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Abstract

The steady-state shear rheology of granular materials is investigated in slow quasistatic and inertial
flows. The effect of gravity (thus the local pressure) and the often-neglected contact stiffness are the
focus of this study. A series of particle simulations are performed on a weakly frictional granular
assembly in a split-bottom geometry considering various magnitudes of gravity and contact stiffnesses.
While traditionally the inertial number, i.e., the ratio of stress to strain-rate time scales, is used to
describe the flow rheology, we report that a second dimensionless number, the ratio of softness and
stress time scales, must also be included to characterize the bulk flow behavior. For slow, quasistatic
flows, the density increases while the effective (macroscopic) friction decreases with increase in either
particle softness or local pressure. This trend is added to the y (I) rheology and can be traced back to
the anisotropy in the contact network, displaying a linear correlation between the effective friction
coefficient and deviatoric fabric in the steady state. When the external rotation rate is increased
towards the inertial regime, for a given gravity field and contact stiffness, the effective friction increases
faster than linearly with the deviatoric fabric.

1. Introduction

Granular media are envisaged as a collection of macroscopic and athermal particles which interact through
dissipative contact forces [ 1-3]. A continuum description of the flow behavior of granular media is highly
desirable, due to its application in both natural phenomena and industrial applications [1, 2]. Despite the
numerous efforts, the constitutive relations describing the granular flow behavior is still a matter of debate. Solid
mechanics and kinetic theory have been successful in predicting the solid—and gas—like behavior respectively

[4, 5]. At one extreme particles interact via enduring contacts, while in the gaseous regime the binary collisions
are the mode of momentum exchange. The recently proposed inertial number framework has been successful in
describing the flow behavior in the liquid like regime when the particles not only undergo collisions but also
frictional interactions with other particles [3, 6—8]. Though it very well predicts the flow behavior in case of
homogeneous shear, it fails in case of a non-homogeneous shear flow [9-11].

Gravity (compression) is a critical factor in many granular flows [1, 3, 8]. Avalanches and debris flows play
an important role in the transport of mass existing at the surface of Earth. Gravity-driven flows have also been
observed on other planetary bodies of our solar system and are of particular importance in understanding the
geology of planets and asteroids as well as for the human exploration of the Moon and Mars in the coming
decades [12]. Currently, surface features found on Mars [13], Venus [ 14], and the Moon [15] are hypothesized
to be the results of avalanches of granular material.

One of the important aspects of granular shear flows is the dependence of stress on imposed driving rate.
Various experimental and numerical studies have shown that for slow—dense, quasistatic flows, the ratio of shear
to compressive stress (effective friction coefficient) is independent of the imposed driving rate [3, 16, 17].
However, very little is known regarding the same in the presence of a broader range of normal stress. Shear tests
performed on parabolic flights have shown an increase in the effective friction at low confinement [18-23].

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Brucks et al [24] also obtained a similar trend using centrifuge experiments at gravity levels larger than Earth’s
gravity. Despite these studies, the effect of external compression (gravity) on granular flows is still poorly
understood.

Soft materials like hydrogel and elastomer, which can support large deformation are of increasing
importance in engineering and biological applications such as tissue scaffolding, bioseparation and micro-and-
nano—printing [25]. While inertial number has been relatively successful in understanding the dynamics of rigid
particles [6], elasticity becomes relevant for soft particles [17, 26]. The deformability of the soft particles has been
shown to affect the force network close to the jamming transition [27]. Recent study by Vaart et al [28] has
shown different rheological behavior for hard and soft particle suspensions. Despite the increasing importance,
the models for soft deformable particles have been largely ignored, and only recently in a few theoretical
attempts have been made to incorporate the particle stiffness [29, 30].

We claim here that these two factors, i.e., pressure (gravity) and softness can be seen as two aspects of the
same phenomenon. We aim to test this claim by answering the following questions: (1) How does particle
softness affect the bulk flow behavior? (2) Is there a unique law that can describe the flow behavior on Earth,
Mars, and the Moon, i.e., for a broad range of pressure?

In this paper, we address the preceding questions with a focus on dense, weakly frictional, quasistatic
granular flow. Using the discrete element method (DEM), we simulate cohesionless frictional granular material
in a split-bottom ring shear cell. An important aspect of this setup is that the shear rate is given solely by external
rotation rate and the geometry. At the same time, in this geometry the local strain rate does not depend strongly
on the external compression [31], unlike the inclined plane and rotation drum where gravity has a strong effect
[24, 32, 33]. To study the effect of pressure (gravity) and particle softness, we independently vary both gravity
and particle softness by two orders of magnitude. In order to scan wide range of pressure in our set up, we
manipulate the gravity field. A change in particle softness provides an adjustment on the microscopic scale, while
gravity is a macroscopic (field) modification. We find that they have similar effect at the mesoscopic (local) scale.
The bulk behavior can be well described using a dimensionless parameter, defined as the ratio between the time
scales due to gravitational compression and contact stiffness. Furthermore, by increasing the external rotation
rate, we study the dependence of effective friction and contact network anisotropy (deviatoric fabric) on the
inertial number. The dependence of effective friction and deviatoric fabric on pressure is added to y (1)
rheology. Finally, we address the non-local effects in our results due to the presence of gradients in both stress
and strain rate, which are quantified by following an approach similar to Koval et al [9].

The outline of this paper is as follows: in section 2 we describe our numerical setup and methodology. We
present our results for quasistatic state in section 3. In section 4, we provide results on the rheological behavior
and combine it with the results from quasistatic state to present new rheological laws. We then close the paper
with a discussion of our results in section 5 along with a possible outlook for future research.

2. Discrete element method (DEM)

2.1.Model

Our computational techniques are based on the soft-sphere DEM simulations as developed by Cundall and
Strack [34], Walton [35], and Luding [36—38]. The normal force between particles in contact is modeled by a
Hookean springas f, = —k, 8, — 1, v,, wherek,, ,, #,, and v, are the normal stiffness, particle overlap,
normal viscous damping coefficient, and relative velocity in the normal direction, respectively. Similarly, the
tangential forceis modeled as f = —k; & — n v, where k, = 2k,/7,6,,n, = n,/4,and v,are the tangential
stiffness, relative displacement in tangential direction, tangential viscous damping coefficient, and relative
velocity in tangential direction, respectively. We also introduce Coulomb’s friction between the particles, where
the tangential force f, is switched to the sliding force |[f | = —p, If, |, H, being the particle friction coefficient
when f; exceeds the critical value, i.e. |f | > Hy I£, | (with H, = 0.01 ) [38].

To study the effect of particle softness on the macroscopic behavior, we explore a range of normal contact
stiffness k,,, from 10 Nm™ < k, < 10* Nm~!. When k,, is changed, k, 77,,, and 5, are changed as well to ensure
that the coefficients of restitution remain unchanged. While changing k,,, the time step for numerical integration
Ot is adjusted such that it much smaller compared the contact duration to ensure accurate dynamic
integration [38].

2.2. Split-bottom ring shear cell

Figure 1 is a sketch of our numerical setup [39—42]. In this figure, the inner, split, and outer radii are given by R;,
R, and R,, respectively, where the concentric cylinders rotate relative to each other at a rate £2 around the
symmetry axis (the dot-dashed line). The ring shaped split at the bottom separates the moving and static parts of
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Figure 1. A sketch of our numerical setup consisting of a fixed inner part (light blue shade) and a rotating outer part (white). The white
part of the base and the outer cylinder rotate with the same angular velocity, £2, around the symmetry axis (dot-dashed line). The
inner, split, and outer radii are given by R; = 8(a), R, = 80(a),and R, = 100(a), respectively, where each radius is measured from
the symmetry axis. The gravity, g, points downwards as shown by an arrow.

Table 1. Table showing the values of 2£ (units of s™"), g (units of ms2) and particle stiffness k,, (units of Nm ™) used in our

T
simulations, and various time scales associated with the system (in units of s ), as discussed in the main text. The values of T,
and T), are the average values reported at z = 2(d), H/2, H — 2(d) in the center of the shear band.

g = k, T.(x 1073 T,(x 1072) T, (x 1072) T T,(x 107%)
0.5 0.005 100 2 5.6 6.6 25,20,10 1.7,2.5,5
1 0.01 100 2 5.6 4.7 10.9,7.8,2.7 12.5,15.3,32
2 0.01 100 2 5.6 33 10.7,7.5,2.7 9,11,22
5 0.01 100 2 5.6 2.1 10.3,7.4,2.6 5.9,7,14.6
5 0.01 500 0.1 2.5 2.1 10.6,7.5,2.1 5.1,7,14.1
20 0.01 100 2 5.6 1.05 9.7,7.0,2.6 2.9,3.8,8
20 0.01 400 10 11.2 1.05 10,7.1,2.7 2.9,3.6,7.4
50 0.01 100 2 5.6 0.66 8.7,6.6,2.5 1.8,2.2,4
50 0.01 1000 0.66 18 0.66 10.1,7.1,2.6 1.9,2.5,7
10 0.01 100 2 5.6 L5 9.9,7.0,2.6 4,5.6,24
10 0.01 1000 0.66 18 L5 9.1,8.1,2.6 4,5.6,27
10 0.01 10000 0.2 0.56 1.5 10.7,7.3,2.8 4,5.4,31
10 0.1 100 2 5.6 L5 1.1,0.7,0.23 4,6,9
10 0.5 100 2 5.6 L5 0.2,0.15,0.05 4,5,10
10 1.0 100 2 5.6 1.5 0.1,0.07,0.02 4,5,20
10 2.0 100 2 5.6 L5 0.020.03,0.008 4,6,18

the system, where a part of the bottom and the outer cylinder rotate at the same rate. The system is filled with
N & 3.7 x 10* polydispersed spherical particles with density g, = 2000 kgm™ = 2 gem™ up to height H.

The average size of particles is (a) = 1.1 mm, and the width of the homogeneous size-distribution (with
Amin /Gmax = 1/2)is1 — A = 1 — (a)*/{(a®) = 0.0357. The cylindrical walls and the bottom are roughened by
attaching some (about 3% of the total number) attached/glued particles [41, 43, 44].

When there is relative motion between inner and outer cylinders, a shear band initiates at the bottom from
the split position R, and propagates upwards and inwards, remaining far away from the cylindrical walls in most
cases [40, 42]. The qualitative behavior is governed by the ratio H/R; and three regimes can be observed as
reported in [40,42]. We choose H = 0.034 m (for g = 10 ms™?and k, = 100 Nm™! ), such that azimuthal
velocity profiles always have the error function shape. The shear band always reaches the free top surface and
stays away from the walls, as reported in [40]. With increasing filling height (data reported in [45]), the shear
band at the top surface gets wider and moves inwards, before stronger deviations from the error function are
observed [42]. However, for none of our simulations we observed instabilities as recently reported by Moosave
etal [46]. Our simulations indicate (data not shown) that the width decreases and the position moves less

inwards with increasing k,, and g.

To study the bulk behavior in a broad pressure range, gravity is varied in the range 0.5 ms™2 < ¢ < 50 ms™2.
The details regarding rotation rate of the system are reported in table 1. The total simulation time is chosen such
that the cylinder completes half a rotation in that time.

! The height varies slightly with gravity and particle softness.
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2.3.Local averaging

One of the goals of current research in the granular community is to derive macroscopic continuum theory
based on the given micro-mechanical properties [47—49]. In our cylindrical cell, we assume translational
invariance in the azimuthal 6— direction. The averaging is thus performed over toroidal volumes over many
snapshots in time, leading to generic fields Q (r, z) as function of the radial and vertical positions. Here, the
averaging is performed with spacings Ar and Az around two particles diameter in radial and vertical directions
(averaging procedure for two and three dimensions is discussed in detail in [43, 48] and hence not discussed
further here). We tested our results for averaging with different spacings (two, three, and four particle
diameters) and the results are found to be unaffected.

2.3.1. Macroscopic (tensorial) quantities
Here, we present general definitions of the averaged macroscopic quantities—including strain rate, stress, and
fabric (structure) tensors.

The strain rate is calculated by averaging the velocity gradient of the particles over the cell with volume Vand
is given by

e 1) = 3 (Vv + Vvl ()

i€V

with particle i, velocity vi, and Greek letters represent the cylindrical components, radial distance r, azimuthal
angle 6, and height z, while \/ represents the gradient in cylindrical coordinate [43].
The stress tensor is given by

1 o
Oup () = v Zmlévgév}; - Zléf; , (2)

eV ceVvV

with particle , contact ¢, mass 7', fluctuations velocity 5v', force ¢, and branch vector I°. The first term is the
sum of kinetic energy fluctuations, and the second term involves the dyadic product of the contact force with the
contact-branch vector.

The quantity which describes the local configuration of a granular assembly is the fabric tensor [49, 50] and
is given by

Foy (r) = éZViZnén/ﬁ:, (3)

ieV  cei

where V' represents the particle volume which lies inside the averaging volume V, ° is the normal unit branch-
vector pointing from the center of particle i to contact c.

2.3.2. Isotropic and deviatoric parts
Any given tensor Q can be uniquely decomposed into isotropic and deviatoric parts as

Q=QQI+Qp (4)

with I being the identity matrix, Q, = % Tr Q and the traceless deviator Qp. Thelatter contains information
about the eigensystem of Q, that is identical to the eigensystem of Qp itself.

Let us assume Q;, Q,, and Qs are the eigenvalues of Qp sorted such that Q; > Q, > Qs. Based on the
normalization, we use the following definition to quantify the anisotropy of any tensor Qp using a single scalar
quantity:

on (@-Q) +(Qz—6Q3)2 + (Qs—Q1>2’ -

the deviators €gey, Odev> and Fyey refer to strain rate €4, stress 6,5, and fabric F,4, respectively. While
Qdev = |Qq — Q3] for plane strain simulations (Q, = 0), alternative definitions of Qg are reportedin [51]
using other (Frobenius) normalization better suited for the elastic regime.

¥ = €4ey quantifies the local strain-rate magnitude, which is very close to the form defined in cylindrical
coordinates [52] as tested in [43]. The pressure p is the isotropic hydrostatic stress, while 7 = o4, quantifies
objectively the shear stress. The deviatoric stress ratio, u = 7/p, is the effective macroscopic friction. The
volumetric fabric 3F, represents the contact number density, while the deviatoric fabric F4., quantifies the
anisotropy of the contact network (as studied in detail in [53]).

4
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2.4. Time scales
To characterize the dynamics of the system, we look at different time scales. At first, we define two microscopic
time scales related to the contact duration and the viscous damping coefficient between two particles in contact,

= /%,g:%, (6)

where () is the mass of a particle with mean diameter. Ty and 7, can be related to contact duration

T=—-2— 2 Next, two time scales associated with external forces, i.e., the gravity and external rotation rate,

T
@ 2
T, = [ g, = 2F 7
g g e=3 (7)

can be introduced as
respectively, where T is the time taken by a particle with zero initial velocity to fall a distance (d)/2, and Ty, is the
time taken by the system to complete a rotation.

The time scales, (6) and (7), are functions of material constants and applied external forces, hence, are
constants throughout the system. In this sense, the time scales, T,, T, Ty and T, are global. On the other hand,
two local time scales related to the local shear rate y and pressure p, as introduced in [6, 55], are:

(d) F , ®)
p
with p being the bulk density.

As shown in the following sections, the spatial distributions of pressure and shear rate are inhomogeneous
due to gravity and shear localization. Therefore, in contrast to the global time scales, T; and T, are local field
variables that depend on spatial position.

The time scales can be combined to formulate dimensionless numbers that give indications of dominance of
one time scale over the other. For example, the inertial number, as introduced in [7, 8, 55],

I=T,/T, =y(d)/Jpip, )

provides an estimate of the local rapidity of the flow. For I < 1, the flow is quasistatic, where particles interact
via enduring contacts and inertial effects are negligible. For I ~ 1, the flow is in the dense inertial regime, and for
I > 1,the flowis in the rapid, collisional gas-like state”, Other expressions have been introduced by various
authors, such as the Savage or Coulomb number 72 (d)’p/p, that are simply the square of the inertial number
I[56].

A dimensionless parameter, the global compressibility, can be introduced as the ratio between Ti.and T

T _ |[(m)g
K= T k) 1o

providing a global measure of compressibility of the bulk material. A high &, signifies that the bulk material is
compressible, which comes from either very high confinement by strong gravity or from low contact stiffness at
particle level. On the other hand, when &, is small, the average overlap is very small compared to the particle
diameter, which means that the bulk material is closer to the rigid limit. A similar dimensionless parameter can
be introduced as

respectively, as

1
L=—1
7

L& _ |p{d)
T ki
which estimates the compressibility of the material at the local scale®.

Table 1 shows typical values of time scales in our simulations, and table 2 reports various dimensionless
numbers. We observe that for flows with a rotation rate £2/2z = 0.01 s~ and gravity g > 1 ms™2, the inertial
number I is well below one for all values of k,,. For lower values of gravity ¢ = 0.5 ms™2, the rotation rate is
chosen to be £2/2z = 0.005 s~!, such that I'stays in the same range. From this table we infer that the system can

) (11)

Kp

2 . . . .
In case of a Hertzian contact model the time scale related to contact duration willbe T, = Cp~1/¢

material parameter constant. For details, please refer to [54].

, where pis the compression, and Cisa

? A variant of inertial number « = 7{d)/ /Py /o canbe defined by using only the kinetic pressure instead of the total pressure (See (2)).

1/3

4 . . . e .
In case of a Hertzian contact model, it would be pressure dependent as k, o« p'’?, where the constant of proportionality is a material

parameter constant.
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Table 2. Table showing the values of g (units of ms~*) and particle stiff-
ness k,, (units of Nm ™) used in our simulations, and various dimension-
less numbers, as discussed in the main text. The average values of I are
reportedat z = 2(d), H/2, H — 2(d) in the center of the shear band.

g % k, 1 ng
0.5 0.005 100 (7,12,50) X102 2%x107°
0.01 100 (1.3,2,4)x107° 5x107*
2 0.01 100 (0.75,2,1.4) 107> 3.4 % 1073
5 0.01 100 (2,0.7,0.9) x1073 1x1073
5 0.01 500 (2.5,0.8,1.4) x107° 2x107*
20 0.01 100 (1,0.5,0.9) 107> 1x107°
20 0.01 400 (2,4,7)x107* 1x107*
50 0.01 100 (8,3.4,7.2) 107> 25 %1073
50 0.01 1000 (5,3,6) x10™° 2.5 % 1074
10 0.01 100 (1.1,0.6,1.5) x10> 5%x107*
10 0.01 1000 (1.4,0.5,1.6) x107° 5x107°
10 0.01 10000 (1.2,0.6,0.9) x10™> 5x107°
10 0.1 100 (1.5,0.6,0.9) 1072 5%x107*
10 0.5 100 (7.5,2.6,6) 107> 5x107*
10 1.0 100 (1.5,0.5,10.2) x10" 5%x107*
10 2.0 100 0.3,0.16,1.51 5x107*

be safely assumed to be in the rate-independent quasistatic state for a wide range of gand k,,. However, we
observe that with an increase in rate of rotation £2/2x, I begins to increase and the flow behavior enters into the
rate-dependent inertial regime.

3. Quasistatic rheology

3.1. Critical state

Shearing of a granular system leads to volume dilation and build-up of shear stress and anisotropy in fabric
(quantified by deviatoric fabric). Since we are interested in the steady-state flow properties, we need to know
what is the minimum time (or equivalent strain) required to reach the steady-state flow regime.

Wedefine ¢ = £At, an angle through which the system rotates (where At is the simulation time) as the
shear control parameter. In general, the time required for stabilization depends on the variable considered [9].
In the following, we check the relaxation of various quantities (both locally and globally averaged) towards the
steady state. As we expect this relaxation to be slower for small £2 (due to small dissipation), we study the
relaxation behavior for /27 = 0.01 s~! that is the smallest £2 in our simulations.

At first, we analyze the global quantities (averaged over the whole system) like the kinetic energy and average
number of contacts. Both quantities saturate very fast (¢ ~ 5°). Next, we analyze the relaxation of local
quantities, specifically the local velocity profiles. We conclude that ¢ ~ 30° is the time required to form a stable
shear band, which is in agreement with Ries et al [31] and Wortel et al [57]. Consequently, we perform the local
averaging over almost 600 snapshots distributed over ¢ > 30°.

The consistency of the local averaged quantities also depends on the accumulated local shear strain during
the averaging time. We concentrate our interest in the region where the system can be considered in a critical
state. The critical state is a unique steady state reached after long shear, where material deforms with applied
strain without any further change in normal stress, shear stress, and volume fraction, and the system forgets its
preparation history [58]. In accordance with the previous experimental and numerical results in the same setup
[43,59], we chose shear strain y = yt,, > 1tobe an estimate for the critical state (¢,, is the averaging time). In

other words, for y > %L = y, the part of the system can be assumed to be in critical state.

Figure 2(a) shows the local shear stress 7 (r, h) plotted against the local pressure p (r, h). Since the system is
non-homogeneous in nature, for a given pressure we observe a wide range of local strain rate y and we find that 7
is higher for larger y. However for y > 3 (with 7 ~ 0.08 s™'), zbecomes almost independent of the local strain.
This means that z/p is almost constant for all data points with strainrate y > 7.

In the same setup, Ries et al [31] and Szabé et al [59] also found that after long enough shear, the material
inside the shear band reaches the critical state, and characterized this condition by the local accumulated strain
y = 1. Our previous works [43, 60] also showed that for rotation rate /2z = 0.01 s7h 7~ 0.1 s~listhe shear
rate above which the shear band is well established. Since we are interested in the flow behavior of the material, as
default in the rest of the paper we focus only on the data well inside the shear band with local strain rate,
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Figure 2. (a) The local shear stress, 7 (r, h), plotted against the local pressure, p (r, h), for different values of the local shear rate,

7 (r, h) as given in the legend (in units of s7! ). (b) Pressure p, and (c) shear stress 7 plotted against time  for the spatial position

r = 0.08 m (center of shear band) and & = 0.022 m. Cyan, magenta, and black colors represent the results obtained by averaging
using cell size of 1, 1.5, and 2 particle diameters, respectively, in the r- and z-direction, with a quarter ring in the azimuthal direction.
The data reported here are from a simulation with ¢ = 10 ms™2 and £/2z = 0.01 s7\.

P ) > (2) = 122 (12)
2r

unless specified otherwise.

Figures 2(b) and (c) show the steady-state pressure and shear stress plotted against time, respectively, for
different averaging spacingsinrandz (1, 1.5, and 2 particle diameters). For the sake of clarity, data for only
one spatial point (center of shear band at mid-height) are plotted. We observe that the size of averaging spacing
does not affect the mean (averaged) results, only that the standard deviation. The results from the smallest cell
size, i.e., one particle diameter, show the maximum scatter or variation of data; the pressure varies only relatively
little (8%), whereas the shear stress varies a lot more (35%). (In this study we do not attempt to unravel the
contributions that are due to statistical fluctuations and the real time-evolution of the system, i.e., increase
(semi-elastic) and decrease (plastic rearrangement) of stresses, on short time scales.) In the rest of the paper, the
averaging of the data is performed over cell sizes of two particle diameters, unless specified otherwise.

3.2. Effective friction coefficient

We will now turn our attention towards the effect of pressure and softness on the effective macroscopic friction
7/p in the quasistatic state. In previous studies, it has been assumed to be independent of both the particle
stiffness and pressure [6, 7]. However, particles used in these cases were extremely rigid. Few studies were
performed systematically investigating the flow behavior in the low pressure/gravity regime [18-23].

Figures 3(a) and (b) show shear stress-pressure curves for different values of normal stiffness k,, and external
gravity g, respectively. In these plots, for the sake of clarity, both shear stress and pressure are plotted only at the
center position R, of the shear band (R, being the position at which both 7 and the local shear rate are maximal).
For abetter comparison, both shear stress and pressure are normalized with the maximum pressure p
reached in the simulation with particular k, and g (so that both abscissa and ordinates are of the same order)’.
We observe that both softness of the particles (interpreted as opposite of contact stiffness) and gravity drastically
affect the shear stress. Moreover, they act in the same direction as 7 decreases with increase in either particle
softness or external gravity. We also see that for the most soft particles or the higher gravity data, the relation
between 7and p is non-linear.

5 .. L.
The error-bars show the standard deviation of the data in time.
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stiffness) as given in the legend in units of Nm™!. Here, the gravity is fixed to ¢ = 10 ms~2. (Right) The local shear stress plotted
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k, = 100 Nm™". Both 7 (r, h) and p (r, h) are scaled by the maximum pressure p_ (r, h), respectively.
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Figure 4. The global friction coefficient, ﬂogbbal, plotted against (left) gravity g, and (right) the global compressibility,

k = (m)g/(k, (d)), on alog-linear scale for different values of the normal stiffness as shown in the legend. The solid line represents
(14).

3.2.1. Linear approximation

To understand the dependence of the effective macroscopic coefficient in a quasistatic state on softness and
gravity (pressure), we estimate it as the slope of a linear fitting function for the shear stress against pressure in the
same fashion as the Mohr-Coulomb failure criterion, i.e.,

7(h) = udp(h),
global

where p #°* is the global friction coefficient for a given system.

Figure 4(a) displays the global friction coefficient ,uogk’bal plotted against gravity g for different values of the

(13)

normal stiffness k,, as given in the legend. We observe that ,uogl‘)bal decreases with increasing gravity, while it

increases with increasing k,,. It is important to mention that ﬂogl‘)bal is obtained by fitting the data to (13), i.e., it is
not the average of % for different heights in the system. As we observe that the 7 — p relation becomes non-
pir,

linear with increase in gravity or softness, as a first attempt we fit the data to a linear Mohr—Coulomb failure
criterion (13). For the fitting, all the datain the range 0 < p < p, ., are chosen. The error bars represent the error
in fitting the data, which increases with increase in softness/gravity. Figure 4(b) shows the global friction
coefficient with different values of the normal stiffness k,, and gravity g, where all results of u #°*" are collapsed,

0
a
lobal K
ﬂrg - (_) ’
Ko

where ﬂrgl"bal = 0.17 + 0.011is the global friction coefficient in the rigid particle limit and the exponent and
characteristic global compressibility are given by a ~ 0.5 and xy ~ 2.01, respectively.

if we plot them against k = K; (x, is givenin (10)).
In figure 4(b), the solid line is given by

global _
o =

u (14)
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Figure 5. The local effective friction coefficient, /40]"""1 (p*), plotted against the local dimensionless pressure, p*, on alog-linear scale.
Different symbols represent different values of k as given in the legend of figure 6, while the solid line represents (17). Local data are

shownfory >y = 0.1 s7L.

Previous microgravity parabolic flight and centrifuge experiments [18,20-24] showed a similar decreasing
trend of the effective macroscopic friction coefficient on gravity. Some authors [20, 23] attributed this
dependence to the fact that at low gravity, the body forces become weak and the electrostatic cohesive forces
begin to dominate. Klein et al [20] also argued that aload-dependent interparticle friction coefficient might be
responsible for this behavior. However, no cohesive force or load-dependent friction was implemented in any of
the DEM simulation data presented here. Hence, we claim that there should be an additional mechanism
responsible for this interesting behavior. In order to gain a better understanding of the nonlinear behavior, in the
following, we study the system locally.

3.2.2. Local dimensionless pressure

Since our system is non-homogeneous in both stress and strain-rate fields, a local description of the system is
highly desirable. In the shear stress-pressure (7 — p ) curves for different softness and gravity (figure 3), the
dependence of shear stress on pressure slightly ‘bends’ with increasing softness and gravity, i.e., the friction
coefficient develops a dependence on the pressure:

2(r, h) = > (p, k) p(r, h), (15)
local

where p1,** (p, k,) = 7 (r, h) / p(r, h)isthe local effective friction coefficient which depends on both pressure
and contact stiffness.

Figure 5 shows the local effective friction coefficient for different values of the normal stiffness and gravity,
where all results of ,uol"cal (p, k) collapse if we introduce the local dimensionless pressure,

%) _pid)
T ki’

p* = K; = (16)

defined as square of the ratio between two time scales, Ty and T}, in section 2.4 °. p* can also be interpreted as
non-dimensional average overlap (scaled with mean particle diameter). In this figure, we scanned through a
wide range of p* by systematically varying gand k,,. We observe that for p* < 5 x 1074, /401“31 (p*)isalmost
constant, while for higher values, yolocal (p*) decreases with p* up to p* =~ 0.1.

This dependence can be written in the form,

p*
ﬂolocal(px-> — ﬂrlocal &1, (17)

where /4rl°cal = 0.172 =+ 0.01 is the value of effective friction in the rigid limit, which is in fair agreement with
contact dynamics shear simulations for the same particle friction coefficient [62]. The exponent is found to be

P, = 0.5 £ 0.04 and the characteristic local dimensionless pressureis p* = 10.1 £ 0.2. As one extreme of p*,
for p* = 0.1theaverage overlap is order of 10% relative to the mean particle diameter, i.e., the soft particle limit.
The upper bound of y OIMI (p*) is the low compression case, i.e., the rigid limit, where the average overlap is much
smaller (10~*) compared to the particle diameter. y 01"“‘1 (p*) in the rigid limit is almost double as large compared
to the soft particle limit for p* ~ 0.1.

® The non-dimensional form of pressure will be different in case of a Hertzian system [61].




IOP Publishing NewJ. Phys. 17 (2015) 043028 ASinghetal

Figure 6. The local volume fraction, v (r, h), in the system plotted against the local dimensionless pressure, p*, on alog-linear scale.
Different symbols represent different values of k as given in the legend. The solid line represents (18). Local data are shown for
7>7=01s"L

3.3. Local volume fraction

In figure 6, the local volume fraction v (r, h) is plotted against the local dimensionless pressure, p*. Because of
slow quasistatic flows, no strong dilation is observed, i.e., no strong dependence of v on local shear rate. The
packing is rather loose for lower p* and tends to a critical value 1, = 0.642 + 0.002, in agreement with [63]. The
data can be fitted well by the functional form

V=1, + —, (18)
v
with p* = 0.48 + 0.02 (p; can be further expressed in terms of volumetric fabric as reported in [64]).
Interestingly, no significant difference in volume fraction v is observed for p* < 1073, while for p* > 107>
within the fluctuations, v increases almost linearly with p* (the curvature is due to the logarithmic p* axis). The
relation between v and p* is well established in the case of static packings [64, 65]. Here we show that the same
relation holds for a slow granular flow, involving considerable small but finite strain rates.

3.4.Local structure

Shearing of a granular assembly always leads to the buildup of contact anisotropy in the system [66—68]. To
study this property we analyze the deviatoric fabric as defined in (3) and use (5) to quantify anisotropy of the
contact network.

3.4.1. Local anisotropy

Figure 7 displays the local deviatoric fabric, Fgey (, h), plotted against the local dimensionless pressure p*,
where Fyey (1, h) for different values of the particle stiffness and gravity is found to collapse on a unique curve
(solid line). This dependence can be written in a similar fashion as (17),

*ﬂ2

Fuor () = Pl - 1"3— , (19)

where F{., is the anisotropy of contact network in the rigid limit, the exponent is found tobe 5, ~ 0.5 + 0.03,
and p; ~ 26.3 + 0.6. The decrease in Fye, with increasing p* can be explained in terms of the increasing volume
fraction v (r, h) with increase in p*. When the packing becomes denser, particles have less free space to (re)
arrange. Hence they cannot align along the preferential direction, thus anisotropy in response to the local shear
is found to decrease with increase in p*.

In figures 5 and 7, we observe that the local effective friction and the local contact anisotropy show a similar
trend in the quasistatic state (5, = f,). In figure 8, we plot Olocal (p*) against Fyey, (p*) for different values of k,
where alinear correlation can be inferred as,

/4()1“al (P*) = ﬂiso + deev (p*>’ (20)

where p; , = 0.01 + 0.01 (= 0) is the effective friction coefficient in the (extrapolated) limit of the isotropic
contact network (Fgey = 0)and b = 1.38 + 0.02 is a constant of proportionality. This clearly shows that in the
critical state, the shear resistance accompanies the anisotropy in the contact network. The linear relation can be a
consequence of the linear contact model, the relation might be different in case of a Hertzian contact model. It is

10
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Figure 7. The local deviatoric fabric, Fge, (r, h), plotted against the local dimensionless pressure, p*, on alog-linear scale. Different
symbols represent different values of k as given in the legend of figure 6. The solid line represents the corresponding fit to (19). Local
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Figure 8. The local friction coefficient, ﬂolml (p*), plotted against the local deviatoric fabric, Fgey (r, h), for different values of k.
Different symbols represent different values of k as given in the legend of figure 6. The solid line represents the corresponding fit to

(20). Local dataare shown for y > . = 0.1 s7L.

worthwhile to mention that no information about such a relation in the transient regime (that leads to the
critical state) can be inferred from our analysis. This correlation explains the increase in the effective friction
coefficient with decreasing gravity/softness (as observed in figure 4(a)). With increase in gravity/softness the
system becomes denser, hence the free space available to particles decreases. Hence Fg., decreases leading to a

decrease in ;,tol"cal.

3.4.2. Shape factor
In this section, we compare the shape factor (Q,/Q;) for stress and fabric tensors, where Q,, and Q; are the
eigenvalues of the deviatoric tensors as defined in section 2.3.2. Due to geometry and symmetry, the state of
strain in the shear band is plain strain, i.e., €;/€; = 0. We study the states of stress and fabric to understand the
response of the granular flow to plain strain. We focus on the shape factor to quantify the ratio between the
neutral eigenvalue (orthogonal to the shear plane) eigenvalue, to the maximum eigenvalue.

In figure 9(a), we plot the shape factor for the stress tensor. Different symbols represent different values of
compressibility k as given in the legend of figure 6, while black circles show the data in the center of shear bands
for these simulations. We observe that the shape factor is highly fluctuating for the two extremes of p*, while in

therange 10~ < p* < 1072, itis significantly below zero. This implies that the stress in the shear plane is higher
as compared to the axial stress along the neutral direction orthogonal to the shear plane. The sign means that this
axial stress is reduced perpendicular —1 and enhanced +1/2 within the shear plane [49]. The dashed line is the
data from [49], where authors studied the flow behavior on an inclined plane. We observe that the sign for both
the cases is negative, while the magnitude is different, which might be due to the difference in interparticle
friction. In figure 9(b), the shape factor of the fabric tensor fluctuates (strongly) around zero. Itis important to
mention that the fluctuations in the data are from a single simulation.

These two observations suggest that fabric and stress tensors behave differently even though they are
proportional in magnitude (norm), as shown in figure 8. The fabric tensor is in a planar state like the strain-rate
tensor, whereas the induced stress state is triaxial, as expected for a solid-like material [49]. K/F tends to positive
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Figure 9. Shape factor for (left) stress, and (right) fabric plotted against local dimensionless pressure p*. Different symbols represent
different values of k as given in the legend of figure 6. Black circles represent the data in the center of the shear band, other data are
shown for y > 7. = 0.1 sL. Solid line represents zero, while dashed line is the prediction from [49].

values for larger p*, further establishing the difference between structure and stress tensors. However, in order to
have a clear picture for the fabric tensor, the strong and weak subnetworks should be studied separately, since
only the strong subnetwork carries almost all of the fabric anisotropy [53, 69]. Along with a non-zero o,
eigenvalue we do expect other aspects to show up, like the non-collinearity of the stress/strain/fabric
eigensystems, related to induced anisotropy. Nevertheless, these features cannot be investigated further here,
due to the high fluctuations in the data.

As discussed in section 3.1 the cutoff shear rate 7 can depend on the simulation time or the averaging time.
In this section, we focused on the data only inside the shear band, which are in the critical state and have
forgotten their initial configuration due to large strain. However, the velocity gradients in the setup are smooth,
which implies that part of the system outside the shear band is also flowing, albeit slowly. If the simulation runs
longer (and hence longer averaging time can be used), the cutoff can be lowered. Eventually, if the simulation
would run infinitely long, no cutoff on the local strain rate is needed. If we reduce the cutoff on the local strain
rate (see next section), by setting . (2) = %, we observe much wider variation of data for the local effective
friction coefficient, the deviatoric fabric and the volume fraction. However, the qualitative picture (trend)
remains unaffected for all measured quantities. However, the shape factors are not strongly influenced within a
change in y, within nearly an order of magnitude. Only for very small y deviations occur as presented next for
faster and slower shear.

4. Combined rheology towards inertial regime

The previous section showed that in the quasistatic state the friction coefficient and deviatoric fabric are strongly
correlated in the critical state, though their shape factors are found to be considerably different. Motivated by
this, we check if this correlation also works in the rate-dependent inertial regime. To test the correlation, both
lower and higher inertial number data are generated by varying the external rotation rate £2 for a fixed gravity

g = 10 ms~2 and contact stiffness k, = 100 Nm™.. In the following, we will explore the evolution of the local
macroscopic friction coefficient u and deviatoric fabric with the inertial number I and merge it with the
dependence of both y and deviatoric fabric on p*, to propose a combined rheological law. As explained in the
previous section and section 3.1, the cutoff shear rate for an established critical state also depends on the time
interval for data procurement and the averaging time window. In this section, the total simulation and averaging
times are increased. Hence, the cutoff on local strain rate is set to . (£2) = % so as to capture the maximum data
(in the critical state) and present a unique local rheology law outside and inside the shear band.

4.1.Friction law

7(r,h)
p(rh)
symbols show data from different rates of rotation as given in the legend; the black solid circles represent the data

in the center of the shear band. The solid black line shows the friction law, as proposed in [7]:

(p*) . leocal(p*> _ 'uolocal(p*)

1+ I5/1

The local effective friction coefficient y = is plotted against inertial number I in figure 10. Different

> (21)

/4(1, px-) — ﬂolocal
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Figure 10. The local effective friction coefficient plotted against the inertial number I for results from simulations with different rates
of rotation. The solid black line represents (21), with /4010“’1 =0.14, ,uzl"cal = 0.3,and I = 0.026. The dotted line shows the Taylor
expansion of (21). Different symbols represent different rates of rotation as given in the legend, lines with the same color represent the
solution of (22). Black circles represent the data in the center of the shear band, other data are shown for y > 7 = 0.01 s7".

with /4010“‘1 (p*),aterm that involves softness correction, as given in (17). We observe that data from a simulation
using a single gravity (¢ = 10 ms~2) and contact stiffness (k, = 100 Nm™') does not give a wide variation in y
and ﬂolocal = 0.14, ,uzlml = 0.5,and I§ = 0.1 fit well the data. A Taylor expansion (in the range I < I ) for the

preceding equation is p (I) = yolocal + () — ;toloca])%,which is similar to the linear frictional law proposed
0

in [6, 55]. Two different trends emerge, i.e., the shear band center data can be very well fitted by (21) and for
I > 0.01 data collapse on a unique curve. On the other hand, for lower values of I, deviations from this relation
are observed, depending on the external rotation rate. The friction coefficient in slow flows (steady state)
becomes smaller than p local 5 & in our system the granular material is able to flow below ,uol"cal. The deviation of
our data from the main law (21) is consistent with observations in [9, 10], where this deviation is explained based
on the heterogeneity in the stress field (arising due to strain rate). In our system, we have gradients in stress
arising due to gradients in both strain rate and pressure.

In order to quantify the deviation from (21), we fit the data with:

/4(1<I*,p*) =,uol"cal(p*)|il —aln([/]*)], (22)

where a is a constant and I* is the characteristic inertial number when p 2 p Olocal. This relation is inspired by the
relation proposed in [9] for two-dimensional (2D) ring shear cell setup. As the relation was initially derived for a
2D setup with constant pressure, we fit it to our data at three different heights (i.e., constant pressure), close to
top, at mid-height, and close to bottom. In figure 10, different colored dashed lines represent this fit at the mid-
height of the system for each value of rotation rate explored. We observe that the prediction is in close agreement
with the data, even though our system has different dimensions and boundary conditions. Data and
corresponding fits for different heights (pressures) are reported in appendix A. We find that both @ and I* do not
depend on pressure.

4.2. Fabric anisotropy

In order to look for the connection between anisotropic fabric and effective friction coefficient in the inertial
regime, here we explore the dependence of Fg., on I. In figure 11, we plot the local Fg., as obtained by
simulations with different rates of rotation against I. We observe that like , Fy., varies strongly against I and its
dependence on I can be represented as:

FC(lg\)/ (p*) - FdOCV (P*)
1+ If/1

Faes (1 97) = Fiuo (%) + (23)

with FJ., ( p*) being the fabric anisotropy in the quasistatic state (as given in (19)), Fég& (p*) is the threshold

fabric anisotropy, and If is the typical inertial number, which is an order of magnitude different from I¢’. Green,
red, and black lines show the fit to the preceding relation at pressure levels 100, 200, and 400 Nm™2, respectively,
with points in the center of the shear band highlighted (black circles). Fit parameters to these results are
presented in table 3. It is noticeable that unlike y, I alone is not able to describe Fge,, with the effect of pressure
being prominent in case of slow flows i.e., low I. In contrast, for fast flows, the deviatoric fabric seems to become
independent of pressure.
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Figure 11. The local fabric anisotropy Fye, plotted against the inertial number I for results from simulations with different rates of
rotation. Different symbols represent different rates of rotation as given in the legend. Lines are fit to (23) for pressure levels

p = 100, 200, and 400 Nm~2 respectively, with fit parameters given in table 3. The arrow shows increasing pressure. Black circles
represent the data in the center of the shear band, other data are shown for 7 > y. = 0.01 s7..

Table 3. Table showing the fit parameters Fg.,, Fégz, and
IJ'in (23) for different values of pressure p (in units of

Nm™2).

p Fg., i Iy
100 0.1 £ 0.0005 0.17 £ 0.0005 0.012
200 0.095 £+ 0.0008 0.17 £ 0.0001 0.011

400 0.085 £ 0.0001 0.17 £ 0.0004 0.009

0.25 | Q/2n=0.01
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Q/2n=0.04 *
Q/2n=0.1
2
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Figure 12. y plotted against Fye, for results from simulations with different rates of rotation, as given in the legend. The solid line

represents (20), while the dashed line (with slope 3.5 ) is fit by the eye. Black circles represent the data in the center of the shear band,
other dataare shown for 7 > 7 = 0.01 s™'. The red dashed line separates quasistatic and inertial regimes, based on the data in figure 8.

The increase in the contact anisotropy with inertial number is in accordance with some recent studies
[49, 68]. Itis important to mention that for even higher rates of rotation of the system, i.e., inertial number
I > 0.1, F4ey shows a different behavior as predicted by (23) and a decreasing trend is observed (as reported in
[45]), which is beyond the scope of this work. This might be due to the fact that for I > 0.1 the packing becomes
veryloose (v < 0.55). Also for such high rates of rotation, the centrifugal force on grains due to rotation
becomes comparable to the gravitational force. As a result, the top surface is not flat anymore; instead the surface
develops a dip in the middle, as observed previously [45, 70, 71]. In this range, the kinetic and contact
contributions of the local effective friction y also become comparable.

Starting from both variations of local effective friction and fabric anisotropy as a function of inertial number
I, it is tempting to ask the question if the correlation in (20) holds for the inertial regime as well. The result is
displayed in figure 12. The solid line shows (20), which fits well the shear band center data being highlighted by
black circles. It is noticeable that the fit used by the shear band data in the quasistatic state works well for some
range in the inertial regime I > 0.005. On the other hand the data outside the shear band shows a different
behavior and is found to be below the solid line, which is consistent with the trend observed in case of y and Fye,
(separately) as a function of I. However, for even faster flows, a different trend is observed that can also be fitted
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by asslightly different linear relation (dot-dashed line). This shows that the effective friction and fabric
anisotropy are correlated even in the inertial regime. We check a possible dependence of this correlation on
pressure in appendix B, and we find that the correction has no dependence on pressure.

5. Discussion and conclusion

To summarize, this work is an exploration of 3D granular shear flow using DEM particle simulations. We
particularly focused on the effect of both particle softness and external compression (gravity) on the flow
behavior, considering both local stress and structure as the relevant state parameters.

Quasistatic flows Our study shows that the shear strength (effective macroscopic friction coefficient y¢) of the
material decreases with increase in either pressure or particle softness for the quasistatic flows, so the y (I)
rheology has to be generalized. We find that the data for a broad range of pressure (different gravity) and particle
softness can be expressed as a unique power law, when analyzed in terms of the control parameter local
dimensionless pressure p*, which can be interpreted as the non-dimensional local average overlap (scaled with
mean particle diameter). This quantity is also a ratio of time scales and can be used to quantify the softness of the
bulk material relative to the local compression (pressure) level. Low values of p* signify rigid particles, while a
high p* implies soft, deformable particles. Both softness and pressure are also found to affect the local
microstructure, i.e., the anisotropy of the contact network, which is quantified by the deviatoric fabric (Fgey ).
We show that the deviatoric fabric can also be expressed as a power law of p* with an exponent similar to that of
the shear strength but a different characteristic dimensionless pressure. This points out that the local anisotropy
of the contact network (deviatoric fabric) and the shear strength of the material are highly correlated in the slow,
quasistatic flows and the shear strength follows the anisotropy of the contact network, albeit with a different
response characteristics.

These results can be significant for planetary studies regarding the shear strength of the granular material on
extraterrestrial bodies such as Moon or Mars. Significant amount of experimental work using parabolic flights
have shown the increase in shear strength of the material with decreasing gravity [ 18—-23] without proper
explanation. We propose that the anisotropy, i.e., the rearrangement in the contact network, is the key
mechanism controlling this dependence if no new g-dependent effects or forces are involved. With decreasing
pressure, the packing becomes loose (due to decrease in body force acting on the particles), which in turn
provides more free space to the particles to rearrange (and thus align) in response to the local shear. The fact that
the particle softness and pressure have been shown to have similar effects on the local flow behavior makes this
work equally relevant for soft particles that find their applications in many engineering and biological systems
[25]. Since it is extremely difficult and expensive to perform in situ experiments on the Moon (or even the
parabolic flight), the ‘compensation’ effect we find with the ratio of pressure gand particle stiffness k,, allows us
to mimic a variable broad pressure range by tweaking/tuning the particle stiffness. Centrifuges can be used for
variation towards larger g, i.e., softer particles.

Even though the shear strength and deviatoric fabric are found to be strongly correlated, we find that the
fabric tensor is in an almost planar state like the strain-rate tensor, whereas the stress tensor is in a planar state
with a strong additional triaxial component. This shows that even though the norms of two tensors are found to
be correlated, still they can behave differently.

Inertial flows Further, to study the rheology of the system for gravity ¢ = 10 ms™2and k, = 100 Nm™, the
rotation rate of the system is increased. For faster flows the system enters into a rate dependent inertial regime,
consistent with previous studies [6, 8, 55]. We find that the frictional laws obtained from homogeneous shear
flows [55] can be applied locally in the inertial regime, while they fail to predict the behavior of the material in the
slower, quasistatic regime, in case of non-homogeneous granular flows. The local rheology laws can be applied
to our data in the center of the shear bands, where the strain rate and stress gradients are zero, hence the material
can be assumed to be homogeneously sheared. However, away from the center of the shear bands, in the
quasistatic regime, we observe a nearly identical range of u values corresponding to a completely different range
local Jlbeit slowly; we explain this by

0
using an approach similar to Koval et al [9]. The local contact anisotropy (Fgey ) also shows behavior similar to

of I. We find that in our system the material is able to flow even below u

that of p Olocal, i.e., itincreases with increasing I, including some similar, possibly non-local effects. This shows
thatlocal effective friction and contact anisotropy are correlated in both quasistatic state and inertial regime.
Thus the increase of p with I as observed in the inertial regime is accompanied by the evolution of the
microstructure (contact anisotropy) with increasing inertial number. This picture is consistent with the recent
study of Azéma et al [68]. However, for very fast flows, a different trend is observed.

Conclusion The effective macroscopic friction (steady state shear strength) of the material is found to be
affected not only by the local shear rate, but also by external compression (due to pressure) and softness of the

particles. While traditionally the inertial number, the ratio of stress and strain-rate time scales, is dominating the
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Figure Al. u plotted against I for different local pressures in the system (a) p = 100, (b) p = 200, and (c) p = 400 Nm~2.

flow rheology, we find that a second dimensionless number, the ratio of softness and stress time scales, must be
involved to characterize the bulk flow behavior. For very slow shear rate the former can be ignored, while the
latter affects the shear strength by decreasing it with an increase in either gravity (and thus local pressure) or
particle softness. For faster flows, the effective friction is found to increase in general with increasing shear rate.
However, the tails of shear bands feature an anomalously small effective friction—as observed previously

[9, 10, 72]. For the dependence of effective macroscopic friction on the preceding three quantities, the change in
local microstructure (contact anisotropy) is found to be a key parameter, with similar norm, but different shape
factor.

Open issues The deviations observed in y 010“1 for slow flows might also be well captured using the non-local
models developed recently by Kamrin et al [10, 11, 72]; this work is in progress. Another related issue that
remains untouched is the effect of particle softness and external compression (gravity here) on the non-locality.
A study of effect of pressure (gravity) on primary and secondary velocity fields, as done recently in [73, 74], also
deserves a further study, as well as the effect of softness and pressure on the shear banding. Looking towards the
future, we are now in a position to address various important issues, such as unexpectedly high shear strength of
the material at low (normal) stress or reduced gravity and a direct relation between the contact anisotropy and
the shear strength of the material. These issues are vital for a better explanation of the macroscopic behavior of
the granular systems from a macroscopic observation. The current study dealt with a dense system with small
interparticle friction (4, = 0.01), where the effect of softness on the macroscopic behavior is more direct than
forlarge pu,,. However, an issue that remains unanswered and will be an extension of this study is whether the
same effect can also be observed for relatively loose systems (with higher interparticle friction). The question of
whether the correlation between contact anisotropy and shear strength is just a consequence of relatively low
interparticle friction or if it will also hold for a more realistic material (with higher interparticle friction) remains
to be answered. Finally, the influence of polydispersity on our major findings is an open question too.
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Appendix A. Pressure dependence of local macroscopic friction

In this section, we explore the pressure dependence of our rheological laws as presented in section 4. Figure A1
shows the fits for three different pressure levels (height in the split-bottom cell), namely close to bottom, mid-
height, and top. We find for pressure levels the fitted law (22) well describes the data. Figure A2 shows the fitting
parameters a and I*, versus rotation rate £2/2x for different pressure levels. Interestingly, we observe that both
and I* collapse irrespective of pressure value. We conclude that the fitting variables do not depend on pressure,
and no extra pressure parameter is required in (22).
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(a)

Figure A2. (a) and (b) I* plotted against the external rotation rate for different local pressures in the system.
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Figure B1.  plotted against Fg,, for different local pressures in the system (a) p =100, (b) p =200, and (c) p =400 Nm~2. The solid
line represents the corresponding fit as presented in (20), while the dashed line is the best fit to the data.

Appendix B. Pressure dependence of correlation

In this section, we test the correlation between y and Fje, in quasistatic and extended inertial regimes that was
presented in section 4. Figure B1 shows the data for three different pressure levels namely close to bottom, mid-
height, and top. The solid line shows (20), while the dashed line shows the best fit through the data. We see that
the dashed line is below the solid line, which is consistent with the observation in figure 12. The correlation holds
very well for all rotation rates, except for the fastest, which seems to fall off from the prediction of (20).
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