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Abstract

The interaction between visco-elasto-plastic and adhesive particles is the sub-

ject of this study, where “meso-particles” are introduced, i.e., simplified particles,

whose contact mechanics is not taken into account in all details. A few examples

of meso-particles include agglomerates or groups of primary particles, or inhomo-

geneous particles with micro-structures of the scale of the contact deformation,

such as core-shell materials.

A simple, flexible contact model for meso-particles is proposed, which allows

to model the bulk behavior of assemblies of many particles in both rapid and slow,

quasi-static flow situations. An attempt is made to categorize existing contact mod-

els for the normal force, discuss all the essential mechanical ingredients that must

enter the model (qualitatively) and finally solve it analytically.

The model combines a short-ranged, non-contact part (resembling either dry

or wet materials) with an elaborate, visco-elasto-plastic and adhesive contact law.

Using energy conservation arguments, an analytical expression for the coefficient

of restitution is derived in terms of the impact velocity (for pair interactions or,

equivalently, without loss of generality, for quasi-static situations in terms of the

maximum overlap or confining stress).

Adhesive particles (or meso-particles) stick to each other at very low impact

velocity, while they rebound less dissipatively with increasing velocity, in agree-

ment with previous studies. For even higher impact velocities an interesting sec-

ond sticking and rebound regime is reported. The low velocity sticking is due to

non-contact adhesive forces, the first rebound regime is due to stronger elastic and

kinetic energies with little dissipation, while the high velocity sticking is generated

by the non-linearly increasing, history dependent plastic dissipation and adhesive

contact force. As the model allows also for a stiff, more elastic core material, this

causes the second rebound regime at even higher velocities.

Keywords: Meso-scale particles and contact models, Particle collisions,

Plastic loading-unloading cycles, Sticking, Adhesive contacts, Cohesive pow-

ders, Elasto-plastic material, Core-shell particles
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Nomenclature

mi : mass of ith particle.

ai : Radius of ith particle.

mr : Reduced mass of a pair of particles.

δ : Contact overlap between particles.

vi : Relative velocity before collision.

v f : Relative velocity after collision.

vi
∞ : Relative velocity before collision at infinite separation.

v f
∞ : Relative velocity after collision at infinite separation.

vn : Normal component of relative velocity.

e : Coefficient of restitution.

en : Normal coefficient of restitution.

εi : Pull-in coefficient of restitution.

εo : Pull-off coefficient of restitution.

k : Spring stiffness.

k1 : Slope of loading plastic branch.

k2 : Slope of unloading and re-loading elastic branch.

kc : Slope of irreversible, tensile adhesive branch.

kp : Slope of unloading and re-loading limit branch; end of plastic regime.

vp : Relative velocity before collision for which the limit case is reached.

φ f : Dimensionless plasticity depth.

δmax : Maximum overlap between particles during a collision.

δ p
max : Maximum overlap between particles for the limit case.

δ0 : Force free overlap ∼= plastic contact deformation.

δmin : Overlap between particles at the maximum (negative) attractive force.

δc : Kinetic energy free overlap between particles.

Wdiss : Amount of energy dissipated during collision.

η : Dimensionless plasticity of the contact.

β : Adhesivity: dimensionless adhesive strength of the contact.

χ : Scaled initial velocity relative to vp.

fa : Non-contact adhesive force at zero overlap.

δa : Non-contact separation between particles at which attractive force becomes active.

ka
c : Strength of non-contact adhesive force.
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1 Introduction

Granular materials and powders are ubiquitous in industry and nature. For this rea-

son, the past decades have witnessed a strong interest in research aiming for better

understanding and predicting their behavior in all regimes from flow to static as well as

the transitions between these states. Especially, the impact of fine particles with other

particles or surfaces is of fundamental importance. The interaction force between two

particles is a combination of elasto-plastic deformation, viscous dissipation, and ad-

hesion – due to both mechanical contact- and long ranged non-contact forces. Pair

interactions that can be used in bulk simulations with many particles and multiple con-

tacts per particle are the focus here, and we use the special, elementary case of pair

interactions to understand them analytically.

Different regimes can be observed for collisions between two particles: For ex-

ample, a particle can either stick to another particle/surface or it rebounds, depending

upon the relative strength of adhesion and impact velocity, size and material various

material parameters [1]. This problem needs to be well understood, as it forms the ba-

sis for understanding rather complex, many-particle flows in realistic systems, related

to e.g. astrophysics (dust agglomeration, Saturn’s rings, planet formation) or industrial

processes (handling of fine powders, granulation, filling and discharging of silos). Par-

ticularly interesting are the interaction mechanisms for adhesive materials such as as-

phalt, ice particles or clusters/agglomerates of fine powders (often made of even smaller

primary particles). Some of these materials can be physically visualized as having a

plastic outer shell with a stronger and more elastic inner core. Understanding this can

then be applied to particle-surface collisions in kinetic spraying, where the solid micro-

sized powder particle is accelerated towards a substrate. In cold spray, bonding occurs

when impact velocities of particles exceed a critical value, which depends on vari-

ous material parameters [1–4]. However, for even higher velocities particles rebound

from the surface [5, 6]. Due to the inhomogeneity of most realistic materials, their

non-sphericity and their surface irregularity, one can not include all these details – but

rather has to focus on the essential phenomena and ingredients, finding a compromise

between simplicity and realistic contact mechanics.

1.1 Contact Models Review

Computer simulations have turned out to be a powerful tool to investigate the physics

of particulate systems, especially valuable as experimental difficulties are considerable

and since there is no generally accepted theory of granular flows. A very popular sim-

ulation scheme is an adaptation of the classical Molecular Dynamics technique called

Discrete Element Method (DEM) (for details see Refs. [7–15]). It involves integrating

Newton’s equations of motion for a system of “soft”, deformable grains, starting from

a given initial configuration. DEM can be successfully applied to adhesive particles, if

a proper force-overlap law (contact model) is used.

The JKR model [16] is a widely accepted contact model for adhesive elastic spheres

and gives an expression for the normal force in terms of the normal deformation. Der-

jaguin et al. [17] suggested that the attractive forces act only just outside the contact

zone, where surface separation is small, and is referred to as DMT model. An in-
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teresting approach for dry adhesive particles was proposed by Molerus [18, 19], who

explained consolidation and non-rapid flow of adhesive particles in terms of adhe-

sive forces at particle contacts. Thornton and Yin [20] compared the results of elastic

spheres with and without adhesion, a work that was later extended to adhesive elasto-

plastic spheres [21]. Molerus’s model was further developed by Tomas, who intro-

duced a complex contact model [22–24] by coupling elasto-plastic contact behavior

with non-linear adhesion and hysteresis involving dissipation and a history (compres-

sion) dependent adhesive force. The contact model subsequently proposed by Lud-

ing [15, 25] works in the same spirit as that of Tomas [23], only reducing complexity

by using piece-wise linear branches in an otherwise non-linear contact model in spirit

(as explained later in this study). In the original version [15], a short-ranged force be-

yond contact was mentioned, but not specified, which is one of the issues tackled in

the present study. Contact details, such as a possible non-linear Hertzian law for small

deformation, and non-linear loading-unloading hysteresis are over-simplified in Lud-

ings model, as compared to the model proposed by Tomas [23]. This is partly due to

the lack of the experimental reference data or theories, but also motivated by the wish

to keep the model as simple as possible. The model consists of several basic mecha-

nisms, i.e., non-linear elasticity, plasticity and adhesion as relevant for, e.g. core-shell

materials or agglomerates of fine, dry primary powder particles [26, 27]. A possible

connection between the microscopic contact model and the macroscopic, continuum

description for adhesive particles was recently proposed by Luding et al. [28], as fur-

ther explored by Singh et al. [29,30] for dry adhesion, by studying the force anisotropy

and force distributions in steady state bulk shear in the 1, which is further generalized

to wet adhesion by Roy et al. [33], or studied under shear-reversal [34, 35].

Jiang et al. [36] experimentally investigated the force-displacement behavior of

idealized bonded granules. This was later used to study the mechanical behavior of

loose cemented granular materials using DEM simulations [37]. Kempton et al. [38]

proposed a meso-scale contact model combining linear hysteretic, simplified JKR and

linear bonding force models, to simulate agglomerates of sub-particles. The phe-

nomenology of such particles is nicely described by Dominik and Tielens [26]. Walton

et al. [39, 40] also proposed contact models in similar spirit as that of Luding [15] and

Tomas [23], separating the pull-off force from the slope of the tensile attractive force as

independent mechanisms. Most recently two contact models were proposed by Thakur

et al. [41] and by Pasha et al. [42], which work in the same spirit as Luding’s model,

but treat loading and un/re-loading behaviors differently. The former excludes the non-

linear elastic stiffness in the plastic regime, and both deal with a more brittle, abrupt

reduction of the adhesive contact force. The authors further used their models to study

the scaling and effect of DEM parameters in an uniaxial compression test [43], and

compared part of their results with other models [42].

When two particles interact, their behavior is intermediate between the extremes

of perfectly elastic and fully inelastic, possibly even fragmenting, where the latter is

not considered in this study. Considering a dynamic collision is our choice here, but

without loss of generality, most of our results can also be applied to a slow, quasi-static

loading-unloading cycle that activates the plastic loss of energy, by replacing kinetic

1The details on the geometry are explained in Refs. [30–32].
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with potential energies. Rozenblat et al. [44] have recently proposed an empirical

relation between impact velocity and static compression force.

The amount of energy dissipated during a collision can be best quantified by the

coefficient of restitution, which is the ratio of magnitude of post-collision and pre-

collision normal relative velocities of the particles. It quantifies the amount of energy

that is not dissipated during the collision. For the case of plastic and viscoelastic col-

lisions, it was suggested that dissipation depends on impact velocity [45–47]; this can

be realized by viscoelastic forces [46, 48–50] and follows from plastic deformations

too [51].

Early experimental studies [52, 53] on adhesive polystyrene latex spheres of mi-

crometer size showed sticking of particles for velocities below a threshold and an in-

creasing coefficient of restitution for velocities increasing above the threshold. Wall

et al. [54] further confirmed these findings for highly mono-disperse ammonium par-

ticles. Thornton et al. [21] and Brilliantov et al. [55] proposed an adhesive visco-

elasto-plastic contact model in agreement with these experiments. Work by Sorace

et al. [56] also confirms the sticking at low velocities for particle sizes of the order

of a few mm. Li et al. [57] proposed a dynamical model based on JKR for the im-

pact of micro-sized spheres with a flat surface, whereas realisitc particle contacts are

usually not flat [58]. Recently, Saitoh et al. [59] even reported negative coefficients

of restitution in nanocluster simulations, which is an artefact of the wrong definition

of the coefficient of restitution; one has to relate the relative velocities to the normal

directions before and after collision and not just in the frame before collision, which

is especially a serious effect for softer particles [60]. Jasevic̆ius et al. [61, 62] have re-

cently studied the rebound behavior of ultrafine silica particles using the contact model

by Tomas [22–24, 63]. They found that energy absorption due to attractive forces

is the main source of energy dissipation at lower impact velocities or compression,

while plastic deformation-induced dissipation becomes more important with increas-

ing impact velocity. They found some discrepancies between numerical and experi-

mental observations and concluded that these might be due to the lack of knowledge

of particle- and contact-parameters, including surface roughness, adsorption layers on

particle surfaces, and microscopic material property distributions (inhomogeneities),

which in essence are features of the meso-particles that we aim to study.

In a more recent study, Shinbrot et al. [64] studied charged primary particles with

interesting single particle dynamics in the electromagnetic field. They found ensembles

of attractive (charged) particles can forming collective contacts or even fingers, extend-

ing the concepts of “contact” well beyond the idealized picture of perfect spheres, as

shown also in the appendix of the present study.

Finally, Rathbone et al. [65] presented a new force-displacement law for elasto-

plastic materials and compare it to their FEM results that resolve the deformations in

the particle contact zone. This was complemented by an experimental study comparing

various models and their influence on the bulk flow behavior [1].

1.2 Model classification

Since our main focus is on dry particles, here we do not review the diverse works

that involve liquid [66] or strong solid bridges [67]. Even though oblique collisions
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between two particles are of practical relevance and have been studied in detail by

Thornton et al. [68, 69], here we focus on central normal collisions without loss of

generality. Finally, we also disregard many minute details of non-contact forces, as,

e.g. due to van der Waals forces, for the sake of brevity, but will propose a very simple

mesoscale non-contact force model in section 2.3.

Based on our review of adhesive, elasto-visco-plastic contact models, here we pro-

pose a possible classification, by dividing them into three groups (based on their com-

plexity and aim):

(1) Academic contact models,

(2) Mesoscopic contact models, and

(3) Realistic, fully detailed contact models.

Here we focus on adhesive elastic, and elasto-plastic contact models mainly, while the

effect of various forces on adhesion of fine particles is reviewed in Ref. [70], and some

of the more complex models are reviewed and compared in Ref. [69].

1. Academic contact models allow for easy analytical solution, as for example

the linear spring-dashpot model [50], or piece-wise linear models with constant

unloading stiffness (see e.g. Walton and Braun [71]), which feature a constant

coefficient of restitution (independent of impact velocity). Also the Hertzian

visco-elastic models belong to this class, even though they provide a velocity

dependent coefficient of restitution, for a summary see Ref. [50] and references

therein, while for a recent comparison see Ref. [72]. However, no academic

model can fully describe realistic, practically relevant contacts. Either the ma-

terial or the geometry/mechanics is too idealized; in application, there is hardly

any contact that is perfectly linear or Hertzian visco-elastic. Academic models

thus miss most details of real contacts, but can be treated analytically.

2. Mesoscopic contact models (or, with other words, contact models for meso-

particles) are a compromise, (i) still rather easy to implement, (ii) aimed for

fast ensemble/bulk-simulations with many particles and various materials, and

(iii) contain most relevant mechanisms, but not all the minute details of every

primary particle and every single contact. They are often piece-wise linear, e.g.

with a variable unloading stiffness or with an extended adhesive force, leading

to a variable coefficient of restitution, etc., see Refs. [15, 40, 41, 71, 73]).

3. Realistic, full-detail contact models have (i) the most realistic, but often rather

complicated formulation, (ii) can reproduce with similar precision the pair in-

teraction and the bulk behavior, but (iii) are valid only for the limited class of

materials they are particularly designed for, since they do include all the minute

details of these interactions. A few examples include:

(a) visco-elastic models: Walton [74], Brilliantov [55, 75], Haiat [76];

(b) adhesive elastic models: JKR [16], Dahneke [77], DMT [17], Thornton

and Yin [20];

(c) adhesive elasto-plastic models: Molerus [18], Thornton and Ning [21],

Tomas [22–24, 63], Pasha et al. [42].
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While the realistic models are designed for a special particulate material in mind, our

main goal is to define and apply mesoscopic contact models to simulate the bulk be-

havior of a variety of assemblies of many particles (for which no valid realistic model

is available), we focus on the second class: mesoscopic contact models.

1.3 Focus and Overview of this study

In particular, we study the dependence of the coefficient of restitution for two meso-

particles on impact velocity and contact/material parameters, for a wide range of im-

pact velocities, using the complete version of the contact model by Luding [15], with

a specific piece-wise linear non-contact force term. We observe sticking of parti-

cles at low velocity, which is consistent with previous theoretical and experimental

works [21, 54, 56]. Pasha et al. [42] recently also reproduced the low velocity stick-

ing using an extension of the similar, but simpler model [78]. Above a certain small

velocity, dissipation is not strong enough to dissipate all relative kinetic energy and

the coefficient of restitution begins to increase. We want to understand the full regime

of relative velocities, and thus focus also on the less explored intermediate and high

velocity regimes, as easily accessible in numerical simulations. In the intermediate

regime, we observe a decrease in the coefficient of restitution, as observed previously

for idealized/homogeneous particles [21,55], however the functional behavior is differ-

ent compared to the predictions by Thornton [21]. In Appendix 2.2.4, we show that this

property can be tuned by simple modifications to our model. Tanaka et al. [79] have

recently reported similar results, when simulating the collision of more realistic dust

aggregates, consisting of many thousands of nanoparticles that interact via the JKR

model. With further increase in impact velocity, we find a second sticking regime due

to the non-linearly increasing adhesive and plastic dissipation. For even higher veloci-

ties, the second, intermediate sticking regime is terminated by a second rebound regime

due to the elastic core that can be specified in the model. Finally, since the physical

systems under consideration also are viscous in nature, we conclude with some simu-

lations with added viscous damping, which is always added on top of the other model

ingredients, but sometimes neglected in order to allow for analytical solutions.

An exemplary application of our model that shows the unexpected high velocity

sticking and rebound regime (which might not be observed in the case of homoge-

neous granular materials) is, the coating process in cold sprays. In these studies, the

researchers are interested in analyzing the deposition efficiency of the powder on a

substrate as a function of the impact velocity. Bonding/coating happens when the im-

pact velocity of the particles exceeds a “critical velocity”, with values of the order of

102 m/s [4–6]. Interestingly, when the velocity is further increased the particles do

not bond (stick) to the substrate anymore, and a decrease in the deposition efficiency

(inverse of the coefficient of restitution) is observed [5]. Schmidt et al. [4] have used

numerical simulations to explore the effect of various material properties on the crit-

ical velocity, while Zhou et al. [6] studied the effect of impact velocity and material

properties on the coating process, showing that properties of both particle and substrate

influence the rebound. Using our model, one could explore the dependence of the de-

position efficiency on the impact velocity, leading to the synergy between different

communities.
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The paper is arranged as follows: In section 2, we introduce the DEM simulation

method and the basic contact models for the normal direction; one type of meso-models

is further elaborated on in the following section 3, where the coefficient of restitution is

computed analytically, and dimensionless contact parameters are proposed in section 4.

The limit of negligible non-contact forces is considered in section 5, where various spe-

cial cases are discussed, the contact model parameters are studied, and also asymptotic

solutions and limit values are given, before the study is concluded in section 6.

2 Discrete Element Method

The elementary units of particulate systems as granular materials or powders are grains

that deform under applied stress. Since the realistic and detailed modeling of real par-

ticles in contact is too complicated, it is necessary to relate the interaction force to

the overlap δ between two particles in contact. Note that the evaluation of the inter-

particle forces based on the overlap may not be sufficient to account for the inhomo-

geneous stress distribution inside the particles, for internal re-arrangements [26], and

for possible multi-contact effects [45]. However, this price has to be paid in order to

simulate large samples of particles with a minimal complexity and still taking various

physical contact properties such as non-linear contact elasticity, plastic deformation or

load-dependent adhesion into account.

2.1 Equations of Motion

If all forces acting on a spherical particle p, either from other particles, from bound-

aries or externally, are known – let their vector sum be ~fp – then the problem is reduced

to the integration of Newton’s equations of motion for the translational degrees of free-

dom (the rotational degrees are not considered here since we focus only on normal

forces) for each particle: mp
d2

dt2 ~rp = ~fp +mp~g where, mp is the mass of particle p,~rp

its position, ~fp = ∑c
~f c

p is the total force due to all contacts c, and ~g is the acceler-

ation due to volume forces like gravity. With tools as nicely described in textbooks

as [80–82], the integration over many time-steps is a straightforward exercise. The

typically short-ranged interactions in granular media allow for further optimization by

using linked-cell (LC) or alternative methods in order to make the neighborhood search

more efficient [83, 84]. However, such optimization issues are not of concern in this

study, since only normal pair collisions are considered.

2.2 Normal Contact Force Laws

Two spherical particles i and j, with radii ai and a j, ri and r j being the position vectors

respectively, interact if their overlap,

δ = (ai + a j)− (~ri −~r j) ·~n , (1)

is either positive, δ > 0, for mechanical contact, or smaller than a cut-off, 0 ≥ δ > δa,

for non-contact interactions, with the unit vector~n =~ni j = (~ri −~r j)/|~ri −~r j| pointing
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δ

fn = f lin

(a)

δ

fn = fhys

(b)

Figure 1: Schematic plots of contact forces for (a) the linear normal model for a per-

fectly elastic collision, and (b) the force-overlap relation for an elasto-plastic adhesive

collision

from j to i. The force on particle i, from particle j, at contact c, can be decomposed

into a normal and a tangential part as ~f c := ~f c
i = f n~n+ f t~t, where ~n ·~t = 0, n and t

being normal and tangential parts respectively. In this paper, we focus on frictionless

particles, i.e., only normal forces will be considered, for tangential forces and torques,

see e.g. Ref. [15] and references therein.

In the following, we discuss various normal contact force models, as shown schemat-

ically in Fig. 1. We start with the linear contact model (Fig. 1(a)) for non-adhesive par-

ticles, before we introduce a more complex contact model that is able to describe the

realistic interaction between adhesive, inhomogeneous 2, slightly non-spherical parti-

cles (Fig. 1(b)).

2.2.1 Linear Normal Contact Model

Modelling a force that leads to an inelastic collision requires at least two ingredients:

repulsion and some sort of dissipation. The simplest (but academic) normal force law

with the desired properties is the damped harmonic oscillator

f n = kδ + γ0vn , (2)

with spring stiffness k, viscous damping γ0, and normal relative velocity vn =−~vi j ·~n=
−(~vi −~v j) ·~n = δ̇ . This model (also called linear spring dashpot (LSD) model) has the

advantage that its analytical solution (with initial conditions δ (0) = 0 and δ̇ (0) = vn
0)

allows easy calculations of important quantities [50]. For the non-viscous case, the

linear normal contact model is given schematically in Fig. 1.

2Examples of inhomogeneous particles include core-shell materials, clusters of fine primary particles or

randomly micro-porous particles.
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The typical response time (contact duration) and the eigenfrequency of the contact

are related as

tc =
π

ω
and ω =

√

(k/mr)−η2
0 (3)

with the rescaled damping coefficient η0 = γ0/(2mr), and the reduced mass mr =
mim j/(mi +m j), where the η0 is defined such that it has the same units as ω , i.e.,

frequency. From the solution of the equation of a half-period of the oscillation, one

also obtains the coefficient of restitution

eLSD
n = v f /vi = exp(−πη0/ω) = exp(−η0tc) , (4)

which quantifies the ratio of normal relative velocities after (v f ) and before (vi) the

collision. Note that in this model en is independent of vi. For a more detailed review

on this and other, more realistic, non-linear contact models, see [15,50] and references

therein.

The contact duration in Eq. (3) is also of practical and technical importance, since

the integration of the equations of motion is stable only if the integration time-step ∆t

is much smaller than tc. Note that tc depends on the magnitude of dissipation: In the

extreme case of an over-damped spring (high dissipation), tc can become very large

(which renders the contact behavior artificial [48]). Therefore, the use of neither too

weak nor too strong viscous dissipation is recommended, so that some artificial effects

are not observed by the use of viscous damping.

2.2.2 Adhesive Elasto-Plastic Contacts

For completeness, we re-introduce the piece-wise linear hysteretic model [15] as an

alternative to non-linear spring-dashpot models or more complex hysteretic models

[21–24, 85, 86]. It reflects permanent plastic deformation 3, which takes place at the

contact, and the non-linear increase of both elastic stiffness and attractive (adhesive)

forces with the maximal compression force.

In Fig. 2, the normal force at contact is plotted against the overlap δ between two

particles. The force law can be written as

f hys =







k1δ if k2(δ − δ0)≥ k1δ
k2(δ − δ0) if k1δ > k2(δ − δ0)>−kcδ
−kcδ if − kcδ ≥ k2(δ − δ0)

(5)

with k1 ≤ k2 ≤ kp, respectively the initial loading stiffness, the un-/re-loading stiffness

and the elastic limit stiffness. The latter defines the limit force branch kp(δ − δ p
0 ),

as will be motivated next in more detail, and k2 interpolates between k1 and kp, see

Eq. (9). For kc = 0, the above contact model reduces to that proposed by Walton and

Braun [71], with coefficient of restitution

eWB
n =

√

k1/k2 . (6)

3After a contact is opened, the pair forgets its previous contact, since we assume that the contact points

at a future re-contact of the same two particles are not the same anymore.
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k1δ

fhys

kp(δ − δ0)

δ
p
0

−kcδ

δmin

δ
p
min

k2(δ − δ0)

δpmax

Figure 2: Schematic graph of the piece-wise linear, hysteretic, and adhesive force-

displacement model in normal direction from Ref. [15].
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During the initial loading the force increases linearly with overlap δ along k1, until

the maximum overlap δmax = vi

√

mr/k1 (for binary collisions) is reached, which is a

history parameter for each contact. During unloading the force decreases along k2, see

Eq. (9), from its maximum value k1δmax at δmax down to zero at overlap

δ0 = (1− k1/k2)δmax , (7)

where δ0 resembles the permanent plastic contact deformation. Re-loading at any

instant leads to an increase of the force along the (elastic) branch with slope k2, until the

maximum overlap δmax (which was stored in memory) is reached; for still increasing

overlap δ , the force again increases with slope k1 and the history parameter δmax has to

be updated.

Unloading below δ0 leads to a negative, attractive (adhesive) force, which follows

the line with slope k2, until the extreme adhesive force −kcδmin is reached. The corre-

sponding overlap is

δmin =
(k2 − k1)

(k2 + kc)
δmax . (8)

Further unloading follows the irreversible tensile limit branch, with slope −kc, with the

attractive force f hys =−kcδ .

The lines with slope k1 and −kc define the range of possible positive and negative

forces. Between these two extremes, unloading and/or re-loading follow the line with

slope k2. A non-linear un-/re-loading behavior would be more realistic, however, due

to a lack of detailed experimental informations, the piece-wise linear model is used as

a compromise, besides that it is easier to implement. The elastic k2 branch becomes

non-linear and ellipsoidal if a moderate normal viscous damping force is active at the

contact, as in the LSD model.

In order to account for realistic load-dependent contact behavior, the k2 value is

chosen to depend on the maximum overlap δmax, i.e. contacts are stiffer and more

strongly plastically deformed for larger previous deformations so that the dissipation

depends on the previous deformation history. The dependence of k2 on overlap δmax is

chosen empirically as linear interpolation:

k2(δmax) =







kp if δmax/δ p
max ≥ 1

k1 +(kp − k1)δmax/δ p
max

if δmax/δ p
max < 1

(9)

where kp is the maximal (elastic) stiffness, and

δ p
max =

kp

kp − k1

φ f

2a1a2

a1 + a2

, (10)

is the plastic flow limit overlap, with φ f the dimensionless plasticity depth, a1 and a2

being the radii of the two particles. This can be further simplified to

δ p
0 = φ f a12, (11)

where δ p
0 represents the plastic contact deformation at the limit overlap, and a12 =

2a1a2
a1+a2

is the reduced radius. In the range δmax < δ p
max, the stiffness k2 can also be
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written as:

k2 = k1 +
(kp − k1)

k1δ p
max

f max, (12)

where f max = k1δmax is the same as Eq. (4) in [71] with prefactor S =
(kp−k1)

k1δ
p
max

.

From energy balance considerations, one can define the “plastic” limit velocity

vp =
√

k1/mr δ p
max , (13)

below which the contact behavior is elasto-plastic, and above which the perfectly elas-

tic limit-branch is reached. Impact velocities larger than vp have consequences, as

discussed next (see Sec. 2.2.4).

In summary, the adhesive, elasto-plastic, hysteretic normal contact model is defined

by the four parameters k1, kp, kc and φ f that, respectively, account for the initial plastic

loading stiffness, the maximal, plastic limit (elastic) stiffness, the adhesion strength,

and the plastic overlap-range of the model. This involves an empirical choice for the

load-dependent, intermediate elastic branch stiffness k2, which renders the model non-

linear in its behavior (i.e. higher confinging stress leads to stiffer contacts like in the

Hertz model), even though the present model is piece-wise linear.

2.2.3 Motivation of the original contact model

To study a collision between two ideal, homogeneous spheres, one should refer to

realistic, full-detail contact models with a solid experimental and theoretical foundation

[16, 21, 22]. These contact models feature a small elastic regime and the particles

increasingly deform plastically with increasing, not too large deformation (overlap).

During unloading, their contacts end at finite overlap due to flattening. An alternative

model was recently proposed, see Ref. [42], that follows the philosophy of plastically

flattened contacts with instantaneous detachment at positive overlaps.

However, one has to also consider the possibility of rougher contacts [58], and

possible non-contact forces that are usually neglected for very large particles, but can

become dominant and hysteretic as well as long-ranged for rather small spheres [22,

26].

The mesoscopic contact model used here, as originally developed for sintering

[25], and later defined in a temperature-independent form [15], follows a different ap-

proach in two respects: (i) it introduces a limit to the plastic deformation of the par-

ticles/material for various reasons as summarized below and also in subsection 2.2.4,

and (ii) the contacts are not idealized as perfectly flat, and thus do not have to lose

mechanical contact immediately at un-loading, as will be detailed in subsection 2.2.5.

Note that a limit to the slope kp resembles a simplification of different contact be-

havior at large deformations:

(i) for low compression, due to the wide probability distribution of forces in bulk gran-

ular matter, only few contacts should reach the limit, which would not affect much the

collective, bulk behavior;

(ii) for strong compression, in many particle systems, i.e., for large deformations, the

particles cannot be assumed to be spherical anymore, and they deform plastically or
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could even break;

(iii) from the macroscopic point of view, too large deformations would lead to volume

fractions larger than unity, which for most materials (except highly micro-porous, frac-

tal ones) would be unaccountable;

(iv) at small deformation, contacts are due to surface roughness realized by multi-

ple surface asperities and at large deformation, the single pair point-contact argument

breaks down and multiple contacts of a single particle can not be assumed to be inde-

pendent anymore;

(v) finally, (larger) meso-particles have a lower stiffness than (smaller) primary parti-

cles [41], which is also numerically relevant, since the time step has to be chosen such

that it is well below the minimal contact duration of all the contacts. If k2 is not limited

the time-step could become prohibitively small, only because of a few extreme (large

compression) contact situations.

The following two subsections discuss the two major differences of the present piece-

wise linear (yet non-linear) model as compared to other existing models: (i) the elastic

limit branch, and (ii) the elastic re-loading or non-contact-loss, as well as their reasons,

relevance and possible changes/tuning – in case needed.

2.2.4 Shortcomings, physical relevance and possible tuning

In the context of collisions between perfect homogeneous elasto-plastic spheres, a

purely elastic threshold/limit and enduring elastic behavior after a sharply defined

contact-loss are indeed questionable, as the plastic deformation of the single particle

cannot become reversible/elastic. Nevertheless, there are many materials that support

the idea of a more elastic behavior at large compression (due to either very high im-

pact velocity or multiple strong contact forces), as discussed further in the paragraphs

below.

Mesoscopic contact model applied to real materials: First we want to recall that

the present model is mainly aimed to reproduce the behavior of multi-particle systems

of realistic fine and ultra-fine powders, which are typically non-spherical and often

mesoscopic in size with internal micro-structure and micro-porosity on the scale of

typical contact deformation. For example, think of clusters/agglomerates of primary

nano-particles that form fine micron-sized secondary powder particles, or other fluffy

materials [26]. The primary particles are possibly better described by other contact

models, but in order to simulate a reasonable number of secondary (meso) particles

one cannot rely on this bottom-up approach and hence a mesoscopic contact model

needs to be used. During the bulk compression of such a system, the material deforms

plastically and both the bulk and particles’ internal porosity reduces [26]. Plastic defor-

mation diminishes if the material becomes so dense, with minimal porosity, such that

the elastic/stiff primary particles dominate. Beyond this point the system deforms more

elastically, i.e. the stiffness becomes high and the (irrecoverable) plastic deformations

are much smaller than at weaker compression.

In their compression experiments of granular beds with micrometer sized granules

of micro-crystalline cellulose, Persson et al. [87] found that a contact model where a

limit on plastic deformation is introduced can very well describe the bulk behavior.
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Experimentally they observe a strong elasto-plastic bulk-behavior for the assembly at

low compression strain/stress. In this phase the height of the bed decreases, irreversibly

with the applied load. It becomes strongly non-linear beyond a certain strain/stress,

which is accompanied by a dramatic increase of the stiffness of the aggregate. They

associate this change in the behavior to the loss of porosity and the subsequent more

elastic bulk response to the particles that are now closely in touch with each other. In

this new, re-structured, very compacted configurations, further void reduction is not

allowed anymore and thus the behavior gets more elastic. While the elastic limit in the

contact model does not affect the description of the bulk behavior in the first part, the

threshold is found to play a key role in order to reproduce the material stiffening (see

Fig. 8 in Ref. [87]).

Note that in an assembly of particles, not all the contacts will reach the limit branch

and deform elastically simultaneously. That is, even if few contacts are in the elastic

limit, the system will always retain some plasticity, hence the assembly will never be

fully elastic.

Application to pair interactions: Interestingly, the contact model in Sec. 2.2.2 is

suitable to describe the collision between pairs of particles, when special classes of

materials are considered, such that the behavior at high velocity and thus large defor-

mation drastically changes.

(i) Core-shell materials. The model is perfectly suited for plastic core-shell materi-

als, such as asphalt or ice particles, having a “soft” plastic outer shell and a rather stiff,

elastic inner core. For such materials the stiffness increases with the load due to an in-

creasing contact surface. For higher deformations, the inner cores can come in contact,

which turns out to be almost elastic when compared to the behavior of the external

shell. The model was successfully applied to model asphalt, where the elastic inner

core is surrounded by a plastic oil or bitumen layer [88]. Alternatively, the plastic shell

can be seen as the range of overlaps, where the surface roughness and inhomogeneities

lead to a different contact mechanics as for the more homogeneous inner core.

(ii) Cold spray. An other interesting system that can be effectively reproduced by

introducing an elastic limit in the contact model is cold spray. Researchers have ex-

perimentally and numerically shown that spray-particles rebound from the substrate at

low velocities, while they stick at intermediate impact energy [2–4, 89]. Wu et al. [5]

experimentally found that rebound re-appears with a further increase in velocity (Fig.

3 in Ref. [5]). Schmidt et al. [4] relate the decrease of the deposition efficiency (in-

verse of coefficient of restitution) to a transition from a plastic impact to hydrodynamic

penetration (Fig. 16 in Ref. [4]). Recently, Moridi et al. [89] numerically studied the

sticking and rebound processes, by using the adhesive elasto-plastic contact model of

Luding [15], and their prediction of the velocity dependent behavior is in good agree-

ment with experiments.

(iii) Sintering. As an additional example, we want to recall that the present meso-

scopic contact model has already been applied to the case of sintering, see Ref. [25,90].

For large deformations, large stresses, or high temperatures, the material goes to a

fluid-like state rather than being solid. Hence, the elasticity of the system (nearly in-

compressible melt) determines its limit stiffness, while φ f determines the maximal
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volume fraction that can be reached.

All the realistic situations described above clearly hint at a modification in the con-

tact phenomenology that can not be described solely by an elasto-plastic model beyond

some threshold in the overlap/force. The limit stiffness kp and the plastic layer depth

φ f in our model allow the transition of the material to a new state. Dissipation on the

limit branch – which otherwise would be perfectly elastic – can be taken care of, by

adding a viscous damping force (as the simplest option). Due to viscous damping, the

unloading and re-loading will follow different paths, so that the collision will never be

perfectly elastic, which is in agreement with the description in Jasevic̆ius et al. [61,62]

and will be shown later in Appendix B.

Finally, note that an elastic limit branch is surely not the ultimate solution, but

a simple first model attempt – possibly requiring material- and problem-adapted im-

provements in the future.

Tuning of the contact model: The change in behavior at large contact deformations

is thus a feature of the contact model which allows us to describe many special types

of materials. Nevertheless, if desired (without changing the model), the parameters can

be tuned in order to reproduce the behavior of materials where the plasticity increases

with deformation without limits, i.e., the elastic core feature can be removed. The

limit-branch where plastic deformation ends is defined by the dimensionless parame-

ters plasticity depth, φ f , and maximal (elastic) stiffness, kp. Owing to the flexibility of

the model, it can be tuned such that the limit overlap is set to a much higher value that

is never reached by the contacts. When the new value of φ f
′

is chosen, a new kp
′

can

be calculated to describe the behavior at higher overlap (as detailed in Appendix A). In

this way the model with the extended φ f
′

exhibits elasto-plastic behavior for a higher

velocity/compression-force range, while keeping the physics of the system for smaller

overlap intact.

2.2.5 Irreversibility of the tensile branch

Finally we discuss a feature of the contact model in [15], that postulates the irreversibil-

ity, i.e. partial elasticity, of the tensile kc branch, as discussed in Sec. 2.2.2. While this

is unphysical in some situations, e.g. for homogeneous plastic spheres, we once again

emphasize that we are interested in non-homogeneous, non-spherical meso-particles,

as e.g. clusters/agglomerates of primary particles in contact with internal structures of

the order of typical contact deformation. The perfectly flat surface detachment due to

plasticity happens only in the case of ideal, elasto-plastic adhesive, perfectly spherical

particles (which experience a large enough tensile force). In almost all other cases, the

shape of the detaching surfaces and the hence the subsequent unloading behavior de-

pends on the relative strengths of plastic dissipation, attractive forces, and various other

contact mechanisms. In the case of meso-particles such as the core-shell materials [88],

assemblies of micro-porous fine powders [26, 87], or atomic nanoparticles [79], other

details such as rotations can be important. We first briefly discuss the case of ideal

elasto-plastic adhesive particles and later describe the behavior of many particle sys-

tems, which is the main focus of this work.
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Ideal homogeneous millimeter sized particles detach with a permanently flattened

surface created during deformation are well described using contact models presented

in [21, 42]. This flattened surface is of the order of micrometers and the plastic dis-

sipation during mechanical contact is dominant over the van der Waals force. During

unloading, when the particles detach, the force suddenly drops to zero from the ten-

sile branch. When there is no contact, further un- and re-loading involves no force.

Even when the contact is re-established, the contact is still assumed to be elastic, i.e., it

follows the previous contact-unloading path. This leads to very little or practically no

plastic deformation at the re-established contact, until the (previously reached) maxi-

mum overlap is reached again and the plasticity kicks in.

On the other hand for ultra-fine ideal spherical particles of the order of macro-

meters [22, 63, 91], the van der Waals force is much stronger and unloading adhesion

is due to purely non-contact forces. Therefore, the non-contact forces do not vanish

and even extend beyond the mechanical first contact distance. The contact model of

Tomas [22, 63] is reversible for non-contact and features a strong plastic deformation

for the re-established contact – in contrast to the previous case of large particles.

The contact model by Luding [15] follows similar considerations as others, ex-

cept for the fact that the mechanical contact does not detach (for details see the next

section). The irreversible, elastic re-loading before complete detachment can be seen

as a compromise between small and large particle mechanics, i.e. between weak and

strong attractive forces. It also could be interpreted as a premature re-establishment

of mechanical contact, e.g. due to a rotation of the deformed, non-spherical particles.

Detachment and remaining non-contact is only then valid if the particles do not rotate

relative to each other; in case of rotations, both sliding and rolling degrees of freedom

can lead to a mechanical contact much earlier than in the ideal case of a perfect normal

collision of ideal particles. In the spirit of a mesoscopic model, the irreversible contact

model is due to the ensemble of possible contacts, where some behave as imagined

in the ideal case, whereas some behave strongly different, e.g. due to relative rotation.

However, there are several other reasons to consider an irreversible unloading branch,

as summarized in the following.

In the case of asphalt (core-shell material with a stone core and bitumen-shell),

depending on the composition of the bitumen (outer shell), which can contain a con-

siderable amount of fine solid, when the outer shells collide the collision is plastic. In

contrast, the collision between the inner cores is rather elastic (even though the inner

cores collide when the contact deformation is very large). Hence, such a material will

behave softly for loading, but will be rather stiff for re-loading (elastic k2 branch), since

the cores can then be in contact. A more detailed study of this class of materials goes

beyond the scope of this study and the interested reader is referred to Ref. [88]

For atomistic nano-particles and for porous materials, one thing in common is the

fact that the scale of a typical deformation can be much larger than the inhomogeneities

of the particles and that the adhesion between primary particles is strong enough to

keep them agglomerated during their re-arrangements (see Fig. 5 in Ref. [79] and

the phenomenology in Ref. [26], as well as recent results for different deformation

modes [27]). Thus the deformation of the bulk material will be plastic (irreversible),

even if the primary particles would be perfectly elastic.

For agglomerates or other mesoscopic particles, we can not assume permanent ideal
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flattening and complete, instantaneous loss of mechanical contact during unloading

[26]. In average, many contacts between particles might be lost, but – due to their

strong attraction – many others will still remain in contact. Strong clusters of primary

particles will remain intact and can form threads, a bridge or clumps during unloading

– which either keeps the two surfaces in contact beyond the (idealized) detachment

point [26] or can even lead to an additional elastic repulsion due to a clump of particles

between the surfaces (see Fig. 3 in Ref. [15] and Appendix F).

During re-loading, the (elastic) connecting elements influence the bulk response. At

the same time, the re-arrangements of the primary particles (and clusters) can happen

both inside and on the surface, which leads to reshaping, very likely leaving a non-flat

contact surface [1, 26, 58]. As often mentioned for granular systems, the interaction

of several elastic particles does not imply bulk elasticity of the granular assembly, due

to (irreversible) re-arrangements in the bulk material – especially under reversal of

direction [35]. Thus, in the present model an irreversible tensile branch is assumed,

without distinction between the behavior before and after the first contact-loss-point

other than the intrinsic non-linearity in the model: The elastic stiffness for re-loading

k2 decreases the closer it comes to δ = 0; in the present version of the contact model,

k2 for unloading from the k1 branch and for re-loading from the kc branch are exactly

matched (for the sake of simplicity).

It is also important to mention that large deformation, and hence large forces are

rare, thanks to the exponential distribution of the deformation and thus forces, as shown

by our studies using this contact model [25, 29, 92]. Hence, such large deformations

are rare and do not strongly affect the bulk behavior, as long as compression is not too

strong.

As a final remark, for almost all models on the market – due to convenience and

numerical simplicity, in case of complete detachment δ < 0 – the contact is set to its

initial state, since it is very unlikely that the two particles will touch again at exactly

the same contact point as before. On the other hand in the present model a long-

range interaction is introduced, in the same spirit as [23, 63], which could be used to

extend the contact memory to much larger separation distances. Re-loading from a

non-contact situation (δ < 0) is, however, assumed to be starting from a “new” contact,

since contact model and non-contact forces are considered as distinct mechanisms, for

the sake of simplicity. Non-contact forces will be detailed in the next subsection.

2.3 Non-contact normal force

It has been shown in many studies that long-range interactions are present when dry

adhesive particles collide, i.e. non-contact forces are present for negative overlap δ
[15, 21, 63, 93, 94]. In the previous section, we have studied the force laws for contact

overlap δ > 0. In this section we introduce a description for non-contact, long range,

adhesive forces, focusing on the two non-contact models schematically shown in Fig.

3 – both piece-wise linear in the spirit of the mesoscopic model – namely the reversible

model and the jump-in (irreversible) non-contact models (where the latter could be seen

as an idealized, mesoscopic representation of a liquid bridge, just for completeness).

Later, in the next section, we will combine non-contact and contact forces.
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Figure 3: Schematic plots of (a) the non-contact adhesive force-overlap relation and

(b) the non-contact jump-in force-overlap relation.

2.3.1 Reversible Adhesive force

In Fig. 3(a) we consider the reversible attractive case, where a (linear) van der Waals

type long-range adhesive force is assumed. The force law can be written as

f adh =







− fa if δ > 0

−ka
cδ − fa if 0 ≥ δ > δa

0 if δa > δ
(14)

with the range of interaction δa = − fa/ka
c < 0, where ka

c > 0 is the adhesive “stiff-

ness” of the material 4 and fa > 0 is the (constant) adhesive force magnitude, active

also for overlap δ > 0, in addition to the contact force. When δ = 0 the force is − fa.

The adhesive force f adh is active when particles are closer than δa, when it starts to in-

crease/decrease linearly along −ka
c , for approach/separation, respectively. In the results

and theory part of the paper, for the sake of simplicity and without loss of generality,

the adhesive stiffness can be either chosen as infinite, which corresponds to zero range

non-contact force (δa = 0), or as coincident with the contact adhesive stiffness, e.g. in

Sec. 2.2.2, that is ka
c = kc.

2.3.2 Jump-in (Irreversible) Adhesive force

In Fig. 3(b) we report the behavior of the non-contact force versus overlap when the

approach between particles is described by a discontinuous (irreversible) attractive law.

The jump-in force can be simply written as

f jump−in =

{

0 if δ < 0

− fa if δ ≥ 0
. (15)

As suggested in previous studies [16, 21, 55], there is no attractive force before the

particles come into contact; the adhesive force becomes active and suddenly drops to

4Since the kc-branch has a negative slope, this parameter does not represent a true stiffness of the material,

which must have a positive sign.
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a negative value, − fa, at contact, when δ = 0. The jump-in force resembles the limit

case ka
c → ∞ of Eq. (14). Note that the behavior is defined here only for approach of

the particles. We assume the model to be irreversible, as in the unloading stage, during

separation, the particles will not follow this same path (details will be discussed below).

3 Coefficient of Restitution

The amount of dissipated energy relative to the incident kinetic energy is quantified by

1− e2, in terms of the coefficient of restitution e. Considering a pair collision, with

particles approaching from infinite distance, the coefficient of restitution is defined as

e =
v f

∞

vi
∞

(16a)

where v f
∞ and vi

∞ are final and initial velocities, respectively, at infinite separations

(distance beyond which there is no long range interaction). Assuming superposition

of the non-contact and contact forces, the restitution coefficient can be further decom-

posed including terms of final and initial velocities, v f and vi, at overlap δ = 0, where

the mechanical contact-force becomes active:

e =
v f

∞

v f

v f

vi

vi

vi
∞
= εoenεi , (16b)

and εi and εo are the pull-in and pull-off coefficients of restitution, that describe the

non-contact parts of the interaction (δ < 0), for approach and separation of particles,

respectively. The coefficient of restitution for particles in mechanical contact (δ > 0)

is en, as analytically computed in subsection 3.3.

In the following, we will analyze each term in Eq. (16b) separately, based on energy

considerations. This provides the coefficient of restitution for a wide, general class

of meso interaction models with superposed non-contact and contact components, as

defined in sections 2.2-2.3.

For the middle term, en, different contact models with their respective coefficients

of restitution can be used, e.g. eLSD
n from Eq. (4), eWB

n from Eq. (6), or eHYS
n as calcu-

lated below in subsection 3.3. Prior to this, we specify εi in subsection 3.1 and then εo

in subsection 3.2, for the simplest piece-wise linear non-contact models. 5

3.1 Pull-in coefficient of restitution

In order to describe the pull-in coefficient of restitution εi, we focus on the two non-

contact models proposed in Sec. 2.3, as simple interpretations of the adhesive force

during the approach of the particles.

When the reversible adhesive contact model is used, energy conservation leads to

an increase in velocity due to the attractive branch from δa (< 0) to contact:

1

2
mrvi

∞2 =
1

2
faδa +

1

2
mrvi

2 , (17a)

5If other, possibly non-linear non-contact forces such as square-well, van der Waals or Coulomb are used,

see Refs. [95–98], the respective coefficient of restitution has to be computed, and also the long-range nature

has to be accounted for, which goes far beyond the scope of this paper.
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which yields

ε rev−adh
i =

vi

vi
∞
=

√

1− faδa

mrvi
∞2

=

√

1+
f 2
a /ka

c

mrvi
∞2

. (17b)

The pull-in coefficient of restitution is thus larger than unity; it increases with increas-

ing adhesive force magnitude fa and decreases with the adhesive strength of the mate-

rial ka
c (which leads to a smaller cutoff distance).

On the other hand, if the irreversible adhesive jump-in model is implemented, a

constant value ε
jump−in
i = 1 is obtained for first approach of two particles, before con-

tact, as f jump−in = 0 for δ < 0 and the velocity remains constant vi = vi
∞.

3.2 Pull-off coefficient of restitution

The pull-off coefficient of restitution is defined for particles that lose contact and sepa-

rate. Using the adhesive reversible model, as described in section 2.3.1, energy balance

leads to a reduction in velocity during separation:

1

2
mrv f

∞2 =
1

2
faδa +

1

2
mrv f

2 , (18a)

which yields

εo =
v f

∞

v f

=

√

1+
faδa

mrv f
2
=

√

1− f 2
a /ka

c

mrv f
2
, (18b)

due to the negative overlap δa at which the contact ends. Similar to Eq. (17b), the

pull-off coefficient of restitution depends on both the adhesive force magnitude fa and

stiffness kc, given the separation velocity v f at the end of the mechanical contact.

It is worthwhile to note that the force-overlap picture described above, with εo < 1

defined as in Eq. (18b) refers to a system with sufficiently high impact velocity, so that

the particles can separate with a finite kinetic energy at the end of collision, i.e., v f
2 >

f 2
a /(mrk

a
c ) =: (va

f )
2 or, equivalently, v∞

i > va
f /(enεi), where va

f denotes the minimal

relative velocity at the end of the contact, for which particles can still separate. If

the kinetic energy reaches zero before the separation, e.g. the particles start re-loading

along the adhesive branch until the value δ = 0 is reached and the contact model kicks

in.

3.3 Elasto-plastic coefficient of restitution

The key result of this paper is the analytical study of the coefficient of restitution as

function of the impact velocity, for the model presented in Fig. 4(b), disregarding vis-

cous forces in order to allow for a closed analytical treatment. The impact velocity vi is

considered for two cases vi ≤ vp and vi > vp, with the plastic-limit velocity vp (needed

to reach the elastic branch), defined as:

vp =

√

k1

mr

[

(δ p
max − fa/k1)2 − ( fa/k1)2

]

=

√

1

mr

δ p
max

[

k1δ p
max − 2 fa

]

, (19)
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Figure 4: (a) Reversible and irreversible non-contact forces, where the top blue line (for

negative overlap) represents the former and the bottom red line (for negative overlap)

the latter. The black line for positive overlap represents the linear contact force as

superimposed on the non-contact force. (b) Force-displacement law for elasto-plastic,

adhesive contacts superimposed on the irreversible non-contact adhesive force.

where the term(s) with fa represent the energy gained or lost by this (attractive, neg-

ative) constant force, with zero reached at overlap δ
(1)
a = fa/k1, and δ p

max defined in

Eq. (10). The velocity vp needed to reach the limit branch thus decays with increasing

non-contact attraction force fa.

3.3.1 Plastic contact with initial relative velocity vi < vp

When vi < vp the particles after loading to δmax, unload with slope k2 and the system

deforms along the path 0 → δmax → δ a
0 → δmin → 0, corresponding to A → B → C →

D → E in Fig. 4(b).

The initial kinetic energy (at δ = 0 overlap, with adhesive force fa and with initial

velocity vi < vp) is completely transformed to potential energy at the maximum overlap

δmax where energy-balance provides:

Ei :=
1

2
mrv

2
i =

1

2
(k1δmax − fa)

(

δmax −
fa

k1

)

− 1

2

f 2
a

k1

=
1

2
δmax(k1δmax − 2 fa) , (20a)

so that the physical (positive) solution yields:

δmax =
fa +

√

f 2
a + k1mrv2

i

k1

= δ
(1)
a +

√

(

δ
(1)
a

)2

+mrv
2
i /k1 , (20b)

with zero force during loading at δ
(1)
a = fa/k1. The relative velocity is reversed at

δmax, and unloading proceeds from point B along the slope k2 = k2(δmax). Part of the

potential energy is dissipated, the rest is converted to kinetic energy at point C, the
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force-free overlap δ a
0 , in the presence of the attractive force fa:

1

2
mrv

2
0 =

1

2
(k1δmax − fa)(δmax − δ a

0 ) =
k1

2k2

(

mrv
2
i +

f 2
a

k1

)

=
1

2k2

(k1δmax − fa)
2 ,

(20c)

where δ a
0 = [(k2 − k1)δmax + fa]/k2 =: δ0 + δ

(2)
a , with δ

(2)
a = fa/k2, and the second

identity follows from Eq. (20a), using the force balance at the point of reversal k2(δmax−
δ a

0 ) = k1δmax − fa. 6

Further unloading, below δ a
0 , leads to attractive forces. The kinetic energy at δ a

0 is

partly converted to potential energy at point D, with overlap δmin, where the minimal

(maximally attractive) force is reached. Energy balance provides:

1

2
mrv

2
min =

1

2
mrv

2
0 −

1

2
k2(δ

a
0 − δmin)

2 =
1

2
mrv2

0 −
1

2k2

(kcδmin + fa)
2 , (20d)

where δmin =
k2δ a

0 − fa
k2+kc

= (k2−k1)δmax

k2+kc
, and the second identity follows from inserting

δ a
0 = (1+ kc/k2)δmin + fa/k2.

The total energy is finally converted exclusively to kinetic energy at point E , the

end of the collision cycle (with overlap δ = 0):

1

2
mrv

2
f =

1

2
mrv

2
min −

1

2
kcδ 2

min − faδmin . (20e)

Using Eqs. (20c), (20d), and (20e) with the definition of δmin, and combining terms

proportional to powers of fa and δmax yields the final kinetic energy after contact:

E
(1)
f :=

1

2
mrv

2
f =

[

k1

k2

− kc

k1k2

(k2 − k1)
2

(k2 + kc)

]

1

2
k1δ 2

max − faδmax , (21)

with δmax as defined in Eq. (20b). Note that the quadratic terms proportional to f 2
a have

cancelled each other, and that the special cases of non-cohesive (kc = 0 and/or fa = 0)

are simple to obtain from this analytical form. Finally, dividing the final by the initial

kinetic energy, Eq. (20a), we have expressed the coefficient of restitution

e
(1)
n =

√

E
(1)
f /Ei (22)

as a function of maximal overlap reached, δmax, non-contact adhesive force, fa, elastic

unloading stiffness, k2 = k2(δmax), and the constants plastic stiffness, k1, and cohesive

“stiffness”, kc.

3.3.2 Plastic-elastic contact with initial relative velocity vi > vp

When the initial relative velocity vi is large enough such that vi > vp, the estimated

maximum overlap δmax as defined in Eq. (20b) is greater than δ p
max. Let v1 be the

6From this point, we can derive the coefficient of restitution for the special case of kc = 0 final energy,

using the final energy E
(1)
f (kc = 0) := ( f 2

a +2k1Ei)/(2k2).
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velocity at overlap δ p
max. The system deforms along the path 0 → δ p

max → δmax →
δ a

0 → δmin → 0.

The initial kinetic energy (at δ = 0 overlap, with adhesive force fa and with initial

velocity vi ≥ vp) is not completely converted to potential energy at δ = δ p
max, where

energy balance provides:

1

2
mrv2

1 =
1

2
mrv2

i −
1

2
mrv

2
p =

1

2
mrv2

i −
1

2
δ p

max(k1δ p
max − 2 fa) , (23a)

using the definition of vp in Eq. (19).

From this point the loading continues along the elastic limit branch with slope kp

until all kinetic energy is transferred to potential energy at overlap δmax > δ p
max, where

the relative velocity changes sign, i.e., the contact starts to unload with slope kp. Since

there is no energy disspated on the kp-branch (in the absence of viscosity), the potential

energy is completely converted to kinetic energy at the force-free overlap δ ap
0 , on the

plastic limit branch

1

2
mrv2

0 =
1

2kp

(k1δ p
max − fa)

2 +
1

2
mrv

2
1 , (23b)

with the first term taken from Eq. (20c), but replacing δmax with δ p
max and k2 by kp.

Further unloading, still with slope kp, leads to attractive forces. The kinetic energy

at δ ap
0 is partly converted to potential energy at δ p

min, where energy balance yields:

1

2
mrv

2
min =

1

2
mrv

2
0 −

1

2
kp(δ

ap
0 − δ p

min)
2 =

1

2
mrv2

0 −
1

2kp

(kcδ p
min − fa)

2 . (23c)

Some of the remaining potential energy is converted to kinetic energy so that at the

end of collision cycle (with overlap δ = 0) one has

1

2
mrv

2
f =

1

2
mrv2

min −
1

2
kc

(

δ p
min

)2 − faδ p
min , (23d)

analogously to Eq. (20e)

When Eq. (23d) is combined with Eqs. (23b) and (23c), and inserting the definitions

δ p
min =

kpδ
ap
0 − fa

kp+kc
=

(kp−k1)δ
p
max

kp+kc
, and δ ap

0 = (1+kc/kp)δ
p
min + fa/kp, one obtains (similar

to the previous subsection):

E
(2)
f =

1

2
mrv

2
f =

1

2
mrv

2
i −

[

1− k1

kp

+
kc

k1kp

(kp − k1)
2

(kp + kc)

]

k1

2
(δ p

max)
2

(23e)

Dividing the final by the initial kinetic energy, we obtain the coefficient of restitution

e
(2)
n =

√

E
(2)
f /Ei =:

√

1−Ediss/Ei , (24)

with constants k1, kp, kc, fa, and δ p
max. Note that e

(2)
n , interestingly, does not depend on

fa at all, since the constant energy Ediss is lost exclusively in the hysteretic loop (not

affected by fa). Thus, even though Ediss does not depend on the impact velocity, the

coefficient of restitution does, because of its definition.
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As final note, when the elastic limit regime is not used, or modified towards larger

δ p
max, as defined in appendix A, the limit velocity, vp, increases, and the energy lost,

Ediss, increases as well (faster than linear), so that the coefficient of restitution just

becomes e
(2)
n = 0, due to complete loss of the initial kinetic energy, i.e., sticking, for

all v ≤ vp.

3.4 Combined coefficient of restitution

The results from previous subsections can now be combined in Eq. (16b) to compute

the coefficient of restitution as a function of impact velocity for the irreversible elasto-

plastic contact model presented in Fig. 4:

e = εoenεi =

{

εoe
(1)
n εi for vi < vp

εoe
(2)
n εi for vi ≥ vp

, (25)

with vp from Eq. (19) and εo = 1 or < 0 for reversible and irreversible non-contact

forces, respectively. Note that, without loss of generality, also other shapes of non-

contact, possibly long-range interactions can be used here to compute εo and εi, how-

ever, going into these details goes beyond the scope of this paper, which only covers

the most simple, linear non-contact force.

4 Dimensionless parameters

In order to define the dimensionless parameters of the problem, we first introduce the

relevant energy scales, before we use their ratios further on:

Intial kinetic energy : Ei =
1

2
mrv

2
i , (26a)

Potential energy stored at δ p
max : Ep =

1

2
k1δ p

max
2 , (26b)

Attractive non− contact potential energy : Ea =
1

2

f 2
a

k1

. (26c)

The first two dimensionless parameters are simply given by ratios of material parame-

ters, while last two (independent) are scaled energies:

Plasticity : η =
kp − k1

k1

, (27a)

Plastic (contact) adhesivity : β =
kc

k1

, (27b)

Non− contact adhesivity : α =

√

Ea

Ei

=

√

f 2
a

k1mrv
2
i

, (27c)

Dimensionless (inverse) impact velocity : ψ =

√

Ep

Ei

=
δ p

max

vi

√

k1

mr

. (27d)
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from which one can derive the dependent abbreviations:

Scaled maximal deformation : χ =
δmax

δ p
max

=
1

ψ

(

√

1+α2+α
)

, (28a)

Dimensionless impact velocity : ζ =
vi

vp

=
1

√

ψ2 − 2αψ
. (28b)

Using Eqs. (27a), (27b) and (28a), k2 can be rewritten in non-dimensional form

k2(χ)

k1

=

{

1+ηχ , if χ < 1

1+η , if χ ≥ 1
, (29)

so that Eq. (22) becomes:

e
(1)
n =

√

(

1

1+ηχ
− β η2χ2

(1+ηχ)(1+β +ηχ)

)

ψ2χ2 − 2αψχ , (30)

and, similarly, Eq. (24) in non-dimensional form reads:

e
(2)
n =

√

1−
(

1− 1

1+η
+

β η2

(1+η)(1+β +η)

)

ψ2 , (31)

where the abbreviation ψχ =
(√

1+α2+α
)

was used.

To validate our analytical results, we confront our theoretical predictions with the

results of two-particle DEM simulations in Fig. 5, which shows e plotted against the

dimensionless impact velocity ζ , for elasto-plastic adhesive spheres with different non-

contact adhesion strength fa (and thus α). The lines are the analytical solutions for the

coefficient of restitution, see Eqs. (30) and (31), and the symbols are simulations, with

perfect agreement, validating our theoretical predictions.

For low velocity, the coefficient of restitution e is zero, i.e., the particles stick to

each other. This behavior is in qualitative agreement with previous experimental and

numerical results [21, 54, 56]. With increasing impact velocity, e begins to increase

and then decreases again, displaying a second sticking regime (for the parameters used

here). For even higher impact velocity, v > vp (and thus ζ > 1), another increase is

observed, which will be explained in more detail in the next section.

Besides the onset of the plastic-limit regime at ζ = 1, we observe three further

velocities ζ
(a)
c , ζ

(b)
c and ζ

(c)
c , for the end of the first sticking regime, i.e. 0 ≤ ζ ≤ ζ

(a)
c ,

and the second sticking regime, i.e. ζ
(b)
c ≤ ζ ≤ ζ

(c)
c . While ζ

(c)
c is constant, the critical

velocity, ζ
(a)
c , required to separate the particles increases, whereas ζ

(b)
c , required to

enter the high-velocity sticking regime, decreases with the non-contact adhesion fa.

The further study of these critical velocities and the comparison to existing litera-

ture (theories and experiments) goes beyond the scope of the present study, since there

are just too many possibilities for materials and particle sizes. We only refer to one

example, where the end of the low-velocity sticking regime was predicted as a non-

linear function of the surface energy/adhesion [26] and hope that our proposal of using

dimensonless numbers will in future facilitate calibration of contact models with both

theories and experiments.
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Figure 5: Restitution coefficient e plotted as a function of the dimensionless impact

velocity ζ , see Eq. (28b), for elasto-plastic adhesive spheres with the irreversible non-

contact branch. Solid and dashed lines correspond to the analytical expressions in Eqs.

(30) and (31), respectively, and the squares and circles are results of DEM simulations

for values of fa as given in the legend in terms of α = 0.042 and 0.42 (for impact

velocity vi = 0.01 ms−1). Simulation parameters used here are k1 = 102 Nm−1, kp =
5× 102 Nm−1, (η = 4), kc = 102 Nm−1, (β = 1), with φ f = 0.1, for particles with

radius 1.1× 10−3 m, density 2000 kg/m3, and thus mass mr = 5.6× 10−6 kg.
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Figure 6: Restitution coefficient plotted as a function of the scaled initial velocity χ
for a collision without viscous and non-contact forces (α = 0). The solid red line

corresponds to the analytical expression in Eq. (32), the dashed blue line to Eq. (33),

the thin black line represents the low velocity approximation, and the circles are DEM

simulation data. The material parameters are as in Fig. 5, i.e. η = 4 and β = 1.

5 Results using the mesoscopic contact model only ( fa =

0)

Having understood the results for the contact model with finite non-contact force fa, we

will restrict our analytical study to the special case of negligible non-contact adhesive

forces fa = 0, in the following, which corresponds to the range of moderate to large

impact velocity or weak fa, i.e. α ≪ 1.

For this special case, the dimensionless parameters reduce to α = 0, and χ = 1
ψ =

ζ = vi
vp

. The expressions for the coefficients of restitution presented in Eqs. (30) and

(31) reduce to

e
(1)
n (η ,β ,χ ≤ 1) =

√

1

1+ηχ
− β η2χ2

(1+ηχ)(1+β +ηχ)
(32)

and

e
(2)
n (η ,β ,χ > 1) =

√

1−
[

1− e
(1)
n (η ,β ,χ = 1)2

] 1

χ2
. (33)

5.1 Qualitative Description

In Fig. 6, the analytical prediction for the coefficient of restitution, from Eqs. (32)

and (33), is compared to the numerical integration of the contact model, for different
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scaled initial velocities χ . We confirm the validity of the theoretical prediction for the

coefficient of restitution in the whole range.

For very small χ < 10−2, the approximation e
(1)
n ≈ 1− ηχ

2
predicts the data very

well. With increasing initial relative velocity, dissipation increases non-linearly with

the initial kinetic energy, leading to a convex decrease of e
(1)
n (due to the log-scale plot).

The coefficient of restitution e
(1)
n becomes zero when a critical scaled initial velocity

χ
(b)
c (see Eq. (34) below) is reached. At this point, the amount of dissipated energy

becomes equal to the initial kinetic energy, leading to sticking of particles. The coef-

ficient of restitution remains zero until a second critical scaled initial velocity χ
(c)
c is

reached, i.e. sticking is observed for χ
(b)
c ≤ χ ≤ χ

(c)
c . Finally, for χ > χ

(c)
c , the dis-

sipated energy remains constant (the elastic limit branch is reached), while the initial

kinetic energy increases. As a result, the kinetic energy after collision increases and

so does the coefficient of restitution en. Existence of sticking at such high velocities

was recently reported by Kothe et al. [99], who studied the outcome of collisions be-

tween sub-mm-sized dust agglomerates in micro-gravity [26] 7. Note that an increase

of en for high velocity is a familiar observation in studies focused on the cold-spray

technique [2–4]. Above a certain (critical) velocity the spray particles adhere to the

substrate, and they do so for a range of impact velocities; increasing the impact ve-

locity further leads to unsuccessful deposition, i.e. the particles will bounce from the

substrate. The sticking and non-sticking phenomenology of such materials has been

extensively studied experimentally and numerically in Refs. [2–6].

In Fig. 7, we compare the variation of the force with overlap in the various regimes

of χ as discussed above, but here for φ f = 0.05. For very small χ , the unloading slope

k2 ≈ k1, (see Fig. 7(a) for a moderate χ = 0.34), and the amount of dissipated energy is

small, increasing with χ . The kinetic energy after collision is almost equal to the initial

kinetic energy, i.e. en ∼ 1, see Fig. 6. In Figs. 7(b) and 7(c), the force-overlap variation

is shown for sticking particles, for the cases χ
(b)
c < χ < 1 and 1< χ < χ

(c)
c , respectively

(more details will be given in the following subsection). Finally, in Fig. 7(d), the case

χ > χ
(c)
c is displayed, for which the initial kinetic energy is larger than the dissipation,

resulting in separation of the particles. The corresponding energy variation is described

in detail in appendix B.

5.2 Sticking regime limits and overlaps

In this section we focus on the range of χ
(b)
c < χ ≤ χ

(c)
c , where the particles stick to

each other (implying that β is large enough β ≥ β ∗ with minimal β ∗ for sticking) and

calculation of the critical values χ
(b)
c and χ

(c)
c . When χ = χ

(b)
c all of the initial kinetic

energy of the particles is just dissipated during the collision. Hence the particles stick

and e
(1)
n (η ,β ,χ

(b)
c ) = 0, which leads to 1+β +ηχ −β η2χ2 = 0. Only the positive

7Note that ξ ≫ 1 is the regime where the physics of the contact changes, dependent on the material and

other considerations; modifications to the contact model could/should then be applied, however, this goes

beyond the scope of this paper, where we use the elastic limit branch or the generalized fully plastic model

without it. Beyond the limits of the model, at such large deformations, the particles cannot be assumed to be

spherical anymore and neither are contacts isolated from each other.
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Figure 7: Contact force during one collision, plotted against the overlap for different

scaled initial velocities χ = 0.34, 0.69, 1.1, and 1.37, respectively. The three straight

lines represent the plastic branch, with slope k1, the adhesive branch, with slope −kc,

and the limit branch with slope kp, for k1 = 102 Nm−1, kp = 5× 102 Nm−1, kc = 102

Nm−1, i.e. η = 4 and β = 1, and φ f = 0.05.
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solution is physically possible, as particles with negative initial relative velocity cannot

collide, so that

χ
(b)
c =

1

2β η

[

1+
√

1+ 4β (1+β )
]

(34)

is the lower limit of the sticking regime. For larger χ > χ
(b)
c , the dissipation is strong

enough to consume all the initial kinetic energy, hence the particles loose their kinetic

energy at a positive, finite overlap δc, see Fig. 7(b). The contact deforms along the path

0→ δmax → δ0 → δmin → δc. Thereafter, in the absence of other sources of dissipation,

particles keep oscillating along the same slope k2. In order to compute δc, we use the

energy balance relations in Eqs. (20), and conservation of energy along δmin → δc,

similar to Eq. (20e),
1

2
mrv2

min −
1

2
kc

{

δ 2
min − δ 2

c

}

= 0 , (35a)

with vanishing velocity vc = 0 at overlap δc. Using the definitions around Eqs. (20)

and re-writing in terms of kc and δmax leads to

kcδ 2
c +

{

k2
1

k2

− kc(k2 − k1)
2

k2(k2 + kc)

}

δ 2
max = 0 (35b)

and thus to the sticking overlap in regime (1), for χ
(b)
c vp < vi < vp:

δ
(1)
c

δ p
max

=
δmax

δ p
max

√

(k2 − k1)2

k2(k2 + kc)
− k2

1

k2kc

. (35c)

In terms of dimensionless parameters, as defined earlier, this can be written as:

δ
(1)
c

δ p
max

= χ

√

η2χ2

(1+ηχ)(1+β +ηχ)
− 1

β (1+ηχ)
=

χ
√

β
ê
(1)
n , (36)

where ê
(1)
n denotes the result from Eq. (32) with positive argument under the root.

For larger initial relative velocities, χ ≥ 1, the coefficient of restitution is given by

Eq. (33), so that the upper limit of the sticking regime χ
(c)
c > 1 can be computed by

setting e
(2)
n (η ,β ,χ

(c)
c ) = 0. Again, only the positive solution is physically meaningful,

so that

χ
(c)
c =

√

1− 1

1+η
+

β η2

(1+η)(1+β +η)
(37)

is the maximum value of χ for which particles stick to each other. For χ 6 χ
(c)
c particles

deform along the path 0 → δ p
max → δmax → δ0 → δmin → δc and then keep oscillating

on the branch with stiffness k2, with δc being one of the extrema of the oscillation,

see Fig. 7(c). Similar to the considerations above, we compute the sticking overlap in

regime (2), for vp < vi < χ
(c)
c vp: in dimensionless parameters:

δ
(2)
c

δ p
max

=

√

η2

(1+η)(1+β +η)
+

η

β (1+η)
− χ2

β
=

χ
√

β
ê
(2)
n , (38)
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Figure 8: Kinetic energy-free contact overlap δc plotted as a function of the scaled

initial velocity χ = vi/vp; the increasing branch corresponds to χ < 1, while the de-

creasing branch corresponds to χ > 1. The dots are simulations for η = 4 and β = 1,

as in Fig. 7, which yields δ max
c

/δ
p
max = (1/3)1/2 in Eq. (39).

where ê
(2)
n denotes the result from Eq. (33) with positive argument under the root.

In Fig. 8, the scaled sticking overlap δc/δ
p
max is plotted for different χ , showing

perfect agreement of the analytical expressions in Eqs. (36) and (38), with the numeri-

cal solution for a pair-collision. In the sticking regime, the stopping overlap increases

with χ , and reaches a maximum at χ = 1,

δc(χ = 1)

δ p
max

=

√

β η2 − (1+η +β )

β (1+η)(1+η+β )
(39)

which depends on the the adhesivity β and the plasticity η only. For χ > 1, dissipation

gets weaker, relatively to the increasing initial kinetic energy, and δ (2)
c

/δ p
max decreases

until it reaches 0 for χ = χ
(c)
c .

5.3 Contacts for different adhesivity β

In the previous subsections, we studied the dependence of the coefficient of restitution

en on the scaled initial velocity χ for fixed adhesivity β , whereas here the dependence

of en on β is analyzed.

A special adhesivity β ∗ can be calculated such that en = 0 for χ = 1, which is the

case of maximum dissipation, and leads to sticking only at exactly χ = 1, i.e. there is

no sticking for β < β ∗. Using Eq. (32), we get

1+β ∗+η −β ∗η2 = 0 , (40a)
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Figure 9: Coefficient of restitution en plotted against the scaled initial velocity χ . Cir-

cles with different colors correspond to different adhesivity β (red for β < β ∗, green

for β = β ∗ and blue for β > β ∗) for χ ≤ 1 , while magenta, black and cyan squares

correspond to the respective values of β for χ > 1. Other parameters used are k1 = 102,

kp = 5× 102, and different kc (all in units of Nm−1), i.e. η = 4 and β/β ∗ = 1/3, 1,

and 3, with β ∗ = 1/3. The dashed red line represents the solution with the tuned fully

plastic model with a new φ f
′
= 0.5 and newly calculated kp

′
, see Appendix A .

so that

β ∗ =
1

η − 1
. (40b)

In Fig. 9, we plot the coefficient of restitution e as a function of the scaled initial

velocity χ for different values of adhesivity β . For β < β ∗, in Fig. 9, the coefficient of

restitution en decreases with increasing χ < 1, reaches its positive minimum at χ = 1,

and increases for χ > 1. In this range, the particles (after collision) always have a non-

zero relative separation velocity v f . When β = β ∗, en follows a similar trend, becomes

zero at χ = 1, and increases with increasing scaled initial velocity for χ > 1. This is

the minimum value of adhesivity for which en can become zero and particles start to

stick to each other. For β = β ∗, the sticking regime upper and lower limits coincide,

χ
(b)
c = χ

(c)
c = 1. If β > β ∗, en decreases and becomes zero at χ = χ

(b)
c < 1, it remains

zero until χ = χ
(c)
c > 1, and increases with increasing relative initial velocity thereafter.

Hence, the range of velocities for which sticking happens is determined by the material

properties of the particles. Indeed Zhou et al. [6] presented similar conclusions about

the deposition efficiency in cold spray. Simulations with viscous forces change the

value of β ∗ and are not shown here, see Appendix B.
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6 Conclusions and outlook

Various classes of contact models for non-linear elastic, adhesive and visco-elasto-

plastic particles are reviewed. Instead of focusing on the well understood models for

perfect spheres of homogeneous (visco) elastic or elasto-plastic materials, a special

mesoscopic adhesive (visco) elasto-plastic contact model is considered, aimed at de-

scribing the macroscale behavior of assemblies of realistic fine particles (different from

perfectly homogeneous spheres). An analytical solution for the coefficient of restitu-

tion of pair-contacts is given as reference, for validation, and to understand the role of

the contact model parameters.

Mesoscopic Contact Model The contact model by Luding [15], including short-

ranged (non-contact) interactions, is critically discussed and compared to alternative

approaches in subsection 1.2. The model introduced in section 2 is simple (piece-wise

linear), yet it catches the important features of particle interactions that affect the bulk

behavior of a granular assembly, i.e. non-linear elasticity, plasticity and contact adhe-

sion. It is mesoscopic in spirit, i.e. it does not resolve all the details of every single

contact, but is designed to represent an ensemble of particles with many contacts in a

bulk system. One goal of this study is to present this rich, flexible and multi-purpose

granular matter meso-model, which can be calibrated to realistically model ensembles

of large numbers of particles [100]. The analytical solution for the contact dissipation

is given for contact and non-contact forces both active, but viscosity inactive, in sec-

tion 3. A sensible set of dimensionless parameters is defined in section 4, before the

influence of the model parameters on the overall impact behavior is discussed in detail,

focusing on the irreversible, adhesive, elasto-plastic part of the model, in section 5.

Analysis of the coefficient of restitution When the dependence of the coefficient

of restitution, e, on the relative velocity between particles is analyzed, two sticking

regimes, e = 0, show up, as related to different sources of dissipation:

(i) As previously reported in the literature (see e.g. Refs. [21, 52, 55, 56, 62]) the

particles stick to each other at very low impact velocity. This can happen due to irre-

versible short-range non-contact interaction, as e.g. liquid bridges, or due to van der

Waals type force for dry adhesive particles. The threshold velocity, below which the

particles stick depends on the magnitude of the non-contact adhesive force fa, while

for elasto-plastic adhesive particles on both non-contact adhesive force and plasticity,

which together control this low-velocity sticking.

(ii) With increasing velocity, e increases and then decreases until the second stick-

ing regime is reached, which is strongly influenced by the plastic/adhesive (and vis-

cous) dissipation mechanisms in the hysteretic contact meso-model. At small impact

velocity, all details of the model are of importance, while at higher velocities, for a suf-

ficiently low value of the jump-in force fa, the contribution of the non-contact forces

can be neglected. The theoretical results are derived in a closed analytical form, and

phrased completely in terms of dimensionless parameters (plasticity, adhesivity and

initial velocity). The ranges of impact velocities for the second sticking regime are

predicted and discussed in detail.
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(iii) For still increasing relative velocity, beyond the second sticking region, e starts

increasing again. This regime involves a change of the physical behavior of the sys-

tem as expected, e.g. for non-homogeneous materials with micro-structure and non-flat

contacts, or materials with an elastic core, e.g. asphalt (stone with bitumen layer). Even

though this elastic limit behavior is a feature of the model, completely plastic behavior

can be reproduced by the model too, just by tuning two input parameters kp and φ f , as

shown in appendix A. This way, the low velocity collision dynamics is kept unaffected,

but the elastic limit regime is reached only at higher impact velocities, or can be com-

pletely removed. This modification provides the high velocity sticking regime for all

high velocities, as expected for ideally plastic materials. On the other hand, the exis-

tence of a high velocity rebound, as predicted the model with elastic limit regime, has

been observed experimentally and numerically in cold spray [2–6] and can be expected

for elastic core with a thin plastic shell.

Additional dissipative mechanisms For sticking situations, on the un-/re-loading

branch, the particles oscillate around their equilibrium position until their kinetic en-

ergy is dissipated, since realistic contacts are dissipative in nature. Since viscosity

hinders analytical solutions, it was not considered before, but a few simulation results

with viscosity are presented in Appendix B. With viscosity, both un- and re-loading

are not elastic anymore, resembling a damped oscillation and eventually leading to a

static contact at finite overlap.

Application to multi-particle situations The application of the present meso-model

to many-particle systems (bulk behavior) is the final long-term goal, see e.g. Ref. [28,

29, 35], as examples, where the non-contact forces were disregarded. An interesting

question that remains unanswered concerns a suitable analogy to the coefficient of

restitution (as defined for pair collisions) relevant in the case of bulk systems, where

particles can be permanently in contact with each other over long periods of time, and

where impacts are not the dominant mode of interaction, but rather long lasting contacts

with slow loading-unloading cycles prevail.

One specific example for the latter situation of slow loading-unloading of bulk ma-

terial is given in Appendix F, showing qualitatively similar behavior as encompassed

in the contact meso-model, but on a much larger length-scale than the contact model

itself, highlighting the dominant role of the particle structure and the (non-flat) contact

area with related plastic (irreversible) re-arrangements [26].

Outlook The interest of widely different communities (viz. particle technology, gran-

ular physics, interstellar dust, asphalt, or cold-spray) in the dependence of the coeffi-

cient of restitution (or deposition/impact behavior) on the impact velocity is consid-

erable. We hope our study helps to connect these widely different communities by

providing an overview and, in particular, a flexible, multi-purpose contact model, valid

and useful for many practically relevant situations.

The contact meso-model has to be calibrated for different materials, while our refer-

ence analytical results allow to verify the model implementation. With this, the model
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can be used to predict bulk material behavior and to be validated by comparison with

experiments.
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A Tuning of parameters to increase the plastic range

We assume that the reference dimensionless plasticity depth be φ f , which is, e.g. cal-

culated based on the maximal volume fraction related arguments of a multi-particle as-

sembly, and kp be the reference limit stiffness. We propose a new φ f
′
> φ f , which rep-

resents the new (larger) dimensionless plasticity depth (arbitrary choice or calculated

based on another volume fraction consideration) and a new value of kp
′
; the choice is

such that the tuned model resembles exactly, consistently, the reference for δ0 < a12φ f ,

with reduced radius a12, and becomes plastic for a12φ f < δ0 < a12φ f
′
. At δ0 = a12φ f ,

Eq. (10) reads

kp = k1 +(kp

′ − k1)δ
p
max/δ p

max

′
, (A.1)

since all parameters except φ f and kp remain unchanged. Using Eqs. (A.1) and (11) we

arrive at
(kp − k1)

2

kpφ f

=
(kp

′− k1)
2

kp
′φ f

′ , (A.2)

which gives the new limit stiffness

kp
′
= k1 +AB/2+

√

(AB/2)2 + k1AB, (A.3)

where A = (kp − k1)
2/kp and B = φ f

′
/φ f .

Using Eq. (A.3), we can calculate values of the new limit plastic stiffness kp
′

for

any given φ f
′
, such that the collision dynamics for lower plastic deformation δ0 < δ p

0

is intact, while the range of plastic deformation is enhanced, depending on the chosen

φ f
′
> φ f .

B Effect of Viscosity

Since real physical systems also can have additional dissipation modes that are, e.g.

viscous in nature, we study the behavior of collisions with viscous damping present
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Figure 10: Force-displacement law for elasto-plastic, adhesive contacts superimposed

on the irreversible contact force law. The black solid line represents the force law for

reference input parameters φ f and kp, while the dashed red line represents the same for

a new chosen φ f
′

and newly calculated kp
′

resembling a wider plastic regime of the

particle deformation.
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(γ0 > 0) and compare it with the non-viscous case (γ0 = 0). Note that any non-linear

viscous damping force can be added to the contact laws introduced previously, how-

ever, for the sake of simplicity we restrict ourselves to the simplest linear viscous law as

given as second term in Eq. (2), since it can be important to choose the correct viscous

damping term for each force law to get the physically correct behavior [46,50,74,101].

In Fig. 11, we plot the contact force against the overlap, and the overlap against time,

during collisions for a constant value of χ = 1 and different β , for γ0 = 5×10−3 kg s−1.

When β < β ∗, see Fig. 11(a) and Fig. 11(b), the contact ends when the adhesive

force −kcδ goes back to zero, for both cases, with and without viscosity. This is since

the viscosity is relatively small and does not contribute enough to the total dissipation

to make the particles stick for the parameters used here.

For the critical adhesivity β = β ∗, reported in Fig. 11(c), without viscosity, the

overlap between the particles goes down to exactly zero at the end of the collision,

with all kinetic energy dissipated. For γ0 > 0, dissipation brings this marginal case into

the sticking regime and the particles stay in contact at δ > 0. This can be seen clearly

in Fig. 11(d), where the particles undergo a damped oscillatory motion due to the small

residual velocity created on the re-loading branch.

For larger values β > β ∗, the overlap at which kinetic energy is lost completely (on

the kc branch) is finite, for both γ0 = 0 and γ0 > 0, see Fig. 11(e). In both cases, the

particles stick and remain in contact. Without viscosity, the particles keep oscillating

along the slope k2, while with viscosity the oscillation is damped and kinetic energy

vanishes. During loading and unloading the apparent slope changes with time due to

the additional viscous force that leads to the dissipation of energy, as evident from the

ellipsoidal converging spiral. Waiting long enough, for some oscillation cycles, the

particles stick to each other with a finite overlap and zero relative kinetic energy. The

difference is also visible in Fig. 11(f), where for γ0 = 0 the particles keep oscillating

with constant amplitude, whereas, for γ0 > 0, the particles undergo a damped oscilla-

tory motion, until the velocity becomes 0 at δ > 0. The time evolution of the overlap in

Fig. 11(f) resembles that of the displacement evolution in Ref. [102], where the authors

studied sticking of particles in Saturn’s rings. 8

C Asymptotic Solutions

In this subsection, we focus on the case χ ≤ 1, and study the asymptotic behavior of

the coefficient of restitution as function of the impact velocity.

For the sake of simplicity, let us start with an elasto-plastic system without adhe-

sion, i.e. kc = 0, in Eq. (32) such that

e
(1)
n (η ,β = 0,χ < 1) =

√

1

1+ηχ
, (C.1a)

8In general, one could add a viscous law that is proportional to k2 − k1 or to a power of overlap δ , such

that the jump-in viscous force in Fig. 11(e) at the beginning of the contact is not there, however, we do not

go into this detail.
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Figure 11: (a), (c), (e) Contact forces plotted against overlap and (b), (d), (f) time

evolution of δ/δ p
max for pair collisions with parameters k1 = 102, kp = 5× 102 and

different kc = 10, 33.33, and 100, (units Nm−1), i.e. with η = 4, β < β ∗, β = β ∗ and

β > β ∗, for the same situations as shown in Fig. 9. The red and blue lines represent the

data in the presence and absence of viscosity respectively, where γ0 = 5× 10−3, (unit

Nm−1sec).
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Figure 12: The coefficient of restitution is plotted against the scaled initial velocity

χ in log-log-scale for β = 0 and three values of η = 5, 50, and 500, with the other

parameters as in Fig. 6. Red, green and blue circles denote, respectively, the solution

of Eq. (C.2), while the solid lines represent the approximation for high scaled impact

velocity and large plasticity η ≫ 1.

inserting the definitions of η , β and vp,

e
(1)
n (β = 0,v < vp) =

√

√

√

√

√

√

√

1

1+
kp − k1

k1

vi
√

2k1

m
δ p

max

, (C.1b)

using Eq. (12), where we defined S =
kp−k1

k1δ
p
max

and assuming ωo =
√

2k1
m

, we get

e
(1)
n (β = 0,v < vp) =

√

1

1+ Svi
ω0

. (C.1c)

Eq. (C.1c) is exactly the same as Eq. (5) in [71]. For non-cohesive particles, and in the

range v < vp we get exactly the same solution as Walton and Braun [71].

Further to study the asymptotic solution

e
(1)
n (η ,β = 0,χ < 1) =

√

1

1+ηχ
≈ (ηχ)−1/2 (C.2)

with the approximation valid for ηχ ≫ 1. Since the scaled velocity is moderate, χ <
1, the condition requires a large plasticity, i.e., a strong difference between the limit

stiffness and the plastic loading stiffness, η ≫ 1 (or kp ≫ k1). In Fig. 12, we plot the

coefficient of restitution against the scaled initial velocity χ for three different values
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Figure 13: Log-log plot of the coefficient of restitution against the scaled initial velocity

χ for four different values of β = 0.01, 0.1, and 1.0, with η = 50. Red, green and blue

circles denote the respective solutions of the general equation, Eq. (32), solid black line

represents power law en ∼ v−1/4, while magenta line denotes en ∼ v−1/2.

of η = kp/k1, together with the power law prediction of Eq. (C.2). We observe, that

for the smallest η (red circle and line), the approximation is far from the data, while

for higher η , the approximation works well even for rather small velocities χ ≈ 0.1.

Next, when studying the elasto-plastic adhesive contact model, β > 0 and β ≪ 1,

again, we restrict ourselves to values of η such that asymptotic condition ηχ ≫ 1 is

satisfied. Hence, Eq. (32) can be approximated as

e
(1)
n (η ,β ,χ < 1)≈

√

1

ηχ
−β , (C.3)

as long as ηχ ≫ β ≥ 0 and 1
η > β holds.

In Fig. 13, we plot the coefficient of restitution against the scaled initial velocity χ
for different values of β and superimpose the approximation, Eq. (C.3). For small β
and large χ , one observes good agreement between the full solution and the approxi-

mation. Differently, for the highest values of β the approximation is not valid. Due to

the adhesive force, for large χ , with increasing β , the deviation from the χ−1/2 power

law becomes increasingly stronger, leading to the sticking regime, as discussed in the

previous subsections. On the other hand, for smaller velocities, one observes a con-

siderably smaller power-law, resembling the well-known χ−1/4 power law for plastic

contacts, as indicated by the dashed line in Fig. 13.
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Figure 14: Semi-log plot of the coefficient of restitution as function of the scaled initial

velocity χ , using different interpolation rules for k2, for pair collisions with η = 50

and β = 0. The symbols denote the solutions of the general equation, Eq. (C.2) with

linear interpolation (red circles) or square root interpolation (blue circles), as given in

Eq. (D.1). The red and blue solid lines represent the approximations for high impact

velocity en ∼ χ−1/2 and en ∼ χ−1/4.

D Dependence on interpolation

The choice of the interpolation rule for the unloading stiffness k2 in Eq. (29) is empiri-

cal. Therefore, for δmax/δ p
max < 1, a different choice could be:

k2(δmax) = k1(1+η
√

χ). (D.1)

Inserting Eq. (D.1) into Eq. (21) leads to a different expression for the normal coeffi-

cient of restitution e
(1)
n , which for high values of η

√
χ , and for small β , reduces to

en ∝
√

η(χ)−1/4 . (D.2)

A similar power law prediction for moderate velocities has been previously obtained

by Thornton et al. in Ref. [21], using a non-linear Hertzian loading and unloading. Fig.

14 shows the agreement between the power law approximation χ−1/4 and Eq. (21) with

the alternative interpolation rule (D.1), for moderate velocities. The choice of different

interpolation laws for k2 shows the flexibility of the model and requires input from

experiments to become more realistic. The convexity of linear interpolation for zero

cohesion is very similar to that of low β in Fig. 9.
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E Energy Picture

This appendix shows the energies of two particles during contact, where the difference

between the different branches of the contact model, namely irreversible/unstable or

reversible/elastic, will be highlighted.

In Fig. 15, the time-evolution of kinetic and potential energy is shown; the graphs

can be viewed in parallel to Figs. 7(a) and 7(b). In Fig. 15(a), we plot the kinetic

and potential energy of the particles against time for low initial velocity χ < χ
(1)
c ,

corresponding to Fig. 7(a), for which dissipation is so weak that particles do not stick.

The kinetic energy decreases from its initial value and is converted to potential energy

(the conversion is complete at δmax). Thereafter, the potential energy drops due to the

change between the loading and unloading slope from k1 to k2. The potential energy

decreases to zero (at the force-free overlap δ0), where it is converted to (less) kinetic

energy. Then the kinetic energy decreases further due to the acting adhesive force.

At δmin the increasing potential energy drops to a negative value due to the change in

unloading slope from k2 to the adhesive (instable) slope −kc. From there it increases

from this minimum, negative value to zero, for δ = 0. From here the kinetic energy

remains constant and the potential energy stays at zero, since the particles are separated.

In Fig. 15(b), we plot the time evolution of kinetic and potential energy that the par-

ticles would have if un-/re-loading would take place at that moment, along the branch

with slope k2, namely the available (elastic) potential energy. This energy increases

from zero at t = 0, and reaches a maximum when the kinetic energy becomes zero

(note that it is not equal to the initial kinetic energy due to the plastic change of slope

of k2.) Thereafter, the available potential energy decreases to zero at the force-free

overlap δ0. For further unloading, the available potential energy first increases and

then drops rapidly on the unstable branch with slope −kc. The change in sign of the

unloading slope, from k2 to −kc, is reflected in the kink in the curve at δmin. Note, that

comparing Figs. 15(a) and 15(b), the available potential energy always stays positive,

while the total, plastic “potential” energy drops to negative values after the kink at δmin.

Figs. 15(c) and 15(d) show the time evolution of kinetic and potential energy (total

and available, respectively) for an initial velocity χ
(1)
c < χ < χ

(2)
c in the sticking regime,

see Fig. 7(b). In Fig. 15(c), a similar trend as that of Fig. 15(a) is observed until the

potential energy becomes negative at δmin. The difference to the case of smaller impact

velocity is that at this point, the kinetic energy is less than the magnitude of the negative

potential energy and hence first reaches zero, i.e., the particles stick. At this point, the

(plastic) potential energy increases and jumps to a positive value indicating the change

in sign of the unloading slope from−kc to k2. Finally, it oscillates between this positive

value at δc, exchanging energy with the kinetic degree of freedom. When the available

potential energy is plotted in Fig. 15(d), a similar trend as that of Fig. 15(b) is observed

up to the kink at δmin. Here, the two energies have comparable values when they reach

δmin and the kinetic energy decreases to zero with a non-zero available potential energy,

which causes the contact to re- and un-load along k2.
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Figure 15: (a), (c) Kinetic and (irreversible, plastic, “potential”) energy of the particles,

and (b), (d) kinetic and available (elastic) potential energy (for re-loading) of the parti-

cles, plotted against time for pair collisions with k1 = 102 Nm−1. kp = 5× 102 Nm−1,

and kc = 102 Nm−1, i.e. η = 4 and β = 1. The initial velocity χ is χ = 0.34 (a,b) and

χ = 0.69 (c,d), in the regimes defined in the inset of each plot.
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F Cyclic agglomerate compression and tension tests

Goal of this appendix is to show the unloading and re-loading behavior of an agglomer-

ate, i.e. its effective, mesoscopic force-displacement relation, which clearly is different

from the contact force law applied at the primary particle contacts. We will report

incomplete detachment and partly/weaker elastic response for re-loading after various

different compressive and tensile loading amplitudes.

The system considered here is an agglomerate (cubic) of size L0 = 0.115, made of

N = 1728 primary particles of diameter d0 = 0.01 (with some variation in size to avoid

monodisperse artefacts), just as in Ref. [15]. The cubic sample was first compressed

(pressure-sintered) with a dimensionless wall stress d0 ps/kp = 0.02 to form a stable,

rather dense agglomerate or “tablet”. The stress is first released to a value 2.10−5, i.e.

pr/ps = 10−3 for all walls. Then various uni-axial, unconfined tension/compression

tests are carried out applying either further tension or compression starting from the

released state of the sample [15]. The simulation parameters are same as in Ref. [15]

(table 2), except for the cohesion that is set here to a rather small intensity, kc/kp = 0.2,

rolling and sliding friction coefficients that are double as large, µr = µo = 0.2, and

viscous damping of those degrees of freedom, γr/γ = γo/γ = 0.1, which also is larger

than that of the reference situation.

The force-displacement curves for the tests at different amplitudes are shown in

Figs. 16 and 18 for tension and compression tests respectively. All simulations in

Figs. 16 and 18 start from the same configuration, i.e. the released state mentioned

above and is indicated by the black circle at point (0,0). These plots represent the

mesoscopic contact model of agglomerates consisting of multiple primary particles

and their geometrical surface configurations and change in shape during the tests.

Fig. 16 shows the force-displacement curve for an unconfined uniaxial tension test.

The black arrow shows the unloading/tension path, and finally arrows with different

colors show the re-loading paths for different deformation amplitudes, as given in the

inset. Each of the tests, when it reaches the original strain at zero, is then repeated for

three more cycles. Note that repeated cyclic loading remains on the same branch with

positive slope, displaying the elastic nature of the contact, while it is not completely,

perfectly detached. The contact surface is changing plastically by restructuring of the

primary particles and surely is not flat, see Fig. 17, as one would expect for ideal, ho-

mogeneous, plastic materials. For the largest amplitude, the behavior is not perfectly

elastic anymore, since the first plastic effects show up. For deformations as large as 0.2

of the primary particle diameter, d0, before re-loading (arrow with positive slope on

the red curve) has mostly, but not completely lost mechanical contact. The complete

detachment of the assembly happens for much higher amplitude, than what is expected

from a two-particle interaction. Note that the contact model of the primary particles

is behaving elasto-plastically (φ f = 0.05) on the scale of only 0.05d0; the reversible,

elastic un-/re-loading is thus not due to the primary particle contact model, since it

stretches to four times φ f d0 and even higher displacements. Finally, in order to con-

firm that this is not an effect of viscosity, qualitatively, the thick lines are simulations

performed four times slower than those with thin lines.

In Fig. 17, a few snapshots during the tensile deformation are presented. The first

snapshot corresponds to the undisturbed sample, while the others are increasing tensile
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Dx given in the inset. The downward arrow indicates the direction of first tensile un-

loading, while the upwards-right arrows indicate the change of force during re-loading.

Except for the red curve, all these branches are reversible, for repeated un-/re-loading.

(a) (b) (c) (d) (e) (f) (g)

Figure 17: Snapshots of the tablet-sample during (large) tensile deformations for Dx =
(L−L0)/d0 = 0 (a), 0.81 (b), 1.8 (c), 3.1 (d), 4.7 (e), 7.4 (f), and 8.6 (g). The primary

particles are colored according to their distance from the viewer (red, green, blue is

increasing distance).
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Figure 18: Dimensionless force-displacement curve for the same sample as in Fig.

16, but under compressive initial loading and un-/re-loading. The values in the inset

indicate the maximal amplitudes Dx.

deformation amplitudes. Note that these deformations are much larger than in Fig. 16.

The contact is completely lost only at the extreme, final deformation in Fig. 19(g). In

Fig. 17, it is also visible that the contact surface has developed a roughness of the size

of several primary particles; the first visible gap is opened at a total deformation of

Dx ∼ d0, and the contact is lost only at Dx ∼ 8d0, when the last of the thin threads

breaks. The elastic, irreversible tension branch, however, is strongly developed only

for much smaller Dx ∼ d0/5.

Complementing the tension test above, Fig. 18 shows the behavior of the same sam-

ple during compression cycles. The values given in the inset indicate the amplitude of

un-/re-loading. The smallest amplitudes remain elastic throughout, while plastic defor-

mation kicks in for Dx > 0.1 (see the red curve). However, the unloading and re-loading

take place on the same branch, i.e. a new elastic branch (e.g. for Dx = 0.2). For even

larger amplitudes, e.g. the yellow curve with Dx = 0.3, the continuous damage/plastic

destruction of the sample (by considerable irreversible re-arrangement during each cy-

cle). Again, thick lines indicate simulations four times slower, which shows a small

quantitative difference, but qualitative agreement even for the largest amplitude/rate.

The snapshots in Fig. 19 show the continuous plastic deformation of the sample at

large strains.
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