases the packing fraction of high den-
sity regions; possible relevant effects will be noted when
appropriate.

Regarding boundary conditions, we consider both
cases of periodic (PBC) and solid boundary conditions,
with either elastic or dissipative walls (EBC and DBC,
respectively). The different boundary types are only
applied in the x-direction, as we would like to investi-
gate the effects they have on the transition independent
of other factors, as increased overall dissipation or free-
volume; setting dissipative or periodic boundaries also in
the y-direction would make the comparison less straight-
forward. Dissipative walls are set with the same resti-
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FIG. 2: In the narrow system, time averaged number density
of particles 〈n(x, z)〉t (top), granular temperature 〈T (x, z)〉t
(middle) and velocity field 〈~v(x, z)〉t (bottom), for systems
in the granular Leidenfrost state (left) and in the buoyancy-
driven convective state (right).

tution coefficient as between particles, rw = 0.9. The
effects of dissipative walls on convective states have al-
ready been studied in similar setups, both experimentally
and numerically [41]. Here we are interested in the effects
of walls on the excitation or suppression of the modes rel-
evant in the transition. Elastic walls (EBC) are used in
order to see the influence of excluded volume effects near
the sidewalls when comparing with periodic walls (PBC),
as also to facilitate the analysis of fluctuations by fixing
a reference frame. Furthermore, PBCs are used to study
the dynamics of the bed of grains without confinement.

III. RESULTS

A. Macroscopic description

The most evident difference between the granular Lei-
denfrost and buoyancy-driven convective states is the
level of horizontal homogeneity. Fig. 2 shows time av-
eraged number density 〈n(x, z)〉t, granular temperature
〈T (x, z)〉t and velocity fields 〈~v(x, z)〉t in each state, for
narrow systems with EBC. The fields are obtained by
binning the system in squares of size d. Time averages,
〈〉t, are always taken for at least 105

√
d/g, which in di-

mensional terms for d = 1mm would correspond to ex-
periments of about fifteen minutes. The granular tem-
perature is defined as the kinetic energy of the fluctuat-

ing velocity, 3kBT ≡ m(
〈
v2
〉
− 〈v〉2). The fields clearly

show that in the Leidenfrost state, both ρ and T are
homogeneous in the x-direction, while in the convective
state the profiles are modulated by a dominant mode kc.
That is, the transition is morphogenetic [42], as a pattern
or new relevant length-scale arises from a homogeneous
state. The convective mode defines the typical size of a
pair of convective cells, λc; in the case shown in Fig. 2,
〈λc〉t ≈ 50, that is, kc = 1/λc ≈ 0.02.

It is important to remark that the buoyancy-driven
convective state is also density inverted (see Fig. 2b),
and thus this characteristic is not a sufficient condition
to define the Leidenfrost state. We demand two further
properties for the system to be considered in this state:
(a) higher density regions present distinct dynamics to
the lower density ones (gas/fluid or gas/solid), to distin-
guish it from completely gaseous states [43]; and (b) the
system remains horizontally homogeneous, to differenti-
ate it from the convective state. In short, we define the
granular Leidenfrost state as a density inverted, phase
coexisting, horizontally homogeneous state.

As the energy input increases, the bed of grains in
the dense region progressively looses its horizontal homo-
geneity, giving rise to convection; this is what we refer
to as the granular Leidenfrost to buoyancy-driven con-
vection transition or, in short, the LBC transition. In
the following we define an order parameter based on the
evolution of the velocity field, and observe its behaviour
through the transition.

B. Convection intensity

For the study of critical behaviors it is of fundamental
importance that the transition region between the two
states is accurately measured. The different states can
be easily distinguished by looking at the time-average
velocity fields, which suggest the use of the convection
intensity order parameter, defined as

C ≡ 1
2maxz(maxx(vz(x, z))−minx(vz(x, z))). (1)

Here vz(x, z) is the scalar field of velocities in the z-
direction, and the maxima are taken first over z and then
over x. In words, C corresponds to half the highest dif-
ference of the vertical velocities at a particular height
of the container. In a convective state C is expected to
be significantly higher than in a random flux case, due
to the presence of stable upwards and downwards flux
regions (as can be seen in Fig. 2f). Even though the av-
erage vertical velocity is expected to scale with Aω, the
localization of the energy fluxes in the convective states
is what produces a higher deviation, and thus a higher
C. The time averaged convection intensity, 〈C〉t, cap-
tures the transition as a rapid increase with ω, as shown
in Fig. 3 for all considered systems.

In the Leidenfrost state 〈C〉t increases linearly with ω,
and is lower than the characteristic velocity of energy in-
jection, Aω. This is followed by a transition region, were
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FIG. 3: Time averaged convection intensity 〈C〉t, defined in
the main text (1), as a function of the angular driving fre-
quency ω, for the narrow (top) and wide (bottom) containers
with the boundary conditions indicated in the labels. Dashed
lines indicate the transition region for the corresponding BC,
as specified in the main text. The thick gray line corresponds
to Aω, the characteristic shaking velocity. The insets show
the convection intensity normalized by the driving frequency,
C∗ ≡ 〈C〉t /Aω, as a function of the bifurcation parameter
ε = (ω − ωc)/ωc.

〈C〉t increases sharply and superlinear on Aω, eventu-
ally surpassing the Aω line. Finally, 〈C〉t saturates as
the system enters the stable buoyancy-driven convective
state. Quantitatively, we define the limits of the tran-
sition region by looking at the intersection of the ini-
tial and final linear behaviors with the increasing tran-
sient behaviour, the two points defining the width of the
transition, δω, and their average the critical frequency
ωc, which coincides within measurement error with the
condition 〈C〉t = Aω. For the narrow container, this
results in critical frequencies and widths of transition
ωc = 33.4 ± 0.1, δω = 0.22 ± 0.01 for EBC and PBC,
and ωc = 32.9 ± 0.1, δω = 0.26 ± 0.01 for DBC, with
the error given by the resolution of the simulations in ω.
That is, elastic boundary conditions have no measurable
influence when compared to periodic boundaries, which
suggests that excluded volume effects due to the presence
of walls can be disregarded already for lx = 50d. Dissi-
pative boundaries, on the other hand, have the at first
counterintuitive effect of decreasing ωc, while increasing
δω; even though overall the system presents more dis-
sipation compared to the EBC case, inelastic sidewalls
slightly reduce the energy needed to trigger the transi-
tion compared to elastic boundaries.

Boundary conditions in the wide container become ir-
relevant, with all cases given by ωc = 33.0 ± 0.1 and
δω = 0.29 ± 0.02. Quantitatively, the critical points are
slightly lower and the transitions wider, which we believe

is due to the influence of the confinement in the narrow
container. It is worthy to remark that the amount of
energy needed for the creation of the convective cells is
practically invariant on lx or, equivalently, the number of
convective rolls nc ≡ 2lx/λc, suggesting that the inter-
action between rolls has no influence on their creation.
Nevertheless, we notice that when EBC or DBC are used,
convection cells are seen to appear first at the boundaries,
and the boundary rolls are more stable when compared
to the bulk of the system. This, nevertheless, happens at
the same ωc as with PBC, suggesting that solid bound-
aries have no relevant influence on the flux (n~v) strength,
but do promote the appearance of convective cells near
them.

When normalized by Aω, we can recognize in C∗ ≡
〈C〉t /Aω a shape characteristic of a supercritical pitch-
fork bifurcation, as shown in the insets of Fig. 3. The
second branch of the ideal pitchfork supercritical bifur-
cation would correspond to taking the minimum in x,
instead of the maximum, in (1). When the bifurcation
parameter ε = (ω − ωc)/ωc is used as control parame-
ter, all three boundary condition cases coincide for all
system sizes considered. This suggests that the tran-
sition presents universal behaviour, independent of the
amount of dissipation. It is also a confirmation that the
critical points are well defined. With the phase-space
determined, next we characterize the precursors of the
transition by looking first at correlations of the velocity
field (III C), and then at density fluctuations by means
of the static structure factor (III D).

C. Time-dependent fluctuating convective flows

Far below the transition point in the Leidenfrost state,
starting from ε > −0.5, time-dependent fluctuating con-
vective flows can be observed. These are analogous to the
precursor’s fluxes present in the classical fluid Rayleigh-
Bénard convection transition [44], which were theoreti-
cally predicted and relatively recently observed by care-
ful experiments in gaseous media [45]. In our case, the
convective rolls can be easily identified when observ-
ing the evolution of the short-time-averaged transient
velocity fields, as shown in Fig. 4. The cells are con-
stantly generated anywhere in the container, but more
frequently next to walls, this of course when they are
present, i.e. in the EBC and DBC cases. Two fundamen-
tal aspects differentiate such a transient state from the
fully developed buoyancy-driven convective state above
ε = 0. First, the circulation of particles is not associated
with mean density or temperature inhomogeneities (it is
time-dependent). Second, the convective velocity field is
present only as an average, and thus is not correlated
with the instantaneous velocity of the particles. That
is, the velocities of the fluctuating convective flows are
much smaller than the amplitude of the fluctuating ve-
locities (

√
T ), in contrast to the buoyancy-driven convec-

tion case, where they are comparable (see Fig. 2). This
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FIG. 4: Transient velocity fields for ε = −0.15, each averaged
over 5 oscillation periods, showing the emergence and decay
of a fluctuating convective cell in a section of a wide container.
From blue to red, the color and size of the vectors corresponds
to their norm.

has the consequence that, as there is no localization of
the fluxes, their effect is not reflected in 〈C〉t.

In order to characterize the stability of the transient
convective cells, the self-correlation of the fluctuating ve-
locity field is computed,

Fv(τ) = cF 〈δ~v(~x, t+ τ) · δ~v(~x, t)〉x
with δv = ~v(~x, t) − 〈~v(~x, t)〉t, and cF a normalization
constant such that Fv(0) = 1. Fig. 5a shows Fv(τ) for
characteristic cases of ω. In the following we focus only
on EBC and DBC, as they considerably simplify the com-
putation of self-correlation functions by impeding the
convective rolls to drift in the x-direction, as they do
with PBC. Visual inspection and preliminary analysis of
the PBC case suggest that the results can be generalized
to this case as well. All correlations present a common
shape: an initial quick, power-law-like decay followed by
a slower exponential decrease. The rapid decorrelation at
short time-scales confirms that the particles’ instant ve-
locities are mostly fluctuating, and do not present a high
time correlation. On the other hand, for longer times the
correlation is comparatively lower, but still considerable,
and decays slower. This is a signal of long-term aver-
age preferred fluxes. As expected by the critical slowing
down of fluctuations near the transition, the overall cor-
relation of this region increases as the critical point is
approached, as can also be seen in Fig. 5a. The charac-
teristic time of decorrelation τv is obtained by consider-
ing Fv ∼ exp(−τ/τv). Fig. 5b shows ωτv as a function
of ε, from where we find a powerlaw τv ∼ ε−ξ/ω with
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FIG. 5: (a) Velocity correlation functions Fv for several ω and
EBC in the narrow container. (b) Characteristic time-scale of
fluctuating convection τv, corresponding to the exponent of
the long term exponential decay of the self correlation func-
tion Fv, as a function of the bifurcation parameter ε. The
dashed lines indicate best fits of the form indicated in the
main text.

exponent ξ ∼ 0.59 ± 0.02. Closer to the critical point
the measurement error becomes significant. The data is
presented for the whole range in ω where the Leidenfrost
state is present, which is one and a half decades in ε.

Wide systems present the same overall features as the
narrow container; τv can be determined with a higher
precision –as noise is reduced with a higher number of
particles–, and presents the same, within error, critical
exponent ξ as in the narrow case, ξ ∼ 0.60± 0.02. That
is, transient convective flows are independent of the size
of the container.

Also visible in Fv(τ) are wide peaks at regular in-
tervals, signals of a quasi-periodic time-scale of corre-
lation. By observing the evolution of the center of mass,
and computing its fast-Fourier transform, it was verified
that this periodic correlation corresponds to the recently
reported low-frequency oscillations, present in density
inverted agitated systems [33, 46]. The quasi-periodic
movement is coupled with a breathing behaviour of the
dense bed of grains, which increases and decreases its
granular temperature. Here we do not analyze this fur-
ther; for a detailed study of the phenomena we refer the
reader to [33], and a further experimental study in [46].

D. Static structure function

As energy input increases, for ε > −0.1, density fluc-
tuations arise, clearly recognizable as modulations in the
surface of the bed of grains. To analyze their behaviour
we compute the static structure function,

S(k) =
1

N

〈
|n̂(k, t)− 〈n̂(k, t)〉t|

2
〉
t
, (2)
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FIG. 6: Structure factor, S(k), for narrow (left) and wide
(right) containers for the bifurcation parameters specified.
Dashed lines correspond to PBC, while solid lines have EBC.
The vertical solid line indicates the 1/lx point.

with n̂ the Fourier components of the depth-averaged
number density field in the x-direction,

n̂(k, t) =

lx/δx∑
j

n(xj , t)e
i2πk n(xj ,t). (3)

Notice that we define k = 1/λ, for a more straightforward
comparison between wave number k and wavelength λ.
The position xj is given by regular intervals, xj = 1

2δx+
jδx, with δx = 0.1 the coarse graining length. Notice
that instead of considering the particles’ position in the
definition of n̂ we use the averaged density profiles, as
it significantly increases the speed of computation. This
approximation holds only for low wave-numbers, that is,
1/k � δx, which is the region we are interested in. Test
cases were done with the usual definition with particle
positions, and no significant differences were observed.

Transient modulations of the bed are captured in S(k)
by the appearance and steady increase of a narrow peak
at k ≈ 0.02, as shown in Fig. 6 for both the narrow and
wide containers. We define the critical mode kc by the
position of this maximum, that is Sm ≡ max(S(k)) ≡
S(kc). Thus, the associated wavelength at the transition
point, λ∗c ≈ 50, corresponds to the size of the smallest
stable convection roll, seen to be independent of lx for
lx > λ∗c . Notice that this corresponds to nc = 2 for the
narrow container, and nc = 8 for the wide container.
What other factors may affect λ∗c is not studied further
here, although we notice that previously realized stabil-
ity analysis of the granular hydrodynamic equations have
found an expression for λ∗c as a function of the constitu-
tive relations, which are in themselves dependent on the
particle properties [30].

Notice from Fig. 6 that for ε = −0.1 the correlation of
the transient convective flows was significant, but S(k)
has no relevant maximum. This confirms that fluctuat-
ing convective flows take place in a stable homogeneous
Leidenfrost state, and are not accompanied by any rele-
vant excitation of the critical mode in the density (and
temperature) field.
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FIG. 7: The most unstable mode kc, defined by the maximum
of the structure factor max(S(k)) ≡ S(kc), as a function of
the bifurcation parameter, for narrow (left) and wide (right)
containers and the boundary conditions specified. The in-
set shows the convective length-scale λc as a function of the
shaking strength, as defined in the main text.

Previous simulational and experimental works have
stated that λc scales linearly with the shaking strength
Σ ≡ Ã2ω̃2/gd = A2ω2 [29, 47]. The inset of Fig. 7 shows
λc(Σ) for the wide container and confirms that this is
indeed the case. We cannot distinguish any effect of con-
finement, which could be identified as plateaus in the
increase of λc; this is to be expected in the λc � lx limit,
which is the case for the wide container. In contrast, in
the narrow container solid walls fix kc, while with PBC
the behaviour is not clear, roughly increasing before the
transition point and then decreasing in a non-monotonic
way; the uncertainty in the measurements does not al-
low a more accurate conclusion in this case. The marked
difference between both boundary condition cases sug-
gests that, even though EBC and PBC had equal critical
points, as measured by 〈C〉t, they do have an influence on
the modes that are being perturbed. In most of the stud-
ied range k∗ is consistently higher with PBC, showing
that solid boundaries can have the originally unexpected
effect of increasing the critical convection roll size. This
is due to excluded volume effects near the wall, which de-
crease the density and thus have the effect of exciting a
lower mode, in our case for λ ≈ 25. On the wide container
wall effects become negligible, and thus k∗ coincides for
both types of boundary conditions.

By taking into account that kc in the wide container is
not constant, we interpret the LBC transition for lx > λ∗c
as a series of transitions between energetically similar
states. Inherent fluctuations are strong enough to allow
the constant switching between contiguous kc. In terms
of the relevant scales, this is a conflict between λc, which
depends on our control parameter ω, and lx, which is
fixed. As λ∗c is independent of the container size, the
critical behaviour for |ε| ∼ 0 is still expected to be uni-
versal.

Indeed, Sm(ε) shows critical-like behaviour for ε < 0,
as shown in Fig. 8. In the narrow container, both types
of boundary conditions show the same qualitative growth
for ε < 0, although with consistently lower amplitudes in
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FIG. 8: Structure factor maximum, Sm, as a function of the
bifurcation parameter ε, for EBC (blue) and PBC (red) in
narrow (top) and wide (bottom) containers. As reference,
the best fit for the amplitude of the critical mode is included
(dashed gray, see main text).

the EBC case, as previously discussed. For ε > 0 the
PBC case shows a growth reminiscent of the critical am-
plitude of a supercritical bifurcation. In this case, Sm is
directly related to the amplitude of the critical mode, as
the lack of a fixed reference frame makes 〈n(x, t)〉t ho-
mogeneous even in the buoyancy-driven convective state.
On the contrary, the EBC case immediately decays for
ε > 0. In the wide container both cases coincide within
error for ε < 0, showing that the discrepancy between
both cases in the small container is indeed a size-effect.
Sm again looses significance for ε > 0, and the behaviour
is erratic due to metastability of the transient region in
the wide systems.

E. Dynamics of transient states

The buoyancy-driven convective state presents com-
plex time evolutions. These are heavily dependent on
the lx/λc ratio, based on the constraint that the number
of convective rolls has to be an integer number. Half-
integer values are possible only with solid wall boundary
conditions. This implies that non-integer values of lx/λc
lead to metastable states, as the number of convective
cells nc presents intermittent behaviour between the two
closest values of kc, as also between convection rolls at
different sides of the container, if walls are present. As
an example, Fig. 9b shows the temporal evolution of n(x)
for a system with lx = 80, that is, lx/λ

∗
c ≈ 1.6. For a

value of ω just after the transition point, the convective
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FIG. 9: Spatio-temporal contours plot of the number of par-
ticles field, n(x, t), for (a) lx = 50, (b) lx = 80 and (c)
lx = 400, with ω = 35 (ε ∼ 0.06) and EBC. These corre-
spond to lx/λ

∗
c ∼ 1, lx/λ

∗
c ∼ 1.6 and lx/λ

∗
c ∼ 8, respectively.

High density regions are shown in red. Over the middle fig-
ure, the number of convection rolls is indicated for exemplary
regions.

cell constantly switches between metastable states; it is
possible to identify two-rolls and one-roll configurations
at either side of the system, alternating with no clear pe-
riodicity. We believe this to be an important factor to
take into account on any study of the dynamics of the
granular convective state: the size of the container has
no influence on the critical point of the transition, but
plays a determining role in the dynamics. In our case, lx
for the narrow and wide containers was chosen a posteri-
ori to diminish the effects of metastability, considerably
facilitating the study of precursors.

As lx/λc is increased further, a new state becomes pos-
sible at the transition region in which convective cells
coexist with regions effectively in the Leidenfrost state.
Fig. 9c shows a period of coexistence, as two pairs of
convective cells emerge in a confined region of the sys-
tem while the rest remains in the Leidenfrost state. No-
tice how the Leidenfrost region is roughly 200d wide, far
larger than λ∗c . We interpret this phenomena as the emer-
gence of a localized state in a non-linear system, a subject
of increased scientific interest [48].
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F. Critical mode amplitude

It has been shown that both the correlation of the fluc-
tuating velocity field and the critical mode of the density
fluctuations present critical-like behaviour near the tran-
sition. We now look at the overall transition behaviour
in the context of bifurcation theory, by following the am-
plitude in the emergent pattern of the critical mode, Ac.
The emergent pattern is more evident and measured from
the vertical velocity field vz(x, t). Ac is the amplitude of
the mode kc in vz(x, t)/ω, with kc determined by the
structure factor maximum. The final value of 〈Ac〉t is
obtained by averaging over the whole simulation time.

In the seminal work of Swift and Hohenberg, hydro-
dynamic fluctuations were studied for a molecular fluid
near the thermal convection instability [49], and a simple
model for the Rayleigh-Bénard instability was derived.
In the following we apply the Swift-Hohenberg model to
the LBC transition, inspired by the evident similarities
of both phenomena; in terms of bifurcation theory, both
transitions correspond to spatial-mode selecting bifurca-
tions. Nevertheless, we expect the discrete nature of our
granular system to have a considerable effect close to the
transition, manifested as fluctuations arising from the fi-
nite number of particles. Thus, we consider that the
universal behaviour of the fluctuating vertical velocity
w(z, t) = vz(x, t) − 〈vz(x, t)〉t close to the transition is
given by the Swift-Hohenberg model for pattern forma-
tion with a stochastic term [18],

∂tw = ε′w − w3 − (∂xx + k2c )2w +
√
η′ζ(x, t), (4)

with the bifurcation parameter given by ε′ − k4c . In our
system ε′ − k4c ≈ ε (as kc � 1), and thus in what fol-
lows we take ε′ = ε. Fluctuations are modeled by the
last term, where ζ is a Gaussian white noise, that is
〈ζ(x, t)ζ(x′, t′)〉 = δ(x − x′)δ(t − t′); and η′ is the pa-
rameter of noise intensity [50]. In our system the zero
correlation of ζ is justified by assuming the gaseous phase
close to the moving plate to be the main source of fluctu-
ations, and to behave strictly as a hard sphere gas. The
lack of temporal or spatial correlations of the particles
follows from the the low packing fractions (φ < 0.2), the
frequent collisions with the bottom plate compared to the
mean free flight time, and the randomization of velocities
due to collision with the dense region.

It is known that in (4) the base state w(x, t) = 0 is
stable for ε′ < 0, and presents a supercritical spatial
instability for ε′ = 0, which leads to the appearance of
a pattern, in our case corresponding to convective cells,
for ε′ > 0. Following [17, 50], and confirmed by our
measured velocity profiles, solutions for the critical mode
kc can be assumed to be of the form

w =
a(τ)√

3
eikcx +

ā(τ)√
3
e−ikcx + U(a, ā, x) (5)

with a the amplitude of the pattern with mode kc, depen-
dent on the slow time τ ≡ εt, and U a general function
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FIG. 10: Amplitude of the critical pattern of the vertical
velocity field vz(x, t), Ac, as a function of the bifurcation pa-
rameter ε, for EBC (blue) and PBC (red) in narrow (top) and
wide (bottom) containers. The gray dashed lines correspond
to fits given by the Swift-Hohenberg model with a stochastic
term (see main text), with noise level η = 0.0001. The colored
dashed lines correspond to fits based on a quintic supercrit-
ical bifurcation, for noise intensity σ = 0.0008 in the small
container systems, and σ = 0.001 for the wide cases.

containing higher order terms in a. Substituting (5) into
(4) one reaches the amplitude equation corresponding to
a stochastic cubic supercritical spatial bifurcation:

∂τa = εa− |a|2a+
√
ηζ(τ) (6)

with η ≡ 3η′. A solution for the probability function of
a, Ps(|a|, ε, η), can be found from (4) and (5), as shown
in [17, 50]. From the shape of Ps the expectation value
can be obtained [50], given by

|amax| =

√
ε+

√
ε2 + 2η

2
. (7)

In our case |amax| = 〈Ac〉t. Our measurements are con-
sistent with this form for |ε| � 1, as shown in Fig. 10 for
narrow and wide systems with PBC and EBC. Neverthe-
less, (7) does not capture the shape of 〈Ac〉t (ε) for higher
values of ε, deviating considerably already for ε ∼ 0.05.

A higher level of agreement can be obtained by consid-
ering an stochastic quintic supercritical bifurcation [17]:

∂τa = εa− |a|4a+

√
η
√
hζ(τ), (8)

with h quantifying the strength of the quintic non-linear
term [17]. This type of bifurcation may be more rele-
vant for our system, as it has been previously associated
with parametrically driven spatially extended systems,
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as Faraday patterns [31] and vertically vibrated series
of coupled pendula [32]. The former can be considered
closer to our present system than the Rayleigh-Bénard
scenario, taking into account that the bed of grains is also
a vertically vibrated medium with a free surface. The
latter case, on the other hand, could be related to the
already mentioned low-frequency oscillations [33]. Previ-
ously it was shown that density inverted granular states
in a quasi-one-dimensional container (l̃x ∼ l̃y ∼ d) be-
have approximately as harmonic oscillators. It can thus
be inferred that for wider containers, as the ones con-
sidered in this study, the dynamics are analogous to a
series of coupled oscillators, with a yet unspecified cou-
pling mechanism by shear or other interactions.

Following a similar method as the previous analysis,
an expression for the expected value of the amplitude of
the unstable mode can be obtained (for details of the
derivation we again refer the reader to [17]),

|amax| = σ1/6
√
β/Ω + Ω/3 (9)

with Ω ≡ (3/4)1/3(9 +
√

3(27− 16β3))1/3 and β ≡
ε/σ2/3, with σ ≡ η

√
h. The shape of (9) is also shown in

Fig. 10, now in good agreement for higher ε in all cases.
All systems present the same overall shape of Ac(ε),

with the most significant difference being lower ampli-
tudes for ε > 0 in the wide containers. More importantly,
there is no significant difference in the noise intensity
for all cases, except for the narrow container with EBC,
where the noise term is lower, σ = 6 × 10−4 ± 10−5. In
the narrow container with PBC σ = 9× 10−4± 2× 10−4,
and σ = 10−3± 2× 10−4 for the wide container with any
boundary condition. The independence of the noise in-
tensity on N suggests that the relevant quantity for the
critical dynamics is the amount of particles per critical
length-scale, λ∗c , which in our cases remains constant.

IV. CONCLUSIONS

We have studied the granular Leidenfrost to buoyancy-
driven convection transition, characterized the precur-
sors and proposed a new interpretation of its universal
dynamical behaviour. The overall picture is of a contin-
uously fluidized bed of grains which goes from homoge-
neous Leidenfrost configurations to increasingly velocity
correlated convective states, until flows are strong enough
to sustain the density inhomogeneous buoyancy-driven
convective state. From a bifurcation theory perspective,
the convection transition can be understood as a pattern
formation phase-transition, with the emergence of con-
vective cells with a critical length-scale independent of
the domain size, which is consistent with previously re-
alized hydrodynamic stability analysis of the Leidenfrost
state [30].

The time-dependent fluctuating convection state can
be characterized by the correlation time of the fluctu-
ating velocity field, which shows critical-like behaviour

with an exponent of approximately 0.51. From the self-
correlation it is also possible to observe the influence of
low-frequency oscillations [33] on the fluctuating velocity
field.

The static structure factor shows the emergence and
growth of the pattern dominant length-scale. The am-
plitude of the critical mode is also seen to show critical
behaviour, consistent with a supercritical bifurcation. By
following the most unstable mode throughout the transi-
tion in wide systems it was possible to confirm that the
size of the convective cells is indeed proportional to the
frequency of energy injection.

In the transient state of wider systems the Leidenfrost
and buoyancy-driven convective states can coexist. The
convective state in this region is constantly evolving, pre-
senting metastability between states with different num-
ber of rolls. As energy increases the stability of the con-
vective cells increases, although their number is deter-
mined by the amount of cells that can be fitted in the
container. Further increasing the energy leads to a com-
paratively slower process of merging of convective cells.
The rich dynamics of merging and splitting of convective
cells in coexistence with the Leidenfrost state in the wide
systems calls for further research.

Elastic walls and periodic boundaries present the same
critical points, disregarding any significant confinement
effects for containers much bigger than the critical con-
vective wavelength (i.e. larger than 50 particle diameters
in the cases studied). Slightly dissipative side-walls, on
the other hand, have the effect of decreasing the amount
of energy needed to trigger the transition, showing that
the excitation of the unstable mode at the boundaries has
a more significant effect than the added dissipation. In
systems 400 particle diameters wide, in all cases studied,
the boundary conditions did not have any visible influ-
ence.

The amplitude of the critical mode of convection is
seen to be coherent with a quintic supercritical ampli-
tude equation. The agreement is much better than with a
cubic supercritical bifurcation, associated with the Swift-
Hohenberg equation. This suggests a new interpretation
of the transition, closer to spatially extended parametri-
cally driven systems than to Rayleigh-Bénard convection.
We hypothesize that the source of the parametric driv-
ing is not the vibration of the container (which has too
low amplitude and high frequency to couple with the bed
dynamics), but the low-frequency oscillations present in
a density inverted bed of grains, i.e. the granular Lei-
denfrost state. In general, we remark that the universal
behaviour of the density field can only be captured by
considering a noise term in the corresponding amplitude
equation which quantifies the discrete, finite-number ef-
fects. The noise intensity is seen to be independent on
the system size, except in the confined small container.
This suggests that the transition in wider systems is a lo-
cal phenomenon, with the size of the critical convective
cell as relevant length-scale.

As outlook, a derivation of the quintic supercritical



10

amplitude equation from a series of coupled oscillators
with the form derived in [33] would be a way of confirming
the proposed amplitude equation.
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