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Abstract - Wet granular materials in steady-state in a quasi-static flow have
been studied with discrete particle simulations. The total torque is an exper-
imentally accessible macroscopic quantity that can be used to investigate the
shear strength, bulk cohesion and other properties of the materials. We report
in this paper how the macroscopic bulk cohesion and torque required to rotate
the system change with the liquid content. Consequently, micro-macro corre-
lations are obtained for the macro properties as a function of the microscopic
liquid bridge volume which is one factor dominating the contact force.

1. INTRODUCTION

The strength, cohesion and flow properties of granular materials are strongly influenced by the
presence of capillary cohesion. For example, sand castles with a small amount of water between
the grains keep standing, with stable vertical walls, whereas sand castles built out of dry sand grains
collapse and form a pile with a much smaller angle of repose. Due to the cohesive properties of
the wet materials, the yield shear stress increases and as a result the partially saturated wet materials
require higher torque for deformation (shear) e.g. by rotation in the shear cell. Efforts have been
made to understand the effect of liquid bridge volume on different macroscopic properties like bulk
cohesion or shear band properties [13]. In this paper we describe the calculation of the total torque
required to shear the system for a given rotation rate. The torque is calculated from the microscopic
forces of contact between the particles and walls of the shear cell. In the shear cell geometry under
the condition of slow shear, the relative motion is confined to particles in a narrow region of high
strain rate called the shear band [14]. Recent experimental studies show also that liquid is transported
away from the shear band region [9, 10]. Here we study the effects with homogeneous liquid bridge
volume throughout the system.

Earlier studies show that the macroscopic bulk cohesion increases non-linearly with increase in
liquid bridge volume [3, 11, 12, 13] in the pendular liquid bridge regime. In this paper we study the
effect of varying liquid bridge volume on the macroscopic torque required for rotation of the system.
Many real life examples show that the bulk cohesion of the materials and the torque are closely
related. Thus, we may ask, can we relate these two quantities from our numerical simulations to the
microscopic forces due to the liquid bridges? In this paper we present the relation between the macro
parameters (bulk cohesion and torque) and liquid bridge volume.
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2. DISCRETE ELEMENT METHOD SIMULATION

We study the micro-macro relation for wet granular materials in the quasistatic regime with the
Discrete Element Method using the open-source package MercuryDPM [15, 16]. In a shear cell
geometry [2], the system consists of an outer cylinder (radius Ro = 110 mm) rotating with a frequency
of frot = 0.01 s−1 around a fixed inner cylinder (radius Ri = 14.7 mm). The granular materials are
confined between the two concentric cylinders, a bottom plate, and a free top surface by gravity . The
bottom plate is split at radius Rs = 85 mm into a moving outer part and a static inner part. While in
our previous work [12] and more [7, 8, 14], the simulations were done using a quarter of the system
(0 ◦ ≤ ψ ≤ 90 ◦), using periodic boundary conditions, in order to save computation time, here we
simulate only a 30◦ section of the system (0 ◦ ≤ ψ ≤ 30 ◦).

The numerical solutions of Newton’s equations of motion is based on the specification of particle
properties. The simulation details and the material parameters used in this study are the same as our
previous work [12]. In order to study the influence of liquid content on the macroscopic torque, we
analyzed the system for the following set of liquid bridge volumes Vb:

Vb ∈ [0, 1, 2, 4.2, 8, 14, 20, 75, 140, 200] nl, (1)

which are all within the dry and pendular regime for our particles of mean diameter dp ≈ 2.2 mm.
We use linear elastic contact model with a constant adhesive force due to the liquid bridge when the
particles are in contact. The parameters of the contact model are particle stiffness k = 120 Nm−1,
viscous dissipation coefficient γo = 0.5×10−3 kgs−1.

3. CAPILLARY BRIDGE FORCE MODEL

For wet granular materials with low saturation level, the particles are connected by individual
capillary bridges. This regime is defined as the pendular regime. It exists approximately with bridge
volumes between 0 to 300 nl, given the present particle sizes. The exact capillary force as a function
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Figure 1: Liquid capillary bridge model for the (a) non-contact and (b) contact forces. The yellow lines
represent the force for mean particle diameter dp.

of separation distance can be calculated by numerically solving the Laplace - Young equation. We
approximate the inter-particle capillary force fc according to the proposal of [17] by:

fc =
2πγrcosθ

1 + 1.05S̄ + 2.5S̄ 2
, (2)
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where the separation distance is normalised as S̄ = S
√

(r/Vb), S being the separation distance. The
other parameters of the liquid capillary bridge model are contact angle θ = 20 ◦ and surface tension of
liquid γ = 0.020 Nm−1 which closely corresponds to the surface tension of isopropanol. The effective
radius of two spherical particles of different size can be estimated as the harmonic mean of the two
particle radii according to the Derjaguin approximation [1], yielding the effective radius:

r =
2rir j

ri + r j
, (3)

This model equation was introduced for mono-disperse particles, and extended to poly-disperse sys-
tem of particles in this paper Ref. [4]. There is no adhesive force acting between the particles during
approach as the liquid bridge only forms once the particles contact each other; the adhesive force
starts acting once they are in contact and remains constant during contact, S ≤ 0. Once the particles
separate, S > 0, the adhesive force is given by (2). The critical separation distance S c between the
particles before rupture is given as proposed by [5]:

S c =
(
1 +

θ

2

)
V1/3

b . (4)

Figure 1 shows the liquid bridge forces as a function of the overlap δ for all contacts in the system.

4. MICRO MACRO TRANSITION

4.1 Macroscopic bulk cohesion
To extract the macroscopic fields, we use the spatial coarse-graining approach as given in [6, 7, 8].

In earlier studies [7, 8, 12, 13], shear band region was identified by the criterion of large strain rate,
higher than a critical strain rate of 0.08 s−1. In this paper, the shear band region is defined by strain
rates higher 80% of the maximum for different heights in the shear cell. When plotting the yield stress
τ for the particles in the shear band region as a function of total pressure P (not shown), a linear trend
is observed neglecting the different behavior for data at very low pressure (<100 Pa). This is fitted
well by a linear function,

τ = µP + c, (5)

where µ is the macroscopic friction coefficient approximately equal to 0.15 as obtained from fitting
and c is the macroscopic bulk cohesion. For non-cohesive systems, the macroscopic bulk cohesion
is zero. As the volume of the liquid bridges increases, the yield shear stress increases and an offset
is observed [3, 11, 12, 13]. Earlier studies show that the macroscopic bulk cohesion increases non-
linearly with increase in liquid bridge volume [11, 12]. This is confirmed in Figure 2a, which shows
that the macroscopic bulk cohesion as a function of liquid bridge volume for surface tension γ is well
approximated by

c = co + aVb
1/3, (6)

where co = 1.045 Pa is the macroscopic bulk cohesion for Vb = 0 nl and a = 1.179 ×104 Pa.m−1. Eq.
(4) shows that the rupture distance S c is a cubic root function of the liquid bridge volume Vb. So
figure 2a can be simplified as shown in figure 2b, the macroscopic cohesive strength as a function of
the rupture distance S c for surface tension γ, given by:

c = co + a′S c, (7)

where a′ = 1.004 ×104 Pa.m−1.

3



0 50 100 150 200

1

2

3

4

5

6

7

8

V
b
 [nl]

c 
[P

a]

(a)

0 2 4 6 8

x 10
−4

1

2

3

4

5

6

7

8

S
c
 [m]

c 
[P

a]

(b)

Figure 2: Bulk cohesion as a function of a) liquid bridge volume Vb and b) rupture distance S c for the given
surface tension of liquid γ and contact angle θ. The dotted lines in the figure (a) and (b) are given by the fitting
functions in Eq. (6) and (7) respectively.

4.2 Torque in a shear cell
The walls and the bottom plates of the shear cell consist of particles with a prescribed position.

The particles forming the inner wall are stationary while the particles forming the outer wall rotate
around the z-axis with frequenty frot. All the particles forming the inner and outer wall are identified
as Cinner and Couter, respectively. Figure 3 shows the wall particles on the moving outer part (magenta)
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Figure 3: Particles involved in torque calculation, fixed particles attached on the moving wall and the base
plate (magenta) and fixed particles attached on the fixed wall and the base plate (black) of the shear cell.

and the stationary inner part (black) of the shear cell. The macroscopic torque is calculated based on
the contact forces on the attached particles on the moving part (outer) and stationary part (inner) of
the shear cell. Thus the net inner and outer torque are calculated by summing up the torques for all
the contacts with respect to the axis of rotation of the shear cell. The net torque is obtained from the
difference between the outer wall torque and the inner wall torque. We multiply the total torque by a
factor of (2π)/(π/6) in order to get the torque for the whole system from the obtained torque of our
simulations in its 30◦ section. Thus the global torque is given by:

~T =
2π
π/6

[( N∑
i=1

∑
j∈Couter

~ci, j× ~fi, j
)
−

( N∑
i=1

∑
j∈Cinner

~ci, j× ~fi, j
)]
, (8)
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where N represents the number of particles, ~ci, j is the position vector of the contact point and ~fi, j
is the interaction force. Only the z-component of the torque vector T z is of interest as required for
shearing the cell in angular direction.

Figure 4a shows the torque as a function of the liquid bridge volume. As the torque shows the same
functional relation to the liquid bridge volume as the macroscopic bulk cohesion in (6), the fitting line
in figure 4a is given by

T z = T z
o + bVb

1/3, (9)

where T z
o = 0.1248 Nm is the torque for Vb = 0 nl and b = 33.46 N. Figure 4b shows macroscopic

torque as a function of rupture distance S c as given by:

T z = T z
o + b′S c, (10)

where b′ = 28.49 N.
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Figure 4: Macroscopic torque as a function of a) liquid bridge volume Vb and b) rupture distance S c for the
given surface tension of liquid γ and contact angle θ. The dotted lines in the figure (a) and (b) are given by the
fitting functions in Eq. (9) and (10) respectively.

4.3 Correlation between macroscopic bulk cohesion and torque
The shear stress in the shear band is given by Eq. (5). Assuming the average shear stress on the

inner wall and outer wall is proportional to shear stress in the shear band, the mean wall shear stress
is given by τw = c′τ, where c′ is a proportionality constant. Consequently, the scalar form of torque
calculated on the wall is given by:

T z
macro = c′

∫
Ao

r dA−
∫

Ai

r dA
 (µPavg + c), (11)

where Ao denotes the surface of the outer wall, Ai denotes the surface of the inner wall, Pavg is the
mean pressure inside the shear band approximately 250 Pa for a filling height of 39 mm. Eq. (11) can
be simplified to the form:

T z
macro = c′M(µPavg + c), (12)

where M =
[
2πH(Ro

2 −Ri
2) + 2

3π(Ro
3 + Ri

3 − 2Rs
3)
]
≈ 0.0031 m3 for the given geometry. Figure 5

shows the z - component of torque as given by Eq. (8) and T z
macro as given by Eq. (12), for c′ ≈ 1.03,

given as a function of the rupture distance S c.
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Figure 5: Comparison of macroscopic torque a)T z and b)T z
macro as given by Eq. (12) for c′ ≈ 1.03 as a function

of the rupture distance S c.

It is observed that the numerically calculated torque obtained from the summation of each contact
force torque is comparable with the torque obtained from the average shear stress on the wall which
is obtained from the macroscopic bulk cohesion as shown in above equation.

5. CONCLUSION

We performed simulations for different liquid content to study the effect of liquid bridge volume
on bulk cohesion and torque of the system (certain other liquid properties like the surface tension and
the contact angle are kept constant for all simulations). Both macro quantities increase with liquid
content in the system, proportional to the third root of the liquid bridge volume, i.e. linear with the
rupture distance of the liquid bridge. We compared the torque calculated from the average shear stress
on the wall as obtained from the macroscopic bulk cohesion with the numerically calculated torque
and found them comparable. This establishes the correlation between the (measured) torque and the
macroscopic bulk cohesion.

In future work, the micro-macro correlation needs to be fully understood by studying the effect of
other micro parameters on the macro behavior. This includes the effect of surface tension and contact
angle of the liquid on the macroscopic bulk cohesion. Our goal is also to better understand the distri-
bution of forces in their network and why that leads to the non-linear increase in bulk cohesion with
increase in liquid bridge volume or, respectively, the linearity with rupture distance. Furthermore, the
continuum stress at the walls should be computed from the simulations and used to predict the torque
in order to complete the picture.

6. NOMENCLATURE

δ Overlap [m]
Vb Liquid bridge volume [nl]
θ Contact angle [◦]
γ Surface tension of liquid [Nm−1]
r Mean radius [m]
fc Liquid bridge capillary force [N]
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S Inter-particle distance [m]
S c Rupture distance [m]
τ Yield shear stress [Pa]
µ Macroscopic friction coefficient
Pavg Mean pressure inside the shear band [Pa]
c Macroscopic bulk cohesion [Pa]
T Torque [N.m]
Ri Inner radius of shear cell [m]
Ro Outer radius of shear cell [m]
Rs Split radius of shear cell [m]
H Filling height [m]
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