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Abstract 

Particulate systems and granular matter are discrete systems that are made of many 

particles in interesting dynamic or static, fluid- or solid-like states. The challenge of bridging 

the gap between the particulate, microscopic picture (via micro-macro transition methods) 

towards their continuum description is one of todays topics of actual research. This short 

paper gives a brief overview of recent research and an update on some new results. 

 

Introduction  

Particulate systems are posing many challenges for theory and applications. From molecular 

dynamics simulations of many atoms or particles, one can extract scalar fields like density or 

temperature, as well as velocity, i.e. vectorial fields, or tensors like stress, strain, and 

structure (fabric). Given sufficiently good statistics the data can have a quality that allows to 

derive constitutive relations about the rheology and flow behavior of complex fluids (like 

atoms confined in nano-geometry, or granular particle systems) that behave strongly non-

Newtonian, with particular relaxation behavior, anisotropy etc. [1]. With attractive forces 

involved, like van-der Waals forces or liquid-bridges, this leads to cohesion added on top of 

the already non-trivial dynamics of granular matter [2]. Dependent on the energy input 

(shear-rate), the particles can flow like a fluid, jam and un-jam, or be solid with a very 

interesting anisotropic structure (contact-and force-networks).  

 

Phenomenology 

The interplay between strain, stress and anisotropy leads to dilatancy and an interesting 

‘memory’ of the packing: the evolution of anisotropy (micro-structure) is independent from the 

direction-dependency (“anisotropy”) of stress, both in evolution rates as well as in principal 

directions, i.e., tensorial eigen-system orientations. The particulate systems behave in 

various ways like a non-Newtonian fluid [3,4], as observed by modern particle simulations, 

from which macroscopic scalar, vectorial, and tensorial fields are measured [3,4,5,6,7]. 

Having available all tensorial information from the particle simulations, obtained via the 

micro-macro transition, the next step is to formulate constitutive relations that allow to predict 

the systems flow behaviour [5,7,8,9]. Similar methods and approaches can also be applied to 



solid-like systems [10] – all are based on the original ideas of coarse-graining [11,12]; the 

basic approach to coarse graining follows the ideas of Isaac Goldhirsch [3,11,12] for the 

micro-to-macro, starting from micro/atomistic/particle simulations, which can be carried out 

for many different flow situations.  

Examples of basic element tests, i.e., small and representative systems with relevance for 

the micro-macro approach, involve planar flows [4] like avalanche on inclined planes [3], the 

split-bottom ring-shear cell [5,6,7,8], or the tri-axial box [9,10]. All have in common that plenty 

of data on the particle systems density, displacement, velocity and velocity gradient, stress 

and fabric (micro-structure) can be obtained as functions of particle and contact properties 

like particle sizes, stiffness, cohesion, or friction as well as system parameters like the 

external shear-rate.  

 

Results 

Here, a short summary of recent research on formulating the granular rheology is presented 

and concluded with an outlook for future reseach. 

When formulating a granular rheology, the starting point is the so-called µ(I)-rheology [5,13], 

which relates the shear-stress to pressure ratio µ   = τ / p in a sheared particulate system to 

the dimensionless strain-rate 

     

Figure 2: Graphic representation of the strain-rate γ̇, as given in the inset, plotted as function of
radial and vertical positions – larger symbols correspond also to larger γ̇. The lines indicate the
center Rc and the half-width W of the shear band.

with the components of the contact normal forces fα and branch vectors lβ. The sum extends
over all contacts within or close to the averaging volume, V , weighted according to their vicinity.
Since the σrz ≈ 0 component is small, as compared to the other averaged non-diagonal stresses,
the shear stress can be defined in analogy to the velocity gradient, as proposed in (?):

|τ | =
�
σ2
rφ + σ2

zφ . (3)

However, as detailed by (?; ?; ?), a more detailed study of the stress- and strain eigenvalues and
eigensystems leads to the three eigenvalues σmax, σ0, and σmin corresponding to the maximum,
intermediate and minimum stress, respectively, with corresponding eigen-directions σ̂max, σ̂0,
and σ̂min.

(?) compared the shear stress |τ | and the deviator stress

σD =
�
(σmax − σmin)2 + (σmax − σ0)2 + (σ0 − σmin)2/

√
6 (4)

and found them almost equal, when plotted against pressure p = (σmax + σ0 + σmin)/3. 2 In
contrast to a Newtonian-like fluid, the stress tensor has a non-zero intermediate eigen-value
(even though the strain-rate intermediate is zero, in our plane-strain configuration), which can be
expressed as the so-called shape-factor (dimensionless and objective) λσ = σ0/σmax as proposed
by (?), which quantifies the out-of-shear-plane contribution to the deviatoric stress.

Figure 3: Objective, deviator stress magnitude, σD, plotted against pressure p, with strain-rates
given in the inset. All points with large γ̇ are found close to the macroscopic friction µp, as
represented by the dotted line, with constant slope µ = 0.15.

Both shear-, µ = τ/p, and deviator-stress ratio, sD = σD/p, quantify the macroscopic friction
(which is also a measure for the stress-anisotropy) and are almost identical, as shown by (?; ?),
however, σD appears systematically larger than |τ |. The closer their ratio is to unity, the closer is
the presumed shear stress, τ , to the objective (deviatoric, anisotropic) stress σD.

From the (almost) constant shear stress intensity in the shear zone, one can determine the Mohr-
Coulomb-type friction angle of the equivalent macroscopic constitutive law as ψ := arcsinµ ≈
arcsin sD (?).

Plotting the anisotropy sD = σD/p against γ̇, or against the non-dimensional strain-rate

I = γ̇d0
�
�/p , (5)

2Note that the definition of σD is equivalent to the definition of the deviatoric strain-rate, which means |τ | = σD

for plane-stress situations, and to the classical µq = q/p = (σmax − σmin)/(2p), but only in the case of a planar
stress tensor with σ0 = 0.

         (1) 

with shear rate .γ, diameter d0, mass-density ρ, and pressure p. The relation that describes 

well a wide variety of flows of hard particles at various strain rates is: 

 

Figure 4: Stress-anisotropy, or objective macroscopic friction, sD = σD/p, plotted against

pressure p, with different symbols for different strain-rates, as given in the inset.

with the mean particle diameter d0, and the bulk density, �, as proposed in Ref. (?), neither leads

to a better trend nor a better data collapse for either of the two possibilities.

The µ(I,p)-rheology

The macroscopic friction and the objective macroscopic friction both follow the so-called µ(I)-
rheology:

µ(I) = µ0 + (µ∞ − µ0)
1

1 + I0/I
, (6)

with a certain analytical relation, as given by (?). The parameters that describe our data are

µ0 = 0.15, µ∞ = 0.42, and I0 = 0.06, similar to those given by (?). The parameters provide the

quasi-static and rapid-shear limits, as well as the transition in terms of the inertial number I .

However, this law needs a generalization that includes the pressure dependence

µ(I,p) = µ(I)



1−
�
p∗

p∗0

�1/2


 , (7)

as proposed by (?), with p∗0/µ(I)
2 = 40, denoting the dimensionless pressure, p∗ = p�d�/k, at

which the effect of softness of the particles becomes dominant. For small I , using µ(I → 0) = µ0,

this translates to p∗0 = 0.9 ≈ 1 as dimensionless transition pressure, at which the correction factor

in Eq. (7) becomes unphysical; however, such large pressures correspond to enormous overlaps

of 100% and are not considered in most DEM simulations anyway. Note that the correction term

represents the square of the ratio of the strain- and the softness time-scales, so that the power

1/2 makes the correction linear in the ratio of time-scales, for more details see (?).

Furthermore, due to pressure and rapid shear, the density

φ(I,p) = φc +
p

pφ
− I

Iφ
(8)

respectively increases or decreases, with pφ = 0.48, Iφ = 1.2, and the critical volume frac-

tion φc = 0.65, see Refs. (?; ?). This constitutive relation can be also rephrased in terms of

multiplicative correction factors

φ(I,p) = φc

�

1 +
p

pcφ

��

1− I

Icφ

�

, (9)

with pcφ = pφφc = 0.31 and Icφ = Iφφc = 0.78, which is almost identical to the previous form,

except for very large p and I , which is outside the range of considered parameters.

The dependence of φ, and especially φc on contact parameters like the particle friction or

cohesion, and on the granular temperature, is not considered here, for the sake of brevity.
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with the limits of µ , for zero and infinite strain rate, designated by the respective symbols, 

and the characteristic dimensionless strain-rate I0 where inertia effects considerably kick in. 

Since the simulations presented below concern the very small coefficient of particle contact 

friction µp = 0.01, the dependence of the coefficients in Eq. (1) on friction is not considered. 

The first correction to the µ(I)-rheology is relevant for soft particles, as based on the results 

by Singh et al. [5]; it was originally given as linear additive term to the above rheology for 

small strain-rates [5], however, it can also be given as a multiplicative correction factor: 
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with the dimensionless pressure p* = p d0 / k, the characteristic pressure at which this 

correction becomes considerable, p*0 = 0.9, and the particle stiffness k. This correction 

accounts for a wide range of different particle stiffness, but also for different gravity, as in a 

centrifuge or on the moon. Additional corrections for cohesive particles involved the so-called 

Bond-number (Bo) as studied elsewhere [6,7]. 

In order to complete the rheology for soft, compressible particles, a relation between the 

density and the pressure and shear rate is missing: 
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    (3) 

with the critical state density for vanishing pressure and inertial number, φc = 0.648, the 

characteristic strain rate for which dilation kicks in, Iφc = 0.85, and the typical pressure level 

where softness leads to huge densities, pφ
c = 0.33 (due to the linear contact model). 

Representative data from Ref. [5], see Fig. 1, agree very well with the corrected rheology. 

 

 

 

 

 

 

 

 

Fig. 1: Density (left) and shear stress ratio (right), plotted against the radial distance r, with 
data from the particle simulations in Ref. [5], using the external rotation rate f =1 s-1, 
selected at three different pressure levels, as given in the inset (i.e. red, green and 
blue correspond to: close to the surface, in the middle, and closer to the bottom). 
The lines in the right panel correspond to Eqs. (1), thin lines, (2), thick lines; the lines 
in the left panel correspond to Eq. (3), with all parameters given in main text; the 
horizontal lines give the low stress and strain-rate limits: φc (left) and µ0  (right). 

The shear stress ratio in the tails does not agree well with theory, indicating a missing 

correction term that accounts for a combination of very low strain-rate and finite granular 

temperature effects playing a dominating role in those regimes, see Ref. [5] for more details. 

 

Conclusion and Outlook 

In conclusion, particle simulations and the micro-macro transition can guide the development 

of new rheological particle-flow models that include and combine various mechanisms, which 



are quantified by dimensionless numbers. The original rheology for hard, cohesionless 

particles was generalized to include softness (or compressibility) of the particles, and 

ongoing research is applying aiming at finding further correction terms for cohesive particles 

as well as for the poorly understood limit of very small strain-rates (tails). As next step, also 

the implementation of such multi-purpose, more general flow models into continuum solvers 

is ongoing as well as the development towards the fully tensorial flow models that are 

needed to catch all the non-Newtonian aspects of particulate and granular matter. 
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