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ABSTRACT This paper results from an ongoing investigation of the rheology of dry and wet granular 

materials. We describe the different time scales involved and the related dimensionless numbers that govern dry as 

well as wet granular flows, with a focus to the dimensionless numbers relevant for flow in the quasistatic wet system 

at low confining stress. The macroscopic friction coefficient and the apparent viscosity of granular materials are the 

two vital parameters that can also be deduced from experiments. While the time scales are coupled to each other in 

the intermediate bulk of the materials and interplay among each other, they get decoupled at the extremes of the free 

surface and the depth of the material due to one time scale being way smaller in magnitude than the other.  In the 

decoupled state, the smaller time scale influences the rheology in different ways, the role of the larger time scale 

being negligibly small. Furthermore, the capillary force related time scale results in an increase in viscosity of the 

materials with cohesion, especially close to the free surface. 

 

 

1. INTRODUCTION  

 

The ability to predict a material's viscosity gives manufacturers an important product property describing their flow. 

Knowledge on material's rheological characteristics is important in predicting their pourability, density and ease 

with which it may be handled, processed or used. The interrelation between rheology and other product dimensions 

often makes the measurement of the friction coefficient and the viscosity the most sensible and convenient way of 

detecting changes in flow properties. These macroscopic properties in an inhomogeneous system of granular 

materials are often dictated by different dimensionless numbers obtained from local time scales. Thus, a study of 

different local scales and the associated dimensionless numbers helps us to understand the change in flow properties 
e.g. with increasing cohesion. 

   

The number of contacts of the particles and their rearrangement time are driven by the local pressure. When particles 

come in contact, the particles form a part of the network and open/ break after a lifetime given by the contact 

duration which depends on the particle stiffness. For granular system sheared at a certain shear rate, in simple shear, 

the contact network rotates at approximately the same rate. This makes the system eventually unstable with self-

destruction and rearrangement of the particles occurring at a time scale related to the shear rate. The interaction of 

the particles on the other hand also depends on the presence of other external forces like gravity or attractive forces 

such as Van der Waals or liquid bridge capillary forces. Each of these is associated with a time scale too. While 

some time scales are globally invariant, others vary locally, changing the flow behavior accordingly. In general, the 

flow of the materials is governed by the relative importance of each time scale relative to another, expressed by 

several dimensionless numbers.  
 

2. NUMERICAL SET-UP AND PARAMETERS  

 

We use MercuryDPM [1, 2], an open-source implementation of the Discrete Particle Method, to simulate a shear 

cell with annular geometry and a split bottom plate, filled with dry or wet granular materials, and sheared in slow,  

quasistatic conditions. The details of the numerical set-up are explained in [3, 4] and thus are not discussed here. 

The simulations are run for different surface tensions of liquid, thereby varying the microscopic and thus the 

macroscopic cohesion, as discussed in [4]. The liquid bridge contact model is based on a combination of an elastic-

dissipative normal repulsive force and a non-linear, irreversible, non-contact capillary force as described in [3, 4]. 

 

 

3. TIME SCALES  

 



Dimensional analysis is often used to define the characteristic time scales for different physical phenomena that the 

system involves. Even in a homogeneously deforming granular system, the deformation of individual grains is not 

homogeneous. Due to geometrical and local parametric constraints at grain scale, grains are not able to displace as 

affine continuum mechanics dictates they should. The flow or displacement of granular materials on the grain scale 

depends on the timescales for the local phenomena and interactions. Each time scale can be obtained by scaling the 

associated parameter with a combination of particle diameter dp and material density ρ. While some of the time 
scales are globally invariant, others are varying locally. The dynamics of the granular flow can be characterized 

based on different time scales depending on local and global variables. First, we define the time scale related to 

contact duration of particles which depends on the contact stiffness k as given by [5]: 

 

k

d
t

p
k

3
                                          (1) 

 

In the special case of a linear contact model, this is invariant and thus represents a global time scale too. Two other 

time scales are globally invariant, the cohesional time scale tc , i.e. the time required for a single particle to traverse 

unit length scale under the action of attractive capillary force and the gravitational time scale tg, i.e. the elapsed time 

for a single particle to fall through half its diameter under the  influence of the gravitational force. Ideally, the time 

scale tc should vary locally depending on the local capillary force fc. However, the capillary force is weakly affected 

by the liquid bridge volume and strongly depends on the surface tension of the liquid γ, thereby making the time 
scale a global parameter given by: 
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with surface tension σ and capillary force fc  ≈ πσdp. The surface tension of liquid is varied from 0 to 0.50 Nm-1 in 

the simulations. 

  

The corresponding time scale due to gravity which is of significance under small stress is defined as: 
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The global time scales for granular flow are complemented by locally varying time scales. Granular materials 

subjected to strain undergo constant rearrangement and thus the contact network re-arranges (by extension and 
compression and by rotation) with a time scale related to the local strain rate field: 
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Finally, the time for rearrangement of the particles under a certain pressure constraint is driven by the local pressure 

p. This microscopic local time scale based on pressure is: 
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As the shear cell has an unconstrained top surface, where the pressure is infinitely small, this time scale varies 

locally from very low (at the base) to very high (at the surface). Likewise, the strain rate is high in the shear band 

and low outside, so that also this time scale varies between low and high, respectively. 

 



All the dimensionless numbers in our system are discussed in brief for the sake of completeness, even though not all 

are of equal significance. 

 

 

4. DIMENSIONLESS NUMBERS 

 

 

Dimensionless numbers in fluid and granular mechanics are a set of dimensionless quantities that have a dominant 

role in describing the flow behavior. These dimensionless numbers are often defined as the ratio of different time 

scales or forces, thus signifying the relative dominance of one phenomenon over another. In general, we expect five 

time scales (tg, tp, tc, tγ  and tk) to influence the rheology of our system. The ratio of the square of the first two time 

scales is given by:  
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where, fg = ρgdp
3 is the gravitational force on a single particle and fp = pdp

2 is the normal force on a single particle 

due to the confining stress. This local dimensionless number is vanishes at small pressures close to a free surface, 

where the effect of the confining pressure is less significant than that of gravity (tp > tg).  

 

The other dimensionless number which is only significant for cohesive granular materials is the Bond number Bo. 
While the conventional way of defining the Bond number as the ratio of the forces fc and fg [6] is appropriate for 

single particles, or close to the free surface, we define the local Bond number relative to the confining force:  
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where, fc is the capillary (attractive) force between two particles in contact. The experimentally measurable global 

Bond number Bog is defined as the minimum of the local Bond number, i.e. the Bond number corresponding to 

measured pressure at the base of the flow.  

 

The other dimensionless number which is of significance in dynamic flow as shown in [7] and less relevant in 

quasistatic flow is the inertial number [8, 9]: 
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The Inertial number is the ratio of the time scales related to pressure and strain rate. This provides an estimate of the 

local rapidity of the flow. In quasistatic flow, particles interact over enduring contacts and inertial effects are 

negligible (tp << tγ ).  

 

The fourth dimensionless number which is often relevant in granular flow but of little relevance for the relatively 

stiff particles studied here (tk very small), is the local compressibility defined as: 
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which is a good way to define the dimensionless pressure. 

 



 In summary, five time scales allow to define four dimensionless numbers, where pg
* > 5 defines the bulk of the 

system, and in the bulk three unique numbers control the rheology, namely, I, Bo, p*, which dominate in inertial, 

cohesive and soft (high confining stress) systems, respectively. While the effect of both inertial number and softness 

was reported in [4] and [10], we consider cohesion and the fourth dimensionless number pg
* both to be predominant 

close to the free surface, identified by the regime pg
*
 < 5, where compression is weak and both fc and fg are 

comparable to fp, i.e. the corresponding time scales tc, tg and tp are interfering. In the bulk one should consider tp. 
 

 

5. LOCAL MACROSCOPIC FRICTION COEFFICIENT 

 

The effects of pg
* and Bo on the macroscopic friction coefficient µ are predicted as: 
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where in the right side of the above equation, the first function denotes the dependence of µ on Bo and the second 

function denotes the dependence of µ on pg
*. 

 

The values of the fitting constants are reported in [4] and are a ≈ 0.22, b ≈ 0.72 and pgo
* ≈ 2.38. Figure 1 shows the 

local macroscopic friction coefficient µ = τ/p as a function of the scaled pressure pg
* for different intensity of 

cohesion in sheared granular materials. The dash dotted lines represent the predicted friction coefficient for different 
surface tension of liquid (see Bog inset). While we show the prediction of macroscopic friction coefficient for 

weakly to moderately cohesive granular materials (up to Bog = 0.12), we discuss about the effects on viscosity for 

higher cohesion as well in the next section. A comparison of the local friction coefficient as a function of the scaled 

pressure shows that µ approaches exponentially to the dry, rigid, quasistatic limit value µo = 0.15 in the high 

pressure limit (tg >> tp). It is further observed that trend of the macroscopic friction coefficient changes with the 

global Bond number and Bog = 0.06 marks the intermediate case of the change in this trend. For higher wet cohesive 

materials, µ is very high at small pressure due to the contribution from high local Bond number (tc << tp).  
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Figure 1 Predicted local macroscopic friction coefficient (µ) as compared with the simulation results as a function 

of pressure (pg
*) with the representation of different timescales. Different symbols indicate different global Bond 

numbers (Bog). The dotted lines indicate µ for different global Bond numbers as predicted by Eq. (10). The vertical 

dashed line represents the demarcation between the free surface and the bulk of the material given by pg
* ≈ 5. 



 

6. GLOBAL APPARENT VISCOSITY  

 

In continuation of earlier discussions on the system parameters, time scales, dimensionless numbers and the locally 

varying macroscopic friction coefficient, now we focus our attention on bulk properties e.g. the global apparent 

viscosity of the granular fluid. Any gradual deformation of the material gives rise to process-changed forces in its 
interior, due to restructuring and friction between adjacent particles. Deformation at a finite rate gives rise to the 

“apparent” viscosity (τ/ γ  ) i.e., shear stress per shear rate with interesting non-Newtonian flow features for dry as 

well as wet granular materials. For fluids, it is critical to apply rheometrical techniques for their characterization, 

specifically for measuring their physical flow properties like viscosity. However, for granular materials this 

approach is still a challenge for several reasons; for example, these materials may exhibit a strongly non-linear 

behavior depending on the flow conditions like strain localization as shear banding. There is added complexity for 

wet granular materials due to their variable cohesion due to liquid migration (neglected here), with unknown 

constitutive flow behavior. 

 

The shear cell set-up constrained by pressure under gravity has the advantage of getting data at different pressures, 

strain rates and densities from a single simulation. One can extract quantitative data best in the shear band region by 

long-term averaging. We analyze the mean apparent viscosity at the center of the shear band (termed as the global 
viscosity ῆ) as a function of the global Bond number Bog. Figure 2 shows that the global viscosity increases linearly 

with the global Bond number. The solid line represents the linear function: 

 

gdry Bo ~                            (11) 

 
 

where ƞʹ = 747 Pa.s-1 and ƞdry = 233 Pa.s-1 are the specific cohesive viscosity (per Bog) and the global viscosity for 

dry granular materials respectively. However these constants are not done validated in systems with different 

gravity, rotation rate and filling height. Thus, the dominance of the capillary force relative to the pressure results in 

an increase in global Bond number, thereby increasing the global viscosity of the material in an experimental set-up. 

This increasing viscosity can be related to the increasing torque and shear stress for cohesive wet granular materials 

as discussed in [11]. 

 
Figure 2 Global apparent viscosity due to wet cohesion ῆ- ƞdry as a function of the global Bond number Bog. The 

solid line represents Eq. (11). 

 

 



7. CONCLUSIONS 

 

We studied the time scales that are significant in the bulk and close to the free surface of the granular flows, 

respectively. The time scales can be associated to define different dimensionless numbers relevant for a general 

granular rheology. More specifically, we focused on the dimensionless numbers that are significant for the 

quasistatic flows in our system with almost rigid particles. The significant flow properties like the macroscopic 
friction coefficient and the apparent shear viscosity are studied for dry and wet granular materials and are shown to 

be controlled by different dimensionless numbers. Thus, the flow properties are highly affected by locally dominated 

phenomena, which are represented by the interplay of local time scales. The presence of strong gravitational forces 

and the cohesive capillary forces are shown to play the dominant role for particles constrained under small pressure 

close to the free surface. The global apparent viscosity in the critical state increases linearly with the intensity of wet 

cohesion, represented by the global Bond number. 
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10. NOMENCLATURE  

 

dp  : mean particle diameter [m] 

ρ  : particle density [kg/m3] 

k  : particle stiffness [N/m] 

σ  : surface tension of liquid [N/m]  

g  : acceleration due to gravity [m/s2] 
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