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Abstract
The steady-state shear rheology of granularmaterials is investigated in slow quasistatic and inertial
flows. The effect of gravity (thus the local pressure) and the often-neglected contact stiffness are the
focus of this study. A series of particle simulations are performed on aweakly frictional granular
assembly in a split-bottomgeometry considering variousmagnitudes of gravity and contact stiffnesses.
While traditionally the inertial number, i.e., the ratio of stress to strain-rate time scales, is used to
describe theflow rheology, we report that a second dimensionless number, the ratio of softness and
stress time scales,must also be included to characterize the bulkflowbehavior. For slow, quasistatic
flows, the density increases while the effective (macroscopic) friction decreases with increase in either
particle softness or local pressure. This trend is added to the μ I( ) rheology and can be traced back to
the anisotropy in the contact network, displaying a linear correlation between the effective friction
coefficient and deviatoric fabric in the steady state.When the external rotation rate is increased
towards the inertial regime, for a given gravity field and contact stiffness, the effective friction increases
faster than linearly with the deviatoric fabric.

1. Introduction

Granularmedia are envisaged as a collection ofmacroscopic and athermal particles which interact through
dissipative contact forces [1–3]. A continuumdescription of theflowbehavior of granularmedia is highly
desirable, due to its application in both natural phenomena and industrial applications [1, 2]. Despite the
numerous efforts, the constitutive relations describing the granularflowbehavior is still amatter of debate. Solid
mechanics and kinetic theory have been successful in predicting the solid–and gas–like behavior respectively
[4, 5]. At one extreme particles interact via enduring contacts, while in the gaseous regime the binary collisions
are themode ofmomentum exchange. The recently proposed inertial number framework has been successful in
describing theflowbehavior in the liquid like regimewhen the particles not only undergo collisions but also
frictional interactions with other particles [3, 6–8]. Though it verywell predicts theflowbehavior in case of
homogeneous shear, it fails in case of a non-homogeneous shearflow [9–11].

Gravity (compression) is a critical factor inmany granular flows [1, 3, 8]. Avalanches and debris flows play
an important role in the transport ofmass existing at the surface of Earth. Gravity-driven flows have also been
observed on other planetary bodies of our solar system and are of particular importance in understanding the
geology of planets and asteroids aswell as for the human exploration of theMoon andMars in the coming
decades [12]. Currently, surface features found onMars [13], Venus [14], and theMoon [15] are hypothesized
to be the results of avalanches of granularmaterial.

One of the important aspects of granular shearflows is the dependence of stress on imposed driving rate.
Various experimental and numerical studies have shown that for slow–dense, quasistaticflows, the ratio of shear
to compressive stress (effective friction coefficient) is independent of the imposed driving rate [3, 16, 17].
However, very little is known regarding the same in the presence of a broader range of normal stress. Shear tests
performed on parabolic flights have shown an increase in the effective friction at low confinement [18–23].
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Brucks et al [24] also obtained a similar trend using centrifuge experiments at gravity levels larger than Earth’s
gravity. Despite these studies, the effect of external compression (gravity) on granular flows is still poorly
understood.

Softmaterials like hydrogel and elastomer, which can support large deformation are of increasing
importance in engineering and biological applications such as tissue scaffolding, bioseparation andmicro-and-
nano–printing [25].While inertial number has been relatively successful in understanding the dynamics of rigid
particles [6], elasticity becomes relevant for soft particles [17, 26]. The deformability of the soft particles has been
shown to affect the force network close to the jamming transition [27]. Recent study byVaart et al [28] has
showndifferent rheological behavior for hard and soft particle suspensions. Despite the increasing importance,
themodels for soft deformable particles have been largely ignored, and only recently in a few theoretical
attempts have beenmade to incorporate the particle stiffness [29, 30].

We claimhere that these two factors, i.e., pressure (gravity) and softness can be seen as two aspects of the
same phenomenon.We aim to test this claim by answering the following questions: (1)Howdoes particle
softness affect the bulkflowbehavior? (2) Is there a unique law that can describe the flowbehavior onEarth,
Mars, and theMoon, i.e., for a broad range of pressure?

In this paper, we address the preceding questions with a focus on dense, weakly frictional, quasistatic
granularflow.Using the discrete elementmethod (DEM), we simulate cohesionless frictional granularmaterial
in a split-bottom ring shear cell. An important aspect of this setup is that the shear rate is given solely by external
rotation rate and the geometry. At the same time, in this geometry the local strain rate does not depend strongly
on the external compression [31], unlike the inclined plane and rotation drumwhere gravity has a strong effect
[24, 32, 33]. To study the effect of pressure (gravity) and particle softness, we independently vary both gravity
and particle softness by two orders ofmagnitude. In order to scanwide range of pressure in our set up, we
manipulate the gravity field. A change in particle softness provides an adjustment on themicroscopic scale, while
gravity is amacroscopic (field)modification.Wefind that they have similar effect at themesoscopic (local) scale.
The bulk behavior can bewell described using a dimensionless parameter, defined as the ratio between the time
scales due to gravitational compression and contact stiffness. Furthermore, by increasing the external rotation
rate, we study the dependence of effective friction and contact network anisotropy (deviatoric fabric) on the
inertial number. The dependence of effective friction and deviatoric fabric on pressure is added to μ I( )
rheology. Finally, we address the non-local effects in our results due to the presence of gradients in both stress
and strain rate, which are quantified by following an approach similar toKoval et al [9].

The outline of this paper is as follows: in section 2we describe our numerical setup andmethodology.We
present our results for quasistatic state in section 3. In section 4, we provide results on the rheological behavior
and combine it with the results fromquasistatic state to present new rheological laws.We then close the paper
with a discussion of our results in section 5 alongwith a possible outlook for future research.

2.Discrete elementmethod (DEM)

2.1.Model
Our computational techniques are based on the soft-sphereDEMsimulations as developed byCundall and
Strack [34],Walton [35], and Luding [36–38]. The normal force between particles in contact ismodeled by a
Hookean spring as δ η= − −f k vn n n n n , where kn, δn , ηn , and vn are the normal stiffness, particle overlap,
normal viscous damping coefficient, and relative velocity in the normal direction, respectively. Similarly, the
tangential force ismodeled as δ η= − −f k vt t t t n , where =k k2 7t n , δ t , η η= 4t n , and vt are the tangential
stiffness, relative displacement in tangential direction, tangential viscous damping coefficient, and relative
velocity in tangential direction, respectively.We also introduceCoulomb’s friction between the particles, where
the tangential force ft is switched to the sliding force μ∣ ∣ = − ∣ ∣f fs p n , μp being the particle friction coefficient

when ft exceeds the critical value, i.e. μ∣ ∣ > ∣ ∣f ft p n (with μ = 0.01p ) [38].
To study the effect of particle softness on themacroscopic behavior, we explore a range of normal contact

stiffness kn, from ⩽ ⩽− −k10 Nm 10 Nmn
1 4 1.When kn is changed, kt, η ,n and ηt are changed aswell to ensure

that the coefficients of restitution remain unchanged.While changing kn, the time step for numerical integration
δt is adjusted such that itmuch smaller compared the contact duration to ensure accurate dynamic
integration [38].

2.2. Split-bottom ring shear cell
Figure 1 is a sketch of our numerical setup [39–42]. In thisfigure, the inner, split, and outer radii are given byRi,
Rs, andRo, respectively, where the concentric cylinders rotate relative to each other at a rateΩ around the
symmetry axis (the dot-dashed line). The ring shaped split at the bottom separates themoving and static parts of

2
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the system,where a part of the bottom and the outer cylinder rotate at the same rate. The system isfilledwith
≈ ×N 3.7 104 polydispersed spherical particles with density ρ = =− −2000 kgm 2 gcmp

3 3 up to heightH.

The average size of particles is 〈 〉 =a 1.1mm, and thewidth of the homogeneous size-distribution (with
=a a 1 2min max ) is − = − 〈 〉 〈 〉 =a a1 1 0.03572 2 . The cylindrical walls and the bottom are roughened by

attaching some (about 3%of the total number) attached/glued particles [41, 43, 44].
When there is relativemotion between inner and outer cylinders, a shear band initiates at the bottom from

the split positionRs and propagates upwards and inwards, remaining far away from the cylindrical walls inmost
cases [40, 42]. The qualitative behavior is governed by the ratio H Rs and three regimes can be observed as
reported in [40, 42].We choose ⋍H 0.034 m (for = −g 10 ms 2 and = −k 100 Nmn

1 )1, such that azimuthal
velocity profiles always have the error function shape. The shear band always reaches the free top surface and
stays away from thewalls, as reported in [40].With increasing filling height (data reported in [45]), the shear
band at the top surface gets wider andmoves inwards, before stronger deviations from the error function are
observed [42].However, for none of our simulationswe observed instabilities as recently reported byMoosave
et al [46]. Our simulations indicate (data not shown) that thewidth decreases and the positionmoves less
inwardswith increasing kn and g.

To study the bulk behavior in a broad pressure range, gravity is varied in the range ⩽ ⩽− −g0.5 ms 50 ms2 2.
The details regarding rotation rate of the system are reported in table 1. The total simulation time is chosen such
that the cylinder completes half a rotation in that time.

Figure 1.A sketch of our numerical setup consisting of a fixed inner part (light blue shade) and a rotating outer part (white). Thewhite
part of the base and the outer cylinder rotate with the same angular velocity,Ω, around the symmetry axis (dot-dashed line). The
inner, split, and outer radii are given by = 〈 〉R a8i , = 〈 〉R a80s , and = 〈 〉R a100o , respectively, where each radius ismeasured from
the symmetry axis. The gravity, g, points downwards as shown by an arrow.

Table 1.Table showing the values of Ω
π2
(units of s−1), g (units ofms−2) and particle stiffness kn (units ofNm

−1) used in our
simulations, and various time scales associatedwith the system (in units of s ), as discussed in themain text. The values of γT ˙
andTp are the average values reported at = 〈 〉 − 〈 〉z d H H d2 , 2, 2 in the center of the shear band.

g
Ω
π2 kn × −T ( 10 )c

3 ×η −T ( 10 )2 × −T ( 10 )g
2

γT˙ × −T ( 10 )p
3

0.5 0.005 100 2 5.6 6.6 25, 20, 10 1.7, 2.5, 5
1 0.01 100 2 5.6 4.7 10.9, 7.8, 2.7 12.5, 15.3, 32
2 0.01 100 2 5.6 3.3 10.7, 7.5, 2.7 9, 11, 22
5 0.01 100 2 5.6 2.1 10.3, 7.4, 2.6 5.9, 7, 14.6
5 0.01 500 0.1 2.5 2.1 10.6, 7.5, 2.1 5.1, 7, 14.1
20 0.01 100 2 5.6 1.05 9.7, 7.0, 2.6 2.9, 3.8, 8
20 0.01 400 10 11.2 1.05 10, 7.1, 2.7 2.9, 3.6, 7.4
50 0.01 100 2 5.6 0.66 8.7, 6.6, 2.5 1.8, 2.2, 4
50 0.01 1000 0.66 18 0.66 10.1, 7.1, 2.6 1.9, 2.5, 7
10 0.01 100 2 5.6 1.5 9.9, 7.0, 2.6 4, 5.6, 24
10 0.01 1000 0.66 18 1.5 9.1, 8.1, 2.6 4, 5.6, 27
10 0.01 10000 0.2 0.56 1.5 10.7, 7.3, 2.8 4, 5.4, 31
10 0.1 100 2 5.6 1.5 1.1, 0.7, 0.23 4, 6, 9
10 0.5 100 2 5.6 1.5 0.2, 0.15, 0.05 4, 5, 10
10 1.0 100 2 5.6 1.5 0.1, 0.07, 0.02 4, 5, 20
10 2.0 100 2 5.6 1.5 0.02 0.03, 0.008 4, 6, 18

1
The height varies slightly with gravity and particle softness.
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2.3. Local averaging
One of the goals of current research in the granular community is to derivemacroscopic continuum theory
based on the givenmicro-mechanical properties [47–49]. In our cylindrical cell, we assume translational
invariance in the azimuthal θ−direction. The averaging is thus performed over toroidal volumes overmany
snapshots in time, leading to genericfields Q r z( , ) as function of the radial and vertical positions.Here, the
averaging is performedwith spacings Δr and Δz around two particles diameter in radial and vertical directions
(averaging procedure for two and three dimensions is discussed in detail in [43, 48] and hence not discussed
further here).We tested our results for averagingwith different spacings (two, three, and four particle
diameters) and the results are found to be unaffected.

2.3.1.Macroscopic (tensorial) quantities
Here, we present general definitions of the averagedmacroscopic quantities—including strain rate, stress, and
fabric (structure) tensors.

The strain rate is calculated by averaging the velocity gradient of the particles over the cell with volumeV and
is given by

∑ϵ = ▽ + ▽αβ β α α β
∈

( )r˙ ( )
1

2
v v , (1)

i V

i i

with particle i, velocity v i, andGreek letters represent the cylindrical components, radial distance r, azimuthal
angle θ, and height z, while▽ represents the gradient in cylindrical coordinate [43].

The stress tensor is given by

∑ ∑σ δ δ= −αβ α β α β
∈ ∈V

m l fr( )
1

v v , (2)
i V

i i i

c V

c c
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

with particle i, contact c, massmi,fluctuations velocity δvi, force f ,c and branch vector lc . Thefirst term is the
sumof kinetic energyfluctuations, and the second term involves the dyadic product of the contact forcewith the
contact-branch vector.

The quantity which describes the local configuration of a granular assembly is the fabric tensor [49, 50] and
is given by

∑ ∑=αβ α β
∈ ∈

F
V

V n nr( )
1

, (3)
i V

i

c i

c c

whereV i represents the particle volumewhich lies inside the averaging volumeV, nc is the normal unit branch-
vector pointing from the center of particle i to contact c.

2.3.2. Isotropic and deviatoric parts
Any given tensor Q can be uniquely decomposed into isotropic and deviatoric parts as

= +Q I QQ (4)DV

with I being the identitymatrix, = QQ TrV
1
3

and the traceless deviator QD. The latter contains information
about the eigensystemof Q, that is identical to the eigensystemof QD itself.

Let us assumeQ1,Q2, andQ3 are the eigenvalues of QD sorted such that ⩾ ⩾Q Q Q1 2 3. Based on the
normalization, we use the following definition to quantify the anisotropy of any tensor QD using a single scalar
quantity:

=
− + − + −( ) ( ) ( )

Q
Q Q Q Q Q Q

6
, (5)dev

1 2
2

2 3
2

3 1
2

the deviators ϵ̇dev, σdev, and Fdev refer to strain rate ϵαβ˙ , stress σαβ , and fabric αβF , respectively.While
= ∣ − ∣Q Q Qdev 1 3 for plane strain simulations =Q( 0)2 , alternative definitions of Qdev are reported in [51]

using other (Frobenius) normalization better suited for the elastic regime.
γ ϵ=˙ ˙dev quantifies the local strain-ratemagnitude, which is very close to the formdefined in cylindrical

coordinates [52] as tested in [43]. The pressure p is the isotropic hydrostatic stress, while τ σ= dev quantifies
objectively the shear stress. The deviatoric stress ratio, μ τ= p, is the effectivemacroscopic friction. The
volumetric fabric F3 v represents the contact number density, while the deviatoric fabric Fdev quantifies the
anisotropy of the contact network (as studied in detail in [53]).

4
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2.4. Time scales
To characterize the dynamics of the system,we look at different time scales. Atfirst, we define twomicroscopic
time scales related to the contact duration and the viscous damping coefficient between two particles in contact,
respectively, as

η= =ηT
m

k
T

m
, , (6)k

n n

where 〈 〉m is themass of a particle withmean diameter.Tk and ηT can be related to contact duration
= π

−
η

Tc
Tk T

1
2

1
2

2. Next, two time scales associatedwith external forces, i.e., the gravity and external rotation rate,

can be introduced as

π
Ω= =ΩT

d

g
T,

2
, (7)g

respectively, whereTg is the time taken by a particle with zero initial velocity to fall a distance 〈 〉d 2, and ΩT is the
time taken by the system to complete a rotation.

The time scales, (6) and (7), are functions ofmaterial constants and applied external forces, hence, are
constants throughout the system. In this sense, the time scales,Tc, ηT ,Tg, and ΩT , are global. On the other hand,
two local time scales related to the local shear rate γ̇ and pressure p, as introduced in [6, 55], are:

γ
ρ= =γT T d
p

1

˙
, , (8)p˙

with ρ being the bulk density.
As shown in the following sections, the spatial distributions of pressure and shear rate are inhomogeneous

due to gravity and shear localization. Therefore, in contrast to the global time scales, γṪ andTp are localfield
variables that depend on spatial position.

The time scales can be combined to formulate dimensionless numbers that give indications of dominance of
one time scale over the other. For example, the inertial number, as introduced in [7, 8, 55],

γ ρ≡ =γI T T d p˙ , (9)p ˙

provides an estimate of the local rapidity of the flow. For ≪I 1, theflow is quasistatic, where particles interact
via enduring contacts and inertial effects are negligible. For ∼I 1, theflow is in the dense inertial regime, and for

≫I 1, theflow is in the rapid, collisional gas-like state3. Other expressions have been introduced by various
authors, such as the Savage or Coulombnumber γ ρ〈 〉d p˙ ,2 2 that are simply the square of the inertial number
I [56].

A dimensionless parameter, the global compressibility, can be introduced as the ratio betweenTk andTg:

κ ≡ =T

T

m g

k d
, (10)g

k

g n

providing a globalmeasure of compressibility of the bulkmaterial. A high κg signifies that the bulkmaterial is
compressible, which comes from either very high confinement by strong gravity or from low contact stiffness at
particle level. On the other hand, when κg is small, the average overlap is very small compared to the particle
diameter, whichmeans that the bulkmaterial is closer to the rigid limit. A similar dimensionless parameter can
be introduced as

κ ≡ =T

T

p d

k
, (11)p

k

p n

which estimates the compressibility of thematerial at the local scale4.
Table 1 shows typical values of time scales in our simulations, and table 2 reports various dimensionless

numbers.We observe that forflowswith a rotation rate Ω π = −2 0.01 s 1 and gravity ⩾ −g 1 ms 2, the inertial
number I is well below one for all values of kn. For lower values of gravity = −g 0.5 ms 2, the rotation rate is
chosen to be Ω π = −2 0.005 s 1, such that I stays in the same range. From this table we infer that the system can

2
In case of aHertzian contactmodel the time scale related to contact durationwill be = −T Cpk

1 6, where p is the compression, andC is a
material parameter constant. For details, please refer to [54].
3
A variant of inertial number γ ρ= 〈 〉I d p˙k kin can be defined by using only the kinetic pressure instead of the total pressure (See (2)).

4
In case of aHertzian contactmodel, it would be pressure dependent as κ ∝ pp

1 3, where the constant of proportionality is amaterial
parameter constant.

5
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be safely assumed to be in the rate-independent quasistatic state for a wide range of g and kn. However, we
observe thatwith an increase in rate of rotation Ω π2 , I begins to increase and the flowbehavior enters into the
rate-dependent inertial regime.

3.Quasistatic rheology

3.1. Critical state
Shearing of a granular system leads to volume dilation and build-up of shear stress and anisotropy in fabric
(quantified by deviatoric fabric). Sincewe are interested in the steady-state flowproperties, we need to know
what is theminimum time (or equivalent strain) required to reach the steady-stateflow regime.

We define φ ΩΔ= t , an angle throughwhich the system rotates (where Δt is the simulation time) as the
shear control parameter. In general, the time required for stabilization depends on the variable considered [9].
In the following, we check the relaxation of various quantities (both locally and globally averaged) towards the
steady state. Aswe expect this relaxation to be slower for smallΩ (due to small dissipation), we study the
relaxation behavior for Ω π = −2 0.01 s 1 that is the smallestΩ in our simulations.

Atfirst, we analyze the global quantities (averaged over thewhole system) like the kinetic energy and average
number of contacts. Both quantities saturate very fast (φ ∼ °5 ). Next, we analyze the relaxation of local
quantities, specifically the local velocity profiles.We conclude that φ ∼ °30 is the time required to form a stable
shear band, which is in agreement with Ries et al [31] andWortel et al [57]. Consequently, we perform the local
averaging over almost 600 snapshots distributed over φ ⩾ °30 .

The consistency of the local averaged quantities also depends on the accumulated local shear strain during
the averaging time.We concentrate our interest in the regionwhere the system can be considered in a critical
state. The critical state is a unique steady state reached after long shear, wherematerial deformswith applied
strainwithout any further change in normal stress, shear stress, and volume fraction, and the system forgets its
preparation history [58]. In accordance with the previous experimental and numerical results in the same setup
[43, 59], we chose shear strain γ γ= ⩾t˙ 1av to be an estimate for the critical state (tav is the averaging time). In

otherwords, for γ γ⩾ ≡˙ ˙
t c
1

av
, the part of the system can be assumed to be in critical state.

Figure 2(a) shows the local shear stress τ r h( , )plotted against the local pressure p r h( , ). Since the system is
non-homogeneous in nature, for a given pressure we observe awide range of local strain rate γ̇ andwe find that τ
is higher for larger γ̇ . However for γ γ>˙ ċ (with γ ≈ −˙ 0.08 sc

1 ), τ becomes almost independent of the local strain.
Thismeans that τ p is almost constant for all data points with strain rate γ γ>˙ ċ .

In the same setup, Ries et al [31] and Szabó et al [59] also found that after long enough shear, thematerial
inside the shear band reaches the critical state, and characterized this condition by the local accumulated strain
γ ⩾ 1. Our previousworks [43, 60] also showed that for rotation rate Ω π = −2 0.01 s 1, γ ≈ −˙ 0.1 sc

1 is the shear
rate abovewhich the shear band is well established. Sincewe are interested in the flowbehavior of thematerial, as
default in the rest of the paperwe focus only on the data well inside the shear bandwith local strain rate,

Table 2.Table showing the values of g (units ofms−2) and particle stiff-
ness kn (units of Nm

−1) used in our simulations, and various dimension-
less numbers, as discussed in themain text. The average values of I are
reported at = 〈 〉 − 〈 〉z d H H d2 , 2, 2 in the center of the shear band.

g
Ω
π2 kn I κg

2

0.5 0.005 100 (7, 12, 50) ×10−3 2× 10−5

1 0.01 100 (1.3, 2, 4) ×10−3 5× 10−4

2 0.01 100 (0.75, 2, 1.4) ×10−3 × −3.4 10 3

5 0.01 100 (2, 0.7, 0.9) ×10−3 1× 10−3

5 0.01 500 (2.5, 0.8, 1.4) ×10−3 2× 10−4

20 0.01 100 (1, 0.5, 0.9) ×10−3 1× 10−3

20 0.01 400 (2, 4, 7) ×10−4 1× 10−4

50 0.01 100 (8, 3.4, 7.2) ×10−5 × −2.5 10 3

50 0.01 1000 (5, 3, 6) ×10−5 × −2.5 10 4

10 0.01 100 (1.1, 0.6, 1.5) ×10−3 5× 10−4

10 0.01 1000 (1.4, 0.5, 1.6) ×10−3 5× 10−5

10 0.01 10000 (1.2, 0.6, 0.9) ×10−3 5× 10−6

10 0.1 100 (1.5, 0.6, 0.9) ×10−2 5× 10−4

10 0.5 100 (7.5, 2.6, 6) ×10−2 5× 10−4

10 1.0 100 (1.5, 0.5, 10.2) ×10−1 5× 10−4

10 2.0 100 0.3, 0.16, 1.51 5× 10−4

6
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γ γ Ω Ω
π> ≡r h˙ ( , ) ˙ ( )

10

2
, (12)c

unless specified otherwise.
Figures 2(b) and (c) show the steady-state pressure and shear stress plotted against time, respectively, for

different averaging spacings in r and z (1, 1.5, and 2 particle diameters). For the sake of clarity, data for only
one spatial point (center of shear band atmid-height) are plotted.We observe that the size of averaging spacing
does not affect themean (averaged) results, only that the standard deviation. The results from the smallest cell
size, i.e., one particle diameter, show themaximum scatter or variation of data; the pressure varies only relatively
little (8%), whereas the shear stress varies a lotmore (35%). (In this studywe do not attempt to unravel the
contributions that are due to statistical fluctuations and the real time-evolution of the system, i.e., increase
(semi-elastic) and decrease (plastic rearrangement) of stresses, on short time scales.) In the rest of the paper, the
averaging of the data is performed over cell sizes of two particle diameters, unless specified otherwise.

3.2. Effective friction coefficient
Wewill now turn our attention towards the effect of pressure and softness on the effectivemacroscopic friction
τ p in the quasistatic state. In previous studies, it has been assumed to be independent of both the particle
stiffness and pressure [6, 7].However, particles used in these cases were extremely rigid. Few studies were
performed systematically investigating the flowbehavior in the low pressure/gravity regime [18–23].

Figures 3(a) and (b) show shear stress-pressure curves for different values of normal stiffness kn and external
gravity g, respectively. In these plots, for the sake of clarity, both shear stress and pressure are plotted only at the
center positionRc of the shear band (Rc being the position at which both τ and the local shear rate aremaximal).
For a better comparison, both shear stress and pressure are normalizedwith themaximumpressure pmax
reached in the simulationwith particular kn and g (so that both abscissa and ordinates are of the same order)5.
We observe that both softness of the particles (interpreted as opposite of contact stiffness) and gravity drastically
affect the shear stress.Moreover, they act in the same direction as τ decreases with increase in either particle
softness or external gravity.We also see that for themost soft particles or the higher gravity data, the relation
between τ and p is non-linear.

Figure 2. (a) The local shear stress, τ r h( , ), plotted against the local pressure, p r h( , ), for different values of the local shear rate,
γ r h˙ ( , ) as given in the legend (in units of −s 1 ). (b) Pressure p, and (c) shear stress τ plotted against time t for the spatial position

=r 0.08 m (center of shear band) and =h 0.022 m . Cyan,magenta, and black colors represent the results obtained by averaging
using cell size of 1, 1.5, and 2 particle diameters, respectively, in the r- and z-direction, with a quarter ring in the azimuthal direction.
The data reported here are from a simulationwith = −g 10 ms 2 and Ω π = −2 0.01 s 1.

5
The error-bars show the standard deviation of the data in time.
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3.2.1. Linear approximation
Tounderstand the dependence of the effectivemacroscopic coefficient in a quasistatic state on softness and
gravity (pressure), we estimate it as the slope of a linear fitting function for the shear stress against pressure in the
same fashion as theMohr-Coulomb failure criterion, i.e.,

τ μ≃h p h( ) ( ), (13)0
global

where μ0
global is the global friction coefficient for a given system.

Figure 4(a) displays the global friction coefficient μ0
global plotted against gravity g for different values of the

normal stiffness kn, as given in the legend.We observe that μ0
global decreases with increasing gravity, while it

increases with increasing kn. It is important tomention that μ0
global is obtained byfitting the data to (13), i.e., it is

not the average of τ r h
p r h

( , )
( , )

for different heights in the system. Aswe observe that the τ − p relation becomes non-

linearwith increase in gravity or softness, as afirst attemptwe fit the data to a linearMohr–Coulomb failure
criterion (13). For thefitting, all the data in the range ⩽ ⩽p p0 max are chosen. The error bars represent the error
infitting the data, which increases with increase in softness/gravity. Figure 4(b) shows the global friction
coefficient with different values of the normal stiffness kn and gravity g, where all results of μ0

global are collapsed,

if we plot them against κ κ= g
2 (κg is given in (10)).

Infigure 4(b), the solid line is given by

μ μ κ
κ= −

α
, (14)r0

global global

0

⎛
⎝⎜

⎞
⎠⎟

where μ = ±0.17 0.01r
global is the global friction coefficient in the rigid particle limit and the exponent and

characteristic global compressibility are given by α ≃ 0.5 and κ ≃ 2.010 , respectively.

Figure 3. (Left) Shear stress plotted against the local pressure for different values of the softness (interpreted as opposite to the normal
stiffness) as given in the legend in units of −Nm 1. Here, the gravity isfixed to = −g 10 ms 2. (Right) The local shear stress plotted
against the local pressure for different values of the gravity as given in the legend in units of −ms 2. Here, the normal stiffness isfixed to

= −k 100 Nmn
1. Both τ r h( , ) and p r h( , ) are scaled by themaximumpressure p r h( , )max , respectively.

Figure 4.The global friction coefficient, μ0
global, plotted against (left) gravity g, and (right) the global compressibility,

κ = 〈 〉 〈 〉m g k d( )n , on a log-linear scale for different values of the normal stiffness as shown in the legend. The solid line represents
(14).
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Previousmicrogravity parabolic flight and centrifuge experiments [18, 20–24] showed a similar decreasing
trend of the effectivemacroscopic friction coefficient on gravity. Some authors [20, 23] attributed this
dependence to the fact that at low gravity, the body forces becomeweak and the electrostatic cohesive forces
begin to dominate. Klein et al [20] also argued that a load-dependent interparticle friction coefficientmight be
responsible for this behavior. However, no cohesive force or load-dependent frictionwas implemented in any of
theDEMsimulation data presented here.Hence, we claim that there should be an additionalmechanism
responsible for this interesting behavior. In order to gain a better understanding of the nonlinear behavior, in the
following, we study the system locally.

3.2.2. Local dimensionless pressure
Since our system is non-homogeneous in both stress and strain-rate fields, a local description of the system is
highly desirable. In the shear stress-pressure (τ − p ) curves for different softness and gravity (figure 3), the
dependence of shear stress on pressure slightly ‘bends’with increasing softness and gravity, i.e., the friction
coefficient develops a dependence on the pressure:

τ μ= ( )r h p k p r h( , ) , ( , ), (15)n0
local

where μ τ=p k r h p r h( , ) ( , ) ( , )n0
local is the local effective friction coefficientwhich depends on both pressure

and contact stiffness.
Figure 5 shows the local effective friction coefficient for different values of the normal stiffness and gravity,

where all results of μ p k( , )n0
local collapse if we introduce the local dimensionless pressure,

κ≡ = =p
T

T

p d

k
* , (16)p

k

p n

2

2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

defined as square of the ratio between two time scales,Tk andTp, in section 2.4
6. p* can also be interpreted as

non-dimensional average overlap (scaledwithmean particle diameter). In this figure, we scanned through a

wide range of p* by systematically varying g and kn.We observe that for < × −p* 5 10 4, μ p( *)0
local is almost

constant, while for higher values, μ p( *)0
local decreases with p* up to ≈p* 0.1.

This dependence can bewritten in the form,

μ μ= −
σ

β

( )p
p

p
*

*
, (17)0

local
r
local

*

1⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where μ = ±0.172 0.01r
local is the value of effective friction in the rigid limit, which is in fair agreement with

contact dynamics shear simulations for the same particle friction coefficient [62]. The exponent is found to be
β ≈ ±0.5 0.041 and the characteristic local dimensionless pressure is = ±σp 10.1 0.2* . As one extreme of p*,
for =p* 0.1 the average overlap is order of 10% relative to themean particle diameter, i.e., the soft particle limit.

The upper bound of μ p( *)0
local is the low compression case, i.e., the rigid limit, where the average overlap ismuch

smaller (10−4) compared to the particle diameter. μ p( *)0
local in the rigid limit is almost double as large compared

to the soft particle limit for ≈p* 0.1.

Figure 5.The local effective friction coefficient, μ p( *)0
local , plotted against the local dimensionless pressure, p*, on a log-linear scale.

Different symbols represent different values of κ as given in the legend offigure 6, while the solid line represents (17). Local data are
shown for γ γ> = −˙ ˙ 0.1 sc

1.

6
The non-dimensional formof pressure will be different in case of aHertzian system [61].
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3.3. Local volume fraction
Infigure 6, the local volume fraction ν r h( , ) is plotted against the local dimensionless pressure, p*. Because of
slow quasistaticflows, no strong dilation is observed, i.e., no strong dependence of ν on local shear rate. The
packing is rather loose for lower p* and tends to a critical value ν = ±0.642 0.002c , in agreement with [63]. The
data can befittedwell by the functional form

ν ν= +
ν

p

p

*
, (18)c

*

with = ±νp 0.48 0.02* ( νp* can be further expressed in terms of volumetric fabric as reported in [64]).
Interestingly, no significant difference in volume fraction ν is observed for < −p* 10 3, while for > −p* 10 3

within the fluctuations, ν increases almost linearly with p* (the curvature is due to the logarithmic p* axis). The
relation between ν and p* is well established in the case of static packings [64, 65]. Herewe show that the same
relation holds for a slow granular flow, involving considerable small butfinite strain rates.

3.4. Local structure
Shearing of a granular assembly always leads to the buildup of contact anisotropy in the system [66–68]. To
study this property we analyze the deviatoric fabric as defined in (3) and use (5) to quantify anisotropy of the
contact network.

3.4.1. Local anisotropy
Figure 7 displays the local deviatoric fabric, F r h( , )dev , plotted against the local dimensionless pressure p*,
where F r h( , )dev for different values of the particle stiffness and gravity is found to collapse on a unique curve
(solid line). This dependence can bewritten in a similar fashion as (17),

= −
β

( )F p F
p

p
*

*
, (19)r

F

dev dev
*

2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where F r
dev is the anisotropy of contact network in the rigid limit, the exponent is found to be β ≈ ±0.5 0.032 ,

and ≈ ±p 26.3 0.6F
* . The decrease in Fdev with increasing p* can be explained in terms of the increasing volume

fraction ν r h( , )with increase in p*.When the packing becomes denser, particles have less free space to (re)
arrange.Hence they cannot align along the preferential direction, thus anisotropy in response to the local shear
is found to decrease with increase in p*.

Infigures 5 and 7, we observe that the local effective friction and the local contact anisotropy show a similar
trend in the quasistatic state (β β⋍1 2). Infigure 8, we plot μ p( *)0

local against F p( *)dev for different values of κ,
where a linear correlation can be inferred as,

μ μ= +( ) ( )p bF p* * , (20)0
local

iso dev

where μ = ± ≈0.01 0.01( 0)iso is the effective friction coefficient in the (extrapolated) limit of the isotropic
contact network =F( 0)dev and = ±b 1.38 0.02 is a constant of proportionality. This clearly shows that in the
critical state, the shear resistance accompanies the anisotropy in the contact network. The linear relation can be a
consequence of the linear contactmodel, the relationmight be different in case of aHertzian contactmodel. It is

Figure 6.The local volume fraction, ν r h( , ), in the systemplotted against the local dimensionless pressure, p*, on a log-linear scale.
Different symbols represent different values of κ as given in the legend. The solid line represents (18). Local data are shown for
γ γ> = −˙ ˙ 0.1 sc

1.

10

New J. Phys. 17 (2015) 043028 A Singh et al



worthwhile tomention that no information about such a relation in the transient regime (that leads to the
critical state) can be inferred fromour analysis. This correlation explains the increase in the effective friction
coefficient with decreasing gravity/softness (as observed infigure 4(a)).With increase in gravity/softness the
systembecomes denser, hence the free space available to particles decreases. Hence Fdev decreases leading to a
decrease in μ0

local.

3.4.2. Shape factor
In this section, we compare the shape factor (Q Q2 1) for stress and fabric tensors, whereQ2, andQ1 are the
eigenvalues of the deviatoric tensors as defined in section 2.3.2. Due to geometry and symmetry, the state of
strain in the shear band is plain strain, i.e., ϵ ϵ =˙ ˙ 02 1 .We study the states of stress and fabric to understand the
response of the granular flow to plain strain.We focus on the shape factor to quantify the ratio between the
neutral eigenvalue (orthogonal to the shear plane) eigenvalue, to themaximumeigenvalue.

Infigure 9(a), we plot the shape factor for the stress tensor. Different symbols represent different values of
compressibility κ as given in the legend offigure 6, while black circles show the data in the center of shear bands
for these simulations.We observe that the shape factor is highlyfluctuating for the two extremes of p*, while in

the range < <− −p10 * 104 2, it is significantly below zero. This implies that the stress in the shear plane is higher
as compared to the axial stress along the neutral direction orthogonal to the shear plane. The signmeans that this
axial stress is reduced perpendicular−1 and enhanced +1 2within the shear plane [49]. The dashed line is the
data from [49], where authors studied the flowbehavior on an inclined plane.We observe that the sign for both
the cases is negative, while themagnitude is different, whichmight be due to the difference in interparticle
friction. Infigure 9(b), the shape factor of the fabric tensor fluctuates (strongly) around zero. It is important to
mention that thefluctuations in the data are from a single simulation.

These two observations suggest that fabric and stress tensors behave differently even though they are
proportional inmagnitude (norm), as shown infigure 8. The fabric tensor is in a planar state like the strain-rate
tensor, whereas the induced stress state is triaxial, as expected for a solid-likematerial [49]. F F2 1 tends to positive

Figure 7.The local deviatoric fabric, F r h( , )dev , plotted against the local dimensionless pressure, p*, on a log-linear scale. Different
symbols represent different values of κ as given in the legend offigure 6. The solid line represents the corresponding fit to (19). Local
data are shown for γ γ> = −˙ ˙ 0.1 sc

1.

Figure 8.The local friction coefficient, μ p( *)0
local , plotted against the local deviatoric fabric, F r h( , )dev , for different values of κ.

Different symbols represent different values of κ as given in the legend offigure 6. The solid line represents the corresponding fit to
(20). Local data are shown for γ γ> = −˙ ˙ 0.1 sc

1.
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values for larger p*, further establishing the difference between structure and stress tensors. However, in order to
have a clear picture for the fabric tensor, the strong andweak subnetworks should be studied separately, since
only the strong subnetwork carries almost all of the fabric anisotropy [53, 69]. Alongwith a non-zero σ2

eigenvaluewe do expect other aspects to showup, like the non-collinearity of the stress/strain/fabric
eigensystems, related to induced anisotropy.Nevertheless, these features cannot be investigated further here,
due to the highfluctuations in the data.

As discussed in section 3.1 the cutoff shear rate γ̇c can depend on the simulation time or the averaging time.
In this section, we focused on the data only inside the shear band, which are in the critical state and have
forgotten their initial configuration due to large strain.However, the velocity gradients in the setup are smooth,
which implies that part of the systemoutside the shear band is alsoflowing, albeit slowly. If the simulation runs
longer (and hence longer averaging time can be used), the cutoff can be lowered. Eventually, if the simulation
would run infinitely long, no cutoff on the local strain rate is needed. If we reduce the cutoff on the local strain
rate (see next section), by setting γ Ω ≡ Ω

π˙ ( )c 2
, we observemuchwider variation of data for the local effective

friction coefficient, the deviatoric fabric and the volume fraction.However, the qualitative picture (trend)
remains unaffected for allmeasured quantities. However, the shape factors are not strongly influencedwithin a
change in γ̇c , within nearly an order ofmagnitude. Only for very small γ̇ deviations occur as presented next for
faster and slower shear.

4. Combined rheology towards inertial regime

The previous section showed that in the quasistatic state the friction coefficient and deviatoric fabric are strongly
correlated in the critical state, though their shape factors are found to be considerably different.Motivated by
this, we check if this correlation alsoworks in the rate-dependent inertial regime. To test the correlation, both
lower and higher inertial number data are generated by varying the external rotation rateΩ for afixed gravity

= −g 10 ms 2 and contact stiffness = −k 100 Nmn
1. In the following, wewill explore the evolution of the local

macroscopic friction coefficient μ and deviatoric fabric with the inertial number I andmerge it with the
dependence of both μ and deviatoric fabric on p*, to propose a combined rheological law. As explained in the
previous section and section 3.1, the cutoff shear rate for an established critical state also depends on the time
interval for data procurement and the averaging timewindow. In this section, the total simulation and averaging
times are increased. Hence, the cutoff on local strain rate is set to γ Ω ≡ Ω

π˙ ( )c 2
so as to capture themaximumdata

(in the critical state) and present a unique local rheology law outside and inside the shear band.

4.1. Friction law
The local effective friction coefficient μ = τ r h

p r h
( , )
( , )

is plotted against inertial number I in figure 10.Different

symbols showdata fromdifferent rates of rotation as given in the legend; the black solid circles represent the data
in the center of the shear band. The solid black line shows the friction law, as proposed in [7]:

μ μ
μ μ

= +
−

+ σ( ) ( ) ( ) ( )
I p p

p p

I I
, * *

* *

1
, (21)0

local
2
local

0
local

0

Figure 9. Shape factor for (left) stress, and (right) fabric plotted against local dimensionless pressure p*. Different symbols represent
different values of κ as given in the legend of figure 6. Black circles represent the data in the center of the shear band, other data are
shown for γ γ> = −˙ ˙ 0.1 sc

1. Solid line represents zero, while dashed line is the prediction from [49].
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with μ p( *)0
local , a term that involves softness correction, as given in (17).We observe that data from a simulation

using a single gravity = −g( 10 ms )2 and contact stiffness = −k( 100 Nm )n
1 does not give awide variation in μ

and μ = 0.140
local , μ = 0.5,2

local and =σI 0.10 fit well the data. ATaylor expansion (in the range < σI I0 ) for the

preceding equation is μ μ μ μ≅ + − σI( ) ( ) I
I0

local
2
local

0
local

0
, which is similar to the linear frictional law proposed

in [6, 55]. Two different trends emerge, i.e., the shear band center data can be verywellfitted by (21) and for
⩾I 0.01data collapse on a unique curve. On the other hand, for lower values of I, deviations from this relation

are observed, depending on the external rotation rate. The friction coefficient in slowflows (steady state)
becomes smaller than μ0

local, i.e., in our system the granularmaterial is able toflowbelow μ0
local. The deviation of

our data from themain law (21) is consistent with observations in [9, 10], where this deviation is explained based
on the heterogeneity in the stressfield (arising due to strain rate). In our system,we have gradients in stress
arising due to gradients in both strain rate and pressure.

In order to quantify the deviation from (21), wefit the data with:

μ μ α< = −( ) ( ) ( )I I p p I I*, * * 1 ln * , (22)0
local ⎡

⎣⎢
⎤
⎦⎥

where α is a constant and I* is the characteristic inertial numberwhen μ μ≅ 0
local. This relation is inspired by the

relation proposed in [9] for two-dimensional (2D) ring shear cell setup. As the relationwas initially derived for a
2D setupwith constant pressure, we fit it to our data at three different heights (i.e., constant pressure), close to
top, atmid-height, and close to bottom. Infigure 10, different colored dashed lines represent this fit at themid-
height of the system for each value of rotation rate explored.We observe that the prediction is in close agreement
with the data, even though our systemhas different dimensions and boundary conditions. Data and
corresponding fits for different heights (pressures) are reported in appendix A.Wefind that bothα and I* do not
depend on pressure.

4.2. Fabric anisotropy
In order to look for the connection between anisotropic fabric and effective friction coefficient in the inertial
regime, herewe explore the dependence of Fdev on I. Infigure 11, we plot the local Fdev as obtained by
simulationswith different rates of rotation against I .Weobserve that like μ, Fdev varies strongly against I and its
dependence on I can be represented as:

= +
−

+( ) ( ) ( ) ( )
F I p F p

F p F p

I I
, * *

* *

1
, (23)

Fdev dev
0

dev
(2)

dev
0

0

with F p( *)dev
0 being the fabric anisotropy in the quasistatic state (as given in (19)), F p( *)dev

(2) is the threshold
fabric anisotropy, and IF0 is the typical inertial number, which is an order ofmagnitude different from σI0 . Green,
red, and black lines show thefit to the preceding relation at pressure levels 100, 200, and 400 −Nm 2, respectively,
with points in the center of the shear band highlighted (black circles). Fit parameters to these results are
presented in table 3. It is noticeable that unlike μ, I alone is not able to describe Fdev , with the effect of pressure
being prominent in case of slowflows i.e., low I. In contrast, for fast flows, the deviatoric fabric seems to become
independent of pressure.

Figure 10.The local effective friction coefficient plotted against the inertial number I for results from simulationswith different rates
of rotation. The solid black line represents (21), with μ = 0.140

local , μ = 0.3,2
local and =σI 0.026.0 The dotted line shows the Taylor

expansion of (21). Different symbols represent different rates of rotation as given in the legend, lines with the same color represent the
solution of (22). Black circles represent the data in the center of the shear band, other data are shown for γ γ> = −˙ ˙ 0.01 sc

1.
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The increase in the contact anisotropywith inertial number is in accordance with some recent studies
[49, 68]. It is important tomention that for even higher rates of rotation of the system, i.e., inertial number

>I 0.1, Fdev shows a different behavior as predicted by (23) and a decreasing trend is observed (as reported in
[45]), which is beyond the scope of this work. Thismight be due to the fact that for >I 0.1 the packing becomes
very loose (ν ⩽ 0.55 ). Also for such high rates of rotation, the centrifugal force on grains due to rotation
becomes comparable to the gravitational force. As a result, the top surface is notflat anymore; instead the surface
develops a dip in themiddle, as observed previously [45, 70, 71]. In this range, the kinetic and contact
contributions of the local effective friction μ also become comparable.

Starting fromboth variations of local effective friction and fabric anisotropy as a function of inertial number
I, it is tempting to ask the question if the correlation in (20) holds for the inertial regime aswell. The result is
displayed infigure 12. The solid line shows (20), whichfits well the shear band center data being highlighted by
black circles. It is noticeable that the fit used by the shear band data in the quasistatic state workswell for some
range in the inertial regime >I 0.005. On the other hand the data outside the shear band shows a different
behavior and is found to be below the solid line, which is consistent with the trend observed in case of μ and Fdev

(separately) as a function of I. However, for even fasterflows, a different trend is observed that can also befitted

Figure 11.The local fabric anisotropy Fdev plotted against the inertial number I for results from simulationswith different rates of
rotation. Different symbols represent different rates of rotation as given in the legend. Lines arefit to (23) for pressure levels

=p 100, 200, and 400 −Nm 2 respectively, with fit parameters given in table 3. The arrow shows increasing pressure. Black circles
represent the data in the center of the shear band, other data are shown for γ γ> = −˙ ˙ 0.01 sc

1.

Table 3.Table showing thefit parameters Fdev
0 , Fdev

(2) , and
IF0 in (23) for different values of pressure p (in units of

−Nm 2 ).

p Fdev
0 Fdev

(2) IF0

100 0.1 ± 0.0005 0.17 ± 0.0005 0.012
200 0.095 ± 0.0008 0.17 ± 0.0001 0.011
400 0.085 ± 0.0001 0.17 ± 0.0004 0.009

Figure 12. μ plotted against Fdev for results from simulationswith different rates of rotation, as given in the legend. The solid line
represents (20), while the dashed line (with slope ⋍3.5 ) isfit by the eye. Black circles represent the data in the center of the shear band,
other data are shown for γ γ> = −˙ ˙ 0.01 sc

1. The red dashed line separates quasistatic and inertial regimes, based on the data in figure 8.
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by a slightly different linear relation (dot-dashed line). This shows that the effective friction and fabric
anisotropy are correlated even in the inertial regime.We check a possible dependence of this correlation on
pressure in appendix B, andwefind that the correction has no dependence on pressure.

5.Discussion and conclusion

To summarize, this work is an exploration of 3D granular shearflowusingDEMparticle simulations.We
particularly focused on the effect of both particle softness and external compression (gravity) on the flow
behavior, considering both local stress and structure as the relevant state parameters.

Quasistatic flowsOur study shows that the shear strength (effectivemacroscopic friction coefficient μ) of the
material decreases with increase in either pressure or particle softness for the quasistatic flows, so the μ I( )
rheology has to be generalized.Wefind that the data for a broad range of pressure (different gravity) and particle
softness can be expressed as a unique power law, when analyzed in terms of the control parameter local
dimensionless pressure p*, which can be interpreted as the non-dimensional local average overlap (scaledwith
mean particle diameter). This quantity is also a ratio of time scales and can be used to quantify the softness of the
bulkmaterial relative to the local compression (pressure) level. Low values of p* signify rigid particles, while a
high p* implies soft, deformable particles. Both softness and pressure are also found to affect the local
microstructure, i.e., the anisotropy of the contact network, which is quantified by the deviatoric fabric (Fdev).
We show that the deviatoric fabric can also be expressed as a power law of p*with an exponent similar to that of
the shear strength but a different characteristic dimensionless pressure. This points out that the local anisotropy
of the contact network (deviatoric fabric) and the shear strength of thematerial are highly correlated in the slow,
quasistaticflows and the shear strength follows the anisotropy of the contact network, albeit with a different
response characteristics.

These results can be significant for planetary studies regarding the shear strength of the granularmaterial on
extraterrestrial bodies such asMoon orMars. Significant amount of experimental work using parabolic flights
have shown the increase in shear strength of thematerial with decreasing gravity [18–23]without proper
explanation.We propose that the anisotropy, i.e., the rearrangement in the contact network, is the key
mechanism controlling this dependence if no new g-dependent effects or forces are involved.With decreasing
pressure, the packing becomes loose (due to decrease in body force acting on the particles), which in turn
providesmore free space to the particles to rearrange (and thus align) in response to the local shear. The fact that
the particle softness and pressure have been shown to have similar effects on the localflowbehaviormakes this
work equally relevant for soft particles thatfind their applications inmany engineering and biological systems
[25]. Since it is extremely difficult and expensive to perform in situ experiments on theMoon (or even the
parabolic flight), the ‘compensation’ effect we findwith the ratio of pressure g and particle stiffness kn allows us
tomimic a variable broad pressure range by tweaking/tuning the particle stiffness. Centrifuges can be used for
variation towards larger g, i.e., softer particles.

Even though the shear strength and deviatoric fabric are found to be strongly correlated, wefind that the
fabric tensor is in an almost planar state like the strain-rate tensor, whereas the stress tensor is in a planar state
with a strong additional triaxial component. This shows that even though the norms of two tensors are found to
be correlated, still they can behave differently.

Inertial flows Further, to study the rheology of the system for gravity = −g 10 ms 2 and = −k 100 Nmn
1, the

rotation rate of the system is increased. For faster flows the system enters into a rate dependent inertial regime,
consistent with previous studies [6, 8, 55].Wefind that the frictional laws obtained fromhomogeneous shear
flows [55] can be applied locally in the inertial regime, while they fail to predict the behavior of thematerial in the
slower, quasistatic regime, in case of non-homogeneous granularflows. The local rheology laws can be applied
to our data in the center of the shear bands, where the strain rate and stress gradients are zero, hence thematerial
can be assumed to be homogeneously sheared.However, away from the center of the shear bands, in the
quasistatic regime, we observe a nearly identical range of μ values corresponding to a completely different range
of I.Wefind that in our system thematerial is able toflow even below μ0

local, albeit slowly; we explain this by
using an approach similar toKoval et al [9]. The local contact anisotropy F( )dev also shows behavior similar to
that of μ0

local, i.e., it increases with increasing I, including some similar, possibly non-local effects. This shows
that local effective friction and contact anisotropy are correlated in both quasistatic state and inertial regime.
Thus the increase of μwith I as observed in the inertial regime is accompanied by the evolution of the
microstructure (contact anisotropy)with increasing inertial number. This picture is consistent with the recent
study of Azéma et al [68]. However, for very fastflows, a different trend is observed.

ConclusionThe effectivemacroscopic friction (steady state shear strength) of thematerial is found to be
affected not only by the local shear rate, but also by external compression (due to pressure) and softness of the
particles.While traditionally the inertial number, the ratio of stress and strain-rate time scales, is dominating the
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flow rheology, we find that a second dimensionless number, the ratio of softness and stress time scales,must be
involved to characterize the bulkflowbehavior. For very slow shear rate the former can be ignored, while the
latter affects the shear strength by decreasing it with an increase in either gravity (and thus local pressure) or
particle softness. For fasterflows, the effective friction is found to increase in general with increasing shear rate.
However, the tails of shear bands feature an anomalously small effective friction—as observed previously
[9, 10, 72]. For the dependence of effectivemacroscopic friction on the preceding three quantities, the change in
localmicrostructure (contact anisotropy) is found to be a key parameter, with similar norm, but different shape
factor.

Open issuesThe deviations observed in μ0
local for slowflowsmight also bewell captured using the non-local

models developed recently byKamrin et al [10, 11, 72]; this work is in progress. Another related issue that
remains untouched is the effect of particle softness and external compression (gravity here) on the non-locality.
A study of effect of pressure (gravity) on primary and secondary velocity fields, as done recently in [73, 74], also
deserves a further study, as well as the effect of softness and pressure on the shear banding. Looking towards the
future, we are now in a position to address various important issues, such as unexpectedly high shear strength of
thematerial at low (normal) stress or reduced gravity and a direct relation between the contact anisotropy and
the shear strength of thematerial. These issues are vital for a better explanation of themacroscopic behavior of
the granular systems fromamacroscopic observation. The current study dealt with a dense systemwith small
interparticle friction (μ = 0.01p ), where the effect of softness on themacroscopic behavior ismore direct than

for large μp. However, an issue that remains unanswered andwill be an extension of this study is whether the

same effect can also be observed for relatively loose systems (with higher interparticle friction). The question of
whether the correlation between contact anisotropy and shear strength is just a consequence of relatively low
interparticle friction or if it will also hold for amore realisticmaterial (with higher interparticle friction) remains
to be answered. Finally, the influence of polydispersity on ourmajorfindings is an open question too.
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AppendixA. Pressure dependence of localmacroscopic friction

In this section, we explore the pressure dependence of our rheological laws as presented in section 4. Figure A1
shows the fits for three different pressure levels (height in the split-bottom cell), namely close to bottom,mid-
height, and top.Wefind for pressure levels thefitted law (22)well describes the data. Figure A2 shows thefitting
parameters α and I*, versus rotation rate Ω π2 for different pressure levels. Interestingly, we observe that bothα
and I* collapse irrespective of pressure value.We conclude that thefitting variables do not depend on pressure,
and no extra pressure parameter is required in (22).

Figure A1. μ plotted against I for different local pressures in the system (a) p=100, (b) p=200, and (c) p=400 −Nm 2.
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Appendix B. Pressure dependence of correlation

In this section, we test the correlation between μ and Fdev in quasistatic and extended inertial regimes that was
presented in section 4. Figure B1 shows the data for three different pressure levels namely close to bottom,mid-
height, and top. The solid line shows (20), while the dashed line shows the best fit through the data.We see that
the dashed line is below the solid line, which is consistent with the observation in figure 12. The correlation holds
verywell for all rotation rates, except for the fastest, which seems to fall off from the prediction of (20).
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