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Abstract – One defining property of granular materials is their low number of constituents
when compared to molecular systems. This implies that (statistical) fluctuations can have a
dominant effect on the global dynamics of the system. In the following letter we create identical
macroscopic states with significantly different numbers of particles in order to directly study
the role of fluctuations in granular systems. The dependency of the hydrodynamic conservation
equations on the particles’ size is derived, which directly relates to the total number of particles.
We show that, provided that the particles’ dissipation is properly scaled, equivalent states can be
obtained in the small particle size limit. Simulations of the granular Leidenfrost state confirm the
validity of the scalings, and allow us to study the effects of fluctuations on collective oscillations.

Introduction. – Granular flows often show a remark-
able similarity with those of molecular fluids [1, 2]. The
success of granular hydrodynamic theories in predicting
many complex granular behaviours indicates that such a
relation is not only superficial [3–9]. But despite continued
development, the defining properties of granular materials,
such as the dissipative nature of the particles’ interactions,
still present a challenge for continuum theories, specially
for high packing densities or strong dissipations [10–12].
An additional fundamental difficulty stems from the enor-
mous difference in the total number of constituents be-
tween granular and molecular systems; while in molecular
media the microscopic relevant length-scale is orders of
magnitude smaller than the macroscopic one, in granular
media macroscopic fields may vary in distances of the or-
der of a few particle diameters. This possibly big influence
of a few particles implies the existence of inherently large
fluctuations, which can drastically modify the global dy-
namics, especially near transitions [13–15]. Deepening our
understanding of the role played by these fluctuations is
thus of fundamental importance for the development of a
successful continuum description of granular media.

In the following letter we analyse the influence that
finite-number-driven fluctuations have on the macroscopic
behaviours of granular matter. For this, we study the

possibility of constructing macroscopically identical gran-
ular systems with significantly different number of par-
ticles. Starting from a given macroscopic hydrodynamic
state, and using physical arguments and expressions for
the transport coefficients of granular hydrodynamic the-
ory, we derive the dependency on particle size of all terms
of the conservation laws. As the particle size is directly re-
lated to the total number of particles, we essentially see the
dependency of the macroscopic states on the total num-
ber of particles present in the system. We demonstrate
that in general the granular hydrodynamic equations are
not particle-size invariant. Nevertheless, we show that,
by properly scaling the restitution coefficient, the limit of
vanishing particle size becomes well defined and leads to
invariant conservation equations.

The obtained scaling relations are verified by hard-
sphere simulations of the granular Leidenfrost state [7,
16, 17]. By computing the coarse-grained fields of equiva-
lent systems we are able to observe the influence of finite-
number effects in the macroscopic scale. Fluctuations are
seen to have a determinant effect on the oscillatory be-
haviour previously observed in the same setup although,
perhaps surprisingly, they are not seen to affect the char-
acteristic frequency of these oscillations.
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Granular hydrodynamic scaling relations. – In
the following we study the particle-size dependency of the
three-dimensional granular hydrodynamic equations. Our
goal is to recreate equivalent hydrodynamic states with
significantly different total numbers of particles N . Two
hydrodynamic states are considered identical if the invari-
ant macroscopic hydrodynamic fields are the same in both
space and time. As invariant hydrodynamic fields, func-
tions of the spatial coordinates ~x = (x, y, z) and time t,
we consider the packing fraction, φ(~x, t) = mn(~x, t)/ρp,
with m, d and ρp = 3m/4π(d/2)3 the mass, diameter
and density of the particles, and n(~x, t) the number den-
sity field; the velocity field ~u(~x, t) = 〈~vi〉~x,t, where ~vi are
the particle velocities; and the fluctuations in velocity,
T ∗(~x, t) ≡ kBT (~x, t)/m = 1

3 (〈~v2i 〉~x,t−〈~vi〉2~x,t), with T (~x, t)
the granular temperature field, kB the granular equivalent
of the Boltzmann constant 1, and spatio-temporal averages
denoted by 〈〉~x,t. Physically, in invariant systems we would
observe the same packing fraction, velocity and granular
temperature distributions in space and time, independent
on the number of particles.

In terms of these macroscopic fields the granular hydro-
dynamic equations can be written as:

Dtφ = −φ∇·~u, (1a)

ρpφDt~u = −∇p+ 2µ∇·σ̂ +∇(λ∇·~u) + ρpφ~g, (1b)
3
2ρpφDtT

∗ = −p(∇·~u) + λ(∇·~u)2 + 2µσ̂ :∇~u
+∇·(κ∇T ∗) +∇·(η∇φ)− I. (1c)

where Dt = ∂t + ~u ·∇ is the material derivative, I the
identity matrix and σ̂ = 1

2 (∇~u + ∇~uT ) − 1
3∇· ~u I. They

correspond to the mass conservation equation; the mo-
mentum conservation equation, with p the pressure, µ the
shear viscosity, λ the second viscosity and ~g the acceler-
ation of gravity; and the granular temperature equation,
i.e. energy balance, with κ the coefficient of thermal con-
ductivity (note that Fourier’s heat law has been used),
η an additional transport coefficient present in granular
media, and −I the sink of energy-density.

In order for Eqs. (1) to be d-invariant all terms of any
equation should scale equally with d. In what follows we
determine these scaling relations, starting with heuristic
arguments and, after that, using a specific closure for the
transport coefficients and the sink term from the litera-
ture. First, note that the continuity equation is manifestly
invariant, since it only contains hydrodynamic fields and
its derivatives, which are by definition identical in equiv-
alent systems. Similarly, the left-hand terms of (1b) and
(1c), as well as the gravitational term in (1b), are also d-
invariant, if we assume that the particles are made of the
same material, i.e., that their density ρp is independent
of their size2. The pressure is proportional to the ideal

1I.e., the constant that relates the granular temperature scale to
the kinetic energy per particle.

2In principle, one could let ρp scale in any way with the particle
size, but this would lead to the same conclusions, only complicating
the algebra.

gas law (p = ρpφT
∗) multiplied by a function of the pack-

ing fraction only, and therefore the terms in (1b) and (1c)
involving the pressure are also d-invariant.

The dependency of the transport coefficients on the size
of the particles can be deduced from physical arguments.
Transport of mass, momentum or energy from one fluid
element into a neighbouring one happens in a layer that
has a thickness scaling with the mean free path, lfp. Since
the packing fraction φ is invariant, lfp should be propor-
tional to the particle diameter d. Therefore all terms in
(1b) and (1c) involving the transport coefficients µ, λ, κ
and η are expected to scale as d1.

In contrast, the dissipation term I can be expressed as
the number density squared (scaling as d−6) times the
energy loss per collision (∼ d3) times the cross-sectional
area (∼ d2), leading to I ∼ d−1. Physically this stands
to reason: when the particle size decreases, the growth
of the number of collisions is faster than the shrinking
of the typical energy loss per collision, and therefore the
dissipation per unit volume increases.

Using square brackets, [x ]d, to denote the scaling of a
quantity x with d, the above discussion is summarized as

[ p ]d = d0, (2a)

[µ ]d = [λ ]d = [κ ]d = [ η ]d = d1, (2b)

[ I ]d = d−1. (2c)

The immediate conclusion is that the hydrodynamic equa-
tions (1b) and (1c) are not d-invariant, since they contain
terms that scale differently with particle size. In fact,
when the particle size decreases, all transport terms de-
crease, whereas the sink term increases. In general, it is
therefore not possible to create identical hydrodynamic
states with (significantly) different numbers of particles.

Even if we consider a steady state (∂t = 0) without
macroscopic flow (~u = 0), in which case equations (1a),
(1b) and (1c) reduce to

∇p = ρpφ~g, (3a)

∇·(κ∇T ∗) +∇·(η∇φ) = I, (3b)

the first equation (3a) is d-invariant, but the second (3b)
still isn’t. However, for small d invariance can be obtained
to order O(d2). Both I and η are proportional to the
inelasticity ε ≡ (1−r2), where r is the coefficient of normal
restitution. If we now let r depend on the particle diameter
d such that

[ ε ]d = d2, (4)

the d → 0 limit becomes well defined, and [ η ]d = d3 (as
will be shown next), which for small d (higher N) make the
set of equations (3) becomes d-invariant to second order
in d.

If the condition (4) is used in the general flow case then,
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for small d, equations (1) would result in

Dtφ = −φ∇·~u, (5a)

ρpφDt~u = −∇p+ ρpφ~g +O(d), (5b)

ρpφDtT
∗ = −p(∇·~u) +O(d). (5c)

Notice that in the limit d → 0, the above equations con-
verge to those of a perfect (non-dissipative) fluid. Never-
theless, it is important to remark that solutions to these
equations are not expected to coincide with solutions of
eqs. (1) in the d → 0 limit. For example, it is clear that
the absence of dissipation in eqs. (5) will fail to capture
the steady state of any driven granular system, as energy
would continue to increase indefinitely. Convergence can
thus be expected only for non-driven system, where the
steady state corresponds to all material being motionless.

Direct derivation of the scaling. – We will now
explicitly derive the dependency of the transport coeffi-
cients on d considering the expressions obtained by Garzó
and Dufty using the Chapman-Enskog method to solve the
Boltzmann kinetic equation of the Revised Enskog Theory
[18,19]. When expanded using Sonine polynomials, the co-
efficients take the same general form χ = χ0χ̃(φ, r), where
χ0 are the values for the low-density and elastic limit [19].
The corrections for excluded-volume and finite dissipation
χ̃(φ, r) are quite involved; here we are just interested in the
fact that they depend only on the packing fraction φ and
the restitution coefficient r. Therefore, if we assume that
r is constant, [ r ]d = d0, then [ χ̃(φ, r) ]d = d0; further
along we will elaborate on the consequences of relaxing
this condition.

The low-density and elastic limit expressions of all
transport coefficients can be expressed as a function of
µ0, as κ0 = (15/4)µ0, η0 = (T ∗/φ)κ0 and, from Stokes
approximation, λ = −(2/3)µ [19]. Their explicit form is
given by µ0 = (5/96)ρpd

√
πT ∗, thus confirming (2b). The

energy-density dissipation term follows a similar expres-
sion, I = 144

5
√
π

ρp
d φ

2T ∗3/2Ĩ(φ, T ∗, d, r), which leads to (2c).

Therefore we see that the derived scalings agree with our
physical argumentation based on the mean free path.

The functions χ̃(φ, r) can be expanded in terms of ε,
which yields

µ̃ = Aµ0 (φ) +Aµ1 (φ)ε+O(ε2) = − 3
2 λ̃ (6a)

κ̃ = Aκ0 (φ) +Aκ1 (φ)ε+O(ε2), (6b)

η̃ = Aη1(φ)ε+O(ε2), (6c)

Ĩ = AI0(φ, T ∗, d)ε−AI1(φ, T ∗, d)ε2 +O(ε3). (6d)

with the coefficients depending only on the shown quan-
tities. We then see that for small dissipations, that is,
to leading order in eqs.(6), [µ ]d, [λ ]d and [κ ]d remain
unchanged, while [ η ]d = d [ ε ]d and [ I ]d = d−1 [ ε ]d. If
then the dissipation is scaled as eq. (4), I does no longer
diverge when d → 0, as [ I ]d = d, and η decreases faster
than the other transport coefficients, [ η ]d = d3.

Having explored the possibility of obtaining macroscop-
ically identical systems with different d (or, equivalently,
different N) we now consider a specific granular steady
state in which the similarity of equivalent systems can be
tested.

Granular Leidenfrost state. – As a test case we
consider the granular Leidenfrost state, which consists of
a density inverted particle arrangement where a high tem-
perature, gaseous region near a vibrating bottom wall sus-
tains a denser, colder bed of grains on top [16, 17]. As
the granular Leidenfrost state corresponds to a steady
state with no flow, it is expected to be described by
Eqs. (3) (with appropriate excluded volume corrections)
[7, 16]. If the energy input is increased, the bed of grains
goes through a transition to a buoyancy-driven convective
state [15,20]. Here we avoid this transition by considering
a quasi-one-dimensional geometry with base dimensions
lx = ly = l = 5d � h, with h the height of the granular
column, thus preventing through geometrical constraints
the development of convection [21].

Boundary conditions. In order for the macroscopic
system to be completely defined only the set of boundary
conditions rests to be determined. In steady states the
injected energy is equal to the total dissipated energy. To
account for the energy injection through particle-bottom
wall collisions (3b) is integrated over the whole domain,
resulting in

Jin =

∫ h

0

Idz, (7)

where Jin the energy-density flux injected to the system
through particle collisions with the bottom boundary. We
have considered that at the free top boundary J(z) → 0
as z → ∞. In order to simplify our system we consider
periodic boundary conditions in the lateral directions, and
thus only the bottom wall injects energy. Jin can be an-
alytically determined in the dilute limit for a sinusoidal
driving with ub �

√
T (z = 0) [22,23], expected to be valid

in the Leidenfrost state, leading to

Jin = ρpφ(z = 0)u3b

(
2T ∗(z = 0)

u2b

)1/2

(8)

with ub = Aω the typical velocity of the bottom plate.
Therefore, using our previously derived scalings, and im-
posing that [h ]d = d0, it is straightforward to see that, by
(7),

[
u2b
]
d

= d, and thus [Aω ]d = d1/2. In our case we
use [A ]d = d, to make sure that the amplitude remains
smaller than the particle size in the limit d → 0. It then
follows that

[ω ]d = d−1/2. (9)

The balance of energy (7) also indicates that the rele-
vant number of particles must be considered per unit base
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Fig. 1: Configurations of macroscopically equivalent systems
in the Leidenfrost state, for particle sizes d = 0.25, d = 0.5
and d = 1.0 from left to right. Notice that to improve the
visualization here the base area has not been scaled with d.

area, N/l2, as in equilibrium the particles in a vertical sec-
tion dissipate the energy injected by the vibrations of the
column’s base area. As N ≡

∫
n(~x) dΩ, we see that[

N/l2
]
d

= d−3. (10)

In order to reduce the total number of particles in the
system and thus decrease the computation time, the di-
mensions of the container are scaled such that

[
l2
]
d

= d2,
Notice that in that case eq. (10) still holds.

Dimensionless quantities. We now derive how do the
relevant dimensionless numbers for the Leidenfrost sys-
tem scale with d. The amount of particles is correctly
quantified independent of the system’s size by the num-
ber of filling layers F ≡ Nd2/l2. From (10) it is clear
that [F ]d = d−1. The shaking strength Sf ≡ A2ω2/gd
is known to be a good control parameter for the transi-
tion to buoyancy-driven convection [17]. It follows from
(9) that [Sf ]d = d0, implying that the critical points
should be d-invariant. Finally, the Reynolds number quan-
tifies the relative importance of inertial to viscous forces,
Re = ρpφ~vh/µ. Using (2b), we see that [ Re ]d = d−1. The
divergence for d→ 0 is expected, as we have seen that in
that limit the fluid posseses no viscosity.

Simulations. – Numerical simulations are performed
using the event-driven discrete particle method [24]. For
details about the algorithm’s characteristics we refer the
reader to [21]. As in the theoretical model we assume
collisions are determined by a single coefficient of resti-
tution r. Different systems are referred to as Sd ≡
{d;Nd, ld, rd, ωd, Ad}, with the variables’ subscripts denot-
ing the specific d. In order to produce equivalent systems
a reference one must be defined, which we take to be S1,
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Fig. 2: Time-averaged vertical packing fraction profiles 〈φ(z)〉t
and fluctuating velocity profiles 〈T ∗(z)〉t, for systems shown
in the dissipative (ε1 = 0.9, left) and quasi-elastic (ε1 = 0.99,
right) cases.

and use d1 = 1 as length-scale for all systems. Time is
measured with respect to the acceleration of gravity, in
units of

√
d1/g.

Following the theoretical analysis, we scale the ampli-
tude proportional to d, A = 0.1d, and thus A1 = 0.1.
The small prefactor is chosen so as to minimize the spa-
tial inhomogeneities induced by higher oscillation ampli-
tudes, and thus approach the limit of an effective fixed
temperature boundary condition [25]. The frequency of
oscillation is taken such that the system is well into the
Leidenfrost state, ω1 = 30

√
g/d1. Finally, two reference

particle-particle coefficients of restitution will be consid-
ered, r1 = 0.9 and re1 = 0.99, referred to as dissipative
and quasi-elastic systems, respectively (the superscript de-
notes quantities for the quasi-elastic case). As we want
to compare systems with similar packing fractions, in the
quasi-elastic case we consider a larger number of particles,
so that F1 = 12 and F e1 = 32.

Results. Macroscopic fields are seen to converge in the
limit d→ 0. Vertical profiles of the time-averaged packing
fraction 〈φ(z)〉t and the fluctuating velocity 〈T ∗(z)〉t are
shown in fig. 2 for several different Sd. The characteris-
tics of the Leidenfrost state can be readily recognized: low
density, high temperature regions near the bottom, below
high density, low temperature regions higher up [20]. As
expected from (3), only for small d the conserved fields
converge, although convergence is fast enough to allow us
to fabricate equivalent systems with a difference of more
than four orders of magnitude in N/l2. The gaseous re-
gion (close to the bottom boundary) presents the most
significant differences, although the maximum of 〈φ(z)〉t
also decreases slightly as d→ 0. Variations in the gaseous
region are also significant in 〈T ∗(z)〉t, which presents a
twofold increase accompanied by a rising total tempera-
ture T ∗t as d→ 0.

The shapes of 〈φ(z)〉t and 〈T ∗(z)〉t suggest that an ad-
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Fig. 3: (a) Total energy-density dissipation per time normal-
ized by d, Id/d, for dissipative (blue) and quasi-elastic (red)
systems from Fig. 2. (b) Total fluctuating velocity T ∗ for the
same systems as in (a). (c) Ratio of the two previous quanti-
ties, Id/dT

∗.

ditional source of disagreement comes from finite-size ef-
fects. The free-volume near the bottom wall, of course not
taken into account in (3), is proportional to d, leading to
important disagreements for large d (see fig. 2). Secondly,
variations of the convergent macroscopic fields can become
comparable to d for large particles; notice for example that
in the convergent 〈φ(z)〉t, the height of the gaseous region
hg ≈ 10, which corresponds to hg = 5d2.

Beyond finite-size effects, the value of the coefficient of
restitution is expected to have a significant influence, as
we have taken ε ∼ d2, indirectly affecting all transport
coefficients. Indeed, quasi-elastic systems show a much
higher agreement as d is varied, as shown in fig. 2 for
〈φe(z)〉t and 〈T ∗e(z)〉t. The most significant differences
are again observed near z = 0, further suggesting that
these are finite-size, boundary-layer effects.

The sources of disagreement can be traced by measuring
each term of Eqs. (3) separately. For the energy-density
dissipation rate, (3b) states that I scales inversily linear
with d, but simulation measurements give a considerable
deviation, as shown in fig. 3a. In dissipative systems de-
viations are of the order of ∼ 20%, while in quasi-elastic
systems it is only ∼ 5%. The improvement for higher r
suggests that the deviations stem from neglecting higher
order ε dependencies of the transports coefficients.

Deviations from the expected d-invariant behaviour of
T ∗ are even stronger, especially in the dissipative case,
as shown in fig. 3b. The quasi-elastic case shows again a
significant improvement. Interestingly, for both I/d and
T ∗ the behaviour with d changes between dissipative and
quasi-elastic systems: in the former case quantities in-
crease as d → 0, while in the latter they decrease until
d = 1/4, below which their behaviour cannot be extrapo-
lated by our data. The observed convergence to a macro-
scopic state, even when the individual scaling relations are
seen to deviate, may be explained by the convergence of
the general equations (1) to the perfect fluid equations.

Low-frequency oscillations. Shaken beds of grains in
density inverted states undergo collective semi-periodic
oscillations, referred to as low-frequency oscillations
(LFOs) [15, 21, 26]. These are clearly identifiable in all
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Fig. 4: (a) Amplitude of the low-frequency oscillations a0, de-
fined as the standard deviation of the centre of mass σ(zcm(t)),
for equivalent Sd. In gray, square root fits. (b) Frequency of
oscillation of the column, ω0, for the same systems as in (a).

Sd, making it possible to study their properties in equiv-
alent macroscopic systems with different N . Remarkably,
their characteristic amplitude, quantified by the standard
deviation of the evolution of the vertical centre of mass,
a0 ≡ σ(zcm(t)), is seen to be proportional to d1/2, as
shown in fig. 4a. On the other hand, the characteristic
frequency ω0, obtained from the fast Fourier transform
of zcm(t), shows a roughly constant behaviour with d, as
shown in fig. 4b. The [ω0 ]d = d0 behaviour is in accor-
dance with a previously derived theoretical expression [21],
where disregarding higher order effects, the characteristic
frequency was found to be given by ωt0 = gρg/ms with
ρg the density of the gaseous region and ms the total
mass of the solid region. ωt0 is thus expected to become
d-invariant, as φ(z) converges for d → 0 and both ρg and
ms are macroscopic quantities determined by φ(z).

From the decrease of a0 as d → 0 we can conclude
that, in the limit of d → 0, LFOs would be unmeasur-
able, making it an essentially finite-size (granular) phe-
nomena. Moreover, for d small enough, the behaviour of
a0(d) is consistent with a

√
N law, suggesting that low-

frequency oscillations are driven by intrinsic fluctuations
due to the low number of particles in the system. We
propose the following interpretation: as N decreases, the
relative strength of the momentum fluctuations given by
particles of the gaseous phase hitting the solid/fluid phase
increases, and as such the amplitude of the oscillations
are bigger. On the contrary, for smaller d, a significant
amount of particles in the gaseous phase would have to
transfer momentum to the solid phase at the same time
to have an equivalent impact, a situation that becomes
increasingly improbable as N increases.

It is interesting to notice that even though the ampli-
tude of LFOs becomes negligible, the mode is still present
in the macroscopic system, as the [ω0 ]d = d0 behaviour
shows. This further suggests that LFOs are an intrinsic
characteristic of density inverted states, as argued in [21].
The situation is curious, as the mode is a macroscopic
phenomena, but its amplitude is driven by microscopic
effects. Furthermore, the evolution of zcm(t) is seen to be-
come less chaotic and closer to a harmonic oscillation with
a clearly defined frequency as d→ 0, as increasingly steep
peaks in the Fourier transforms indicate (not shown); this
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is another sign that low-frequency oscillations are driven
by finite-number fluctuations.

Conclusions. – We have studied the possibility of
creating macroscopically equivalent granular systems with
significantly different numbers of particles N . Consider-
ing the granular hydrodynamic equations, we have demon-
strated that it is not possible to obtain equivalent systems
in the most general flow case, as different terms scale
differently with particle diameter d. Nevertheless, after
appropriately scaling the restitution coefficient, the limit
d→ 0 becomes well defined and leads to a d-invariant set
of conservation laws corresponding to those of a perfect
fluid. As a consequence of the proper dissipation scaling,
the steady-state, fluxless equations become d-invariant in
the low-dissipation limit, and for small particle sizes, up
to O(d3).

Simulations of perfect hard-spheres allowed us to test
the derived scalings for a considerable range of total num-
bers of particles. As a test case we considered the gran-
ular Leidenfrost state, which was seen to converge to a
limit macroscopic state as d → 0, with the convergence
considerably faster for lower energy dissipation. Further-
more, the collective oscillatory behavior (LFO) present in
the granular Leidenfrost state was deduced to be driven
by the statistical fluctuations in systems with lower num-
bers of particles. This follows from the decrease of the
amplitude of the oscillations with d for macroscopically
equivalent systems. Moreover, the frequency of the LFOs
remains approximately constant in the range of d studied,
in accordance with previously results predicting a depen-
dency only on macroscopic quantities.

As a final comment, we would like to remark that the
same framework could be used for the study of other out-
of-equilibrium granular states. Macroscopic convergence
can be expected for different N , opening the possibility of
studying macroscopically equivalent particle systems with
significantly different numbers of particles.
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VICI grant number 10828.

REFERENCES
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