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Abstract Employing two-dimensional molecular dynamics (MD) simulations
of soft particles, we study their non-affine responses to quasi-static isotropic
compressions, where the effects of microscopic frictions between the parti-
cles in contacts and particle size distributions are examined. To quantify the
complicated restructuring of force-chain networks under the isotropic compres-
sions, we introduce the conditional probability distributions (CPDs) of particle
overlaps such that a master equation for force distributions in the soft parti-
cle packings can be constructed. From our MD simulations, we observe that
the CPDs are well described by the q-Gaussian distributions, where we find
that the correlation between particle overlaps is suppressed by microscopic
frictions, while it significantly increases with the increase of poly-dispersity.

Keywords granular materials · force-chain networks · quasi-static deforma-
tions · stochastic model · DEM

1 Introduction

Mechanical properties of soft particles, e.g. glasses, colloids, and granular ma-
terials, have been widely investigated because of their importance in industry
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and science. However, their macroscopic responses to quasi-static deformations
are still not fully understood due to disordered configurations and complex dy-
namics of the constituent particles [1]. At microscopic scale, the mechanical
response is probed as the change of force-chain networks [2], where non-affine
displacements of the constituents cause the complicated restructuring of force-
chain networks. Once macroscopic quantities, e.g. stress tensor, are defined as
statistical averages over the force-chains, their evolution during quasi-static
deformations is described by the change of probability distribution function
(PDF) of forces, where many theoretical studies [3,4] have been devoted to
determine their functional forms observed in experiments [5] and numerical
simulations [6].

Recently, we have proposed a master equation for the PDFs of forces in
two-dimensional bi-dispersed frictionless particles [7], which is, in our knowl-
edge, the first attempt to establish a stochastic method for describing the
restructuring of force-chains. The master equation can predict the mechani-
cal responses to isotropic compressions and decompressions, where transition
rates, or conditional probability distributions (CPDs), in the master equation
encompass the statistics of microscopic changes of force-chain networks. In ad-
dition, any changes of macroscopic quantities defined as the moments of forces
(i.e. the coordination number, pressure, and bulk modulus) can be given by
the master equation.

In this paper, we generalize our stochastic approach towards wider size
distributions and frictional contact models, where the CPDs obtained fromMD
simulations are compared with our previous study of bi-dispersed frictionless
particles [7]. Next, we explain our MD simulations in Sec. 2 and show our
numerical results in Sec. 3. Then, we conclude our results in Sec. 4.

2 Method

We use MD simulations of two-dimensional soft particles, where both bi-
dispersed and poly-dispersed particles are studied. The number of bi-dispersed
particles is N = 8192, where we prepare 50 : 50 binary mixtures of large and
small particles with different radii, RL and RS , respectively (RL/RS = 1.4)
[7]. On the other hand, the number of poly-dispersed particles is N = 1872,
where the number of each constituent, Ns, and size ratios are summarized
in Table 1 1. In our MD simulations, the particle mass, m, is identical and is
used for the unit of mass. In addition, for both bi-dispersed and poly-dispersed
particles, the normal force between the particles in contact is modeled by a
linear spring and dashpot, i.e. fnij = knxij −ηnẋij , where kn and ηn are a nor-
mal stiffness and normal viscosity coefficient, respectively. Here, the overlap
between the particles, i and j, is defined as

xij = Ri +Rj − dij (1)

1 The number of particles and size ratios of poly-dispersed particles are resembling the
recent experiments of wooden cylinders [8].
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with the interparticle distance, dij , and particles’ radii, Ri and Rj . Thus, the
relative speed in the normal direction is given by its time derivative, ẋij . The
tangential force is also introduced as ftij = ktyij − ηtẏij , which is switched
to the sliding friction or Coulomb’s friction, fsij = −µ|fnij |, if it exceeds the
threshold, i.e. if |ftij | > µ|fnij |. Here, we introduced kt = kn/2, ηt = ηn/4, and
µ as a tangential stiffness, tangential viscosity coefficient, and friction coeffi-
cient, respectively. In addition, yij and ẏij represent a relative displacement
and relative speed in the tangential direction, respectively [9].

To make static packings of the particles, we randomly distribute them
in a L × L square periodic box, where no particle touches others and the
friction coefficient is set to zero, µ = 0 (the particles are frictionless during the
preparation of static packings). Then, we rescale every radius as Ri(t+ δt) =
[1 + {x̄− xm(t)} /λ]Ri(t) (i = 1, . . . , N), where t, δt, x̄, and xm(t) are time,
increment of time, target value of averaged overlap, and averaged overlap at
time t, respectively. Here, we use a long length scale λ = 102σ̄ with the mean
particle diameter in the final state, σ̄, to rescale each radius gently 2. During
the rescaling, each radius increases if the averaged overlap is smaller than the
target value, xm(t) < x̄, and vice versa, so that the averaged overlap will
finally converge to x̄. Note that neither particle masses nor the size ratios
change during the rescaling, i.e. σi(t + δt)/σj(t + δt) = σi(t)/σj(t). We stop
the rescaling when every acceleration of particles drops below a threshold,
10−6knσ̄/m, and assume that the system is static.

Figure 1(a) displays a static packing of poly-dispersed particles, where the
averaged overlap is given by x̄ = 3 × 10−6σ̄ and each color represents each
constituent as listed in Table 1. Figure 1(b) shows the weighted Delaunay
triangulation (DT) of the static packing, where the red solid lines represent
force-chain networks, while the blue solid lines connect the nearest neighbors
without contacts. In this figure, we used the radical-plane construction [11] to
correctly define the nearest neighbors of poly-dispersed particles. In our MD
simulations, the distance from jamming is given by the critical scaling of the
averaged overlap, x̄ = A(ϕ − ϕJ) [10], where ϕ and ϕJ ≃ 0.8458 are the area
fraction of soft particles and the jamming area fraction, respectively. Here, the
critical amplitude is found to be A ≃ 0.25σ̄ (Fig. 2(a)) and the other critical
scaling, e.g. the static pressure divided by the normal stiffness (Fig. 2(b)) and
the first peak value of the radial distribution function of scaled distances (Fig.
2(c)), are also confirmed, where their power law dependence on the distance
from jamming is given by p/kn = 1.25×(ϕ−ϕJ)

1.04 and g1 = 0.31×(ϕ−ϕJ)
−1,

respectively 3 [10].

In this study, we investigate mechanical responses of bi-dispersed frictional
particles, poly-dispersed frictionless particles, and poly-dispersed frictional par-
ticles to isotropic compressions, where the friction coefficients, µ = 0 and

2 We confirmed that static packings prepared with longer length scales, λ = 103σ̄ and
104σ̄, give the same results concerning their critical scaling near jamming [10], while we
cannot obtain the same results with a shorter length scale, λ = 10σ̄.

3 Here, p/kn is dimensionless in two dimensions and the scaled distances for radial distri-
bution functions, g(r), are defined as r ≡ dij/(Ri +Rj).
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Table 1 The number of constituents in poly-dispersed particles, Ns, and each diameter, σs

(s = 1, 2, 3, 4). Each color in Fig. 1(a) is also listed in the last column.

s Ns σs/σ4 colors

1 807 0.3 green
2 434 0.6 red
3 414 0.8 blue
4 217 1.0 gray

(a) (b)

Fig. 1 (Color online) (a) A static packing of poly-dispersed particles, where the total num-
ber of particles is N = 1872 and the averaged overlap is given by x̄ = 3 × 10−6σ̄. (b)
The weighted Delaunay triangulation (DT) of the static packing. The red solid lines are
equivalent to force-chains, where their widths are proportional to the magnitudes of contact
forces. The blue solid lines connect the nearest neighbors without contacts. The gray circles
represent the particles.

0.5, are used for frictionless and frictional particles, respectively. To apply an
isotropic compression to the system, we rescale every radius as

R′
i =

√
1 +

δϕ

ϕ
Ri , (2)

where the area fraction increases from ϕ to ϕ+δϕ. After compression, we relax
the system until every acceleration of particles drops below the threshold.

3 Results

In this section, we introduce a master equation for the PDFs of particle over-
laps as a stochastic description of microscopic changes of force-chain networks.
First, we study microscopic responses of overlaps to isotropic compressions
(Sec. 3.1), where we describe their mean values and fluctuations in terms of
strain increments and distances from jamming (Sec. 3.2). Then, we introduce a
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Fig. 2 (Color online) Double logarithmic plots of (a) the averaged overlap, x̄, (b) static
pressure scaled by the normal stiffness, p/kn, and (c) first peak value of radial distribution
function of scaled distance, g1, where poly-dispersed frictionless particles are used in MD
simulations. The dotted lines are power law fittings, (a) x̄ = 0.25σ̄(ϕ − ϕJ ), (b) p/kn =
1.25(ϕ− ϕJ )

1.04, and (c) g1 = 0.31(ϕ− ϕJ )
−1, respectively.

master equation for the PDFs of overlaps (Sec. 3.3) and numerically determine
transition rates for the master equation (Sec. 3.4).

3.1 Microscopic responses of overlaps

Microscopic responses of soft particle packings to quasi-static deformations
are probed as the restructuring of force-chain networks, where particle rear-
rangements cause the complicated recombination of force-chains, e.g. opening
and closing contacts. To deal with such the restructuring of force-chain net-
works, we employ the weighted DT of particle packings as displayed in Fig.
1(b), where not only the particles in contacts, but also the nearest neighbors
without contacts, i.e. virtual contacts, are connected by the Delaunay edges.
We then generalize the definition of particle overlaps from Eq. (1) to

xij ≡ Ri +Rj −Dij , (3)

where the interparticle distance, dij , is replaced with the Delaunay edge length,
Dij , so that the overlaps between the particles in virtual contacts (Ri +Rj <
Dij) are defined as negative values. Because the DT is unique for each packing,
contacts and virtual contacts are uniquely determined.

If we apply an isotropic compression to the system (Eq. (2)), every gen-
eralized overlap, Eq. (3) (not only for contacts, but also for virtual contacts),
exhibits affine responses,

xaffine
ij = xij +

Dij

2ϕ
δϕ , (4)

where we neglected the higher order terms proportional to xijδϕ and δϕ2 [7].
However, the particles are randomly arranged such that each force balance
is broken by the affine deformation, Eq. (2), where non-affine displacements
of the particles restructure the force-chain networks (or the DT) to relax the
system to another mechanical equilibrium. After the relaxation, the overlaps
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Fig. 3 (Color online) (a) and (b): Sketches of static packings (a) before and (b) after an
isotropic compression, where the red and blue solid lines represent contacts and virtual
contacts, respectively. The four kinds of transitions, (CC) contact-to-contact, (VV) virtual-
to-virtual, (CV) contact-to-virtual, and (VC) virtual-to-contact, are displayed. (c) A scatter
plot of scaled overlaps between poly-dispersed frictional particles, where the red and blue
dots are ξ′ and ξaffine plotted against ξ, respectively.

change to new values, x′
ij ̸= xaffine

ij , that is non-affine responses of generalized
overlaps.

As shown in Figs. 3(a) and (b), there are only four kinds of transitions from
xij to x′

ij : Positive overlaps, xij > 0, remain as positive, x′
ij > 0, or negative

overlaps, xij < 0, remain as negative, x′
ij < 0, where they do not change their

signs and thus contacts are neither generated nor broken. We call these changes
contact-to-contact (CC) and virtual-to-virtual (VV), respectively. It is also
possible that positive overlaps change to negative ones and negative overlaps
become positive, where existing contacts are broken and new contacts are
generated, respectively. We call these changes opening and closing contacts, or
in analogy to the above, contact-to-virtual (CV) and virtual-to-contact (VC),
respectively.

In the following, we scale the generalized overlaps, Eq. (3), by the averaged
overlap before compression, x̄, such that scaled overlaps before deformation,
after affine deformation, and after relaxation are introduced as ξ ≡ xij/x̄,
ξaffine ≡ xaffine

ij /x̄, and ξ′ ≡ x′
ij/x̄, respectively (we omit the subscript, ij, after

the scaling). From the affine responses, Eq. (4), and the critical scaling of the
averaged overlap, x̄ = A(ϕ − ϕJ), the scaled overlap after affine deformation
is given by a linear function of ξ,

ξaffine = ξ +Baγ , (5)

where the offset, Baγ ≡ (Dij/2Aϕ) γ, is proportional to the scaled strain incre-
ment, γ ≡ δϕ/ (ϕ− ϕJ ). On the other hand, we will find that the scaled overlap
after relaxation, ξ′, fluctuates around the mean value due to the restructuring
of force-chain networks.

3.2 Mean and fluctuations of overlaps

To describe non-affine responses of scaled overlaps, ξ′, we measure their mean
values and fluctuations through scatter plots of ξ and ξ′. Figure 3(c) displays
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the scatter plot for poly-dispersed frictional particles, where the four different
transitions are mapped onto four regions: (CC) ξ, ξ′ > 0, (VV) ξ, ξ′ < 0,
(CV) ξ > 0, ξ′ < 0, and (VC) ξ < 0, ξ′ > 0, respectively. In this figure,
affine responses of scaled overlaps, ξaffine, are described by the deterministic
equation (5), while non-affine responses, ξ′, distribute around mean values with
finite fluctuations. The differences between affine and non-affine responses are
always present, but small if the applied strain is small or the system is far from
jamming such that the scaled strain increment is significantly small, γ ≪ 1,
while ξ′ deviates more from ξaffine and data points are more dispersed if γ ≫ 1.

In a similar way to affine responses, Eq. (5), we describe the mean values
of ξ′ in CC and VV regions by linear functions of ξ,

ms(ξ) = (as + 1)ξ + bs , (6)

where the subscripts, s = c and v, represent the mean values in CC and VV,
respectively. Introducing standard deviations of ξ′ from their mean values as
vs (which are almost independent of ξ), we quantify the systematic deviation
from affine responses by the coefficients, as, bs, and vs, where affine responses,
Eq. (5), can be recovered if as = vs = 0 and bs = Baγ. Figure 4 displays
the coefficients, as, bs, and vs (s = c, v), for poly-dispersed frictional particles
plotted against the scaled strain increment, γ. In this figure, we find that all
the coefficients, except for av ≃ 0, increase with the scaled strain increment,
where the data with a wide variety of δϕ and ϕ− ϕJ collapse onto the linear
scaling,

ac = Acγ , bs = Bsγ , vs = Vsγ , (7)

in the fitting range, 10−6 ≤ γ ≤ 5 × 10−3. Here, the scaling amplitudes are
given by Ac = 0.39, Bc = 0.81, Bv = 1.32, Vc = 0.30, and Vv = 1.22. Note
that virtual contacts behave like affine responses in average (because av ≃ 0
and Bv ≈ Ba ≃ 1.3 in average), except for their huge fluctuations (Vv ≫ Vc).

3.3 A master equation for the PDFs of overlaps

The restructuring of force-chain networks attributed to the transitions (CC,
VV, CV, and VC) is well captured by the PDFs of scaled overlaps. In the
following, we introduce the PDF as Pϕ(ξ) with the subscript, ϕ, representing
the area fraction of soft particles. Because the total number of Delaunay edges
is conserved during deformations, the PDFs are normalized as∫ ∞

−∞
Pϕ(ξ)dξ = 1 . (8)

In our previous study of bi-dispersed frictionless particles [7], we found that
the affine responses, Eq. (5), just shifted the PDF to the positive direction,
while the non-affine responses broadened the PDF in positive overlaps and
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Fig. 4 (Color online) Double logarithmic plots of the coefficients for mean values and
fluctuations of scaled overlaps, (a) ac, (b) bc, (c) vc, (e) bv , and (f) vv , and a semi-logarithmic
plot of (d) av , as functions of the scaled strain increment, γ. Here, we applied different strain
increments, δϕ = 4 × 10−4, 4 × 10−5, and 4 × 10−6 (as indicated by the symbols in the
legend of (a)), to poly-dispersed frictional particles with different distances from jamming,
ϕ−ϕJ = 1.2×10−1, 4×10−2, 1.2×10−2, 4×10−3, 1.2×10−3, and 4×10−4. The solid lines
represent the linear scaling, Eq. (7), where the fitting range is given by 10−6 ≤ γ ≤ 5×10−3.

generated a discontinuous “gap” around zero 4. We also find that the PDF of
negative overlaps after non-affine deformation is comparable with that after
affine deformation. In our simulations of poly-dispersed frictional particles,
we observe similar results. Figure 5 displays the PDFs for poly-dispersed fric-
tional particles, where the PDF before compression, Pϕ(ξ), has a discontin-
uous gap around zero. The affine deformation pushes the PDF towards the
positive direction as Pϕ+δϕ(ξ

affine), where the poly-dispersity smooths out the
discontinuity around zero. After non-affine deformation, the PDF widens in
positive overlaps as Pϕ+δϕ(ξ

′), while there is no significant difference between
Pϕ+δϕ(ξ

affine) and Pϕ+δϕ(ξ
′) in negative overlaps (the inset in Fig. 5).

To describe such the non-affine evolution of the PDFs, we connect the PDF
after non-affine deformation to that before compression through the Chapman-
Kolmogorov equation [13],

Pϕ+δϕ(ξ
′) =

∫ ∞

−∞
W (ξ′|ξ)Pϕ(ξ)dξ , (9)

assuming that transitions between overlaps (from ξ to ξ′) can be considered
as Markov processes. On the right-hand-side of Eq. (9), the CPD of scaled
overlaps, ξ′, which were ξ before compression, is introduced as W (ξ′|ξ). By

4 Such a discontinuity is specific to static packings, where a corresponding gap has been
observed in a radial distribution function in the glass with zero-temperature [12].
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Fig. 5 (Color online) The PDFs of scaled overlaps in poly-dispersed frictional particles
before compression, Pϕ(ξ) (the squares), after affine deformation, Pϕ+δϕ(ξ

affine) (the trian-
gles), and after non-affine deformation, Pϕ+δϕ(ξ

′) (the circles), where the inset is a magni-
fication of the PDFs of negative scaled overlaps.

definition, the CPD is normalized as
∫∞
−∞ W (ξ′|ξ)dξ′ = 1. Then, a master

equation for the PDFs is derived from the Chapman-Kolmogorov equation (9)
as [13]

∂

∂ϕ
Pϕ(ξ

′) =

∫ ∞

−∞
{T (ξ′|ξ)Pϕ(ξ)− T (ξ|ξ′)Pϕ(ξ

′)} dξ (10)

with the transition rate defined as T (ξ′|ξ) = limδϕ→0 W (ξ′|ξ)/δϕ. The first
and second terms on the right-hand-side of the master equation (10) represent
the gain and loss of new overlaps, ξ′, respectively. Therefore, the transition
rates or the CPDs fully determine the statistics of microscopic responses of
force-chain networks.

3.4 Conditional probability distributions of overlaps

To understand the restructuring of force-chain networks, we numerically de-
termine the CPDs of scaled overlaps, where the CPDs are given by the dis-
tributions of ξ′ around the mean values, ms(ξ). Note that the CPD for affine
responses is given by a delta function, Waffine(ξ

′|ξ) = δ(ξ′− ξaffine), which just
shifts the PDF by Baγ

5. However, non-affine deformations generate fluctua-
tions of scaled overlaps around their mean values so that the CPDs are given by
distributions with finite widths. In our previous study of bi-dispersed friction-
less particles [7], we have confirmed that the CPDs for CC and VV transitions
are well described by γWCC(ξ

′|ξ) = fc(Ξc/γ) and γWV V (ξ
′|ξ) = fv(Ξv/γ),

respectively, where Ξs ≡ ξ′ −ms(ξ) (s = c, v) is the distance from the mean
values and

fs(x) =
1

c(qs)

[
1 +

x2

n(qs)V 2
s

] 1
1−qs

(11)

5 From the Chapman-Kolmogorov equation (9), Pϕ+δϕ(ξ
′) =

∫∞
−∞ δ(ξ′−ξaffine)Pϕ(ξ)dξ =∫∞

−∞ δ(ξ′ −Baγ − ξ)Pϕ(ξ)dξ = Pϕ(ξ
′ −Baγ).
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is the q-Gaussian distribution [14] with the functions defined as n(t) = (t −
3)/(1 − t) and c(t) = Vs

√
n(t)B (1/2, n(t)/2) 6. The shape of the CPD is

characterized by the q-index, qs, which is in the range between 1 < qs < 3,
where the normal (Gaussian) distribution corresponds to the limit, q → 1.

In the following, we compare our previous results of the CPDs for bi-
dispersed frictionless particles [7] with those for bi-dispersed frictional parti-
cles, poly-dispersed frictionless particles, and poly-dispersed frictional particles
to examine the effects of microscopic frictions and particle size-distributions
on the restructuring of force-chain networks.

3.4.1 Bi-dispersed frictional particles

First, we examine the dependence of the CPDs on microscopic frictions be-
tween the particles in contacts. Figure 6 displays the CPDs obtained from our
MD simulations of bi-dispersed frictional particles, where the different symbols
represent different values of the scaled strain increment, γ. Note that Figs. 6(b)
and (d) are semi-logarithmic plots of Figs. 6(a) and (c), respectively. In this
figure, all the data are well collapsed if we multiply the CPDs and distances
from the mean values by γ and 1/γ, respectively, which means that the CPDs
for CC and VV transitions are self-similar against the change of scaled strain
increment, γ. The solid lines are the q-Gaussian fits to the CPDs, where the
q-indices for CC and VV transitions are given by qBN

c = 1.06 (Figs. 6(a) and
(b)) and qBN

v = 1.21 (Figs. 6(c) and (d)), respectively. We then find that
the CPDs for CC transitions are nicely symmetric around the mean values,
mc(ξ), while those for VV transitions deviate from the symmetric q-Gaussian
distributions, which might be caused by the microscopic frictions. We also plot
the q-Gaussian fits to our previous results of bi-dispersed frictionless particles
(the dotted lines) [7], where the q-indices for CC and VV transitions are given
by qBL

c = 1.13 > qBN
c and qBL

v = 1.39 > qBN
v , respectively. Therefore, the

tails of the CPDs for bi-dispersed frictional particles are narrower than those
for bi-dispersed frictionless particles, implying that the correlations of scaled
overlaps are suppressed by the microscopic frictions.

3.4.2 Poly-dispersed frictionless particles

Next, we study the effect of size-distributions on the CPDs. Figure 7 shows
the CPDs for poly-dispersed frictionless particles, where the different symbols
represent different values of γ. In this figure, all the data are collapsed after
the same scaling as in Fig. 6. In addition, both the CPDs for CC and VV
transitions are symmetric around the mean values and are well described by
the q-Gaussian distributions (the solid lines), where their q-indices are given
by qPL

c = 1.37 > qBL
c (Figs. 7(a) and (b)) and qPL

v = 1.79 > qBL
v (Figs. 7(c) and

(d)), respectively. Therefore, the basic properties of the CPDs found in our
previous study [7], i.e. their self-similarity and symmetry, are not affected by

6 B(x, y) is the beta function.
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Fig. 6 (Color online) The CPDs for (a) CC and (c) VV transitions multiplied by the
scaled strain increment, γ, and plotted against scaled distances from the mean values, Ξs/γ
(s = c, v), where (b) and (d) are semi-logarithmic plots of (a) and (c), respectively. The
bi-dispersed frictional particles are used in the MD simulations, where the different symbols
represent different values of γ as listed in the legends of (a) and (c). The solid lines are
the q-Gaussian distributions with the q-indices, qBN

c = 1.06 and qBN
v = 1.21, respectively.

The dotted lines are the q-Gaussian distributions obtained from our previous study of bi-
dispersed frictionless particles [7], where the q-indices for CC and VV transitions are given
by qBL

c = 1.13 > qBN
c and qBL

v = 1.39 > qBN
v , respectively.

size-distributions, while the CPDs for poly-dispersed frictionless particles have
wider tails than those for bi-dispersed frictionless particles (the dotted lines
in Fig. 7) [7], implying that the correlations of scaled overlaps significantly
increase with the increase of poly-dispersity [15].

3.4.3 Poly-dispersed frictional particles

We have observed that microscopic frictions between the particles in contacts
narrow the tails of the CPDs, while the tails widen with the increase of poly-
dispersity. Thus, the correlation of scaled overlaps is either suppressed by
the microscopic frictions or enhanced by the poly-dispersity of soft particles.
Here, we test both effects on the CPDs to clarify which one is significant for
the restructuring of force-chains. Figure 8 displays the CPDs for poly-dispersed
frictional particles, where the different symbols represent different values of the
scaled strain increment, γ. In this figure, all the data are collapsed after the
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Fig. 7 (Color online) The CPDs for (a) CC and (c) VV transitions after the same scaling as
in Fig. 6, where (b) and (d) are semi-logarithmic plots of (a) and (c), respectively. The poly-
dispersed frictionless particles are used in the MD simulations, where the different symbols
represent different values of the scaled strain increment, γ, as listed in the legends of (a) and
(c). The solid lines are the q-Gaussian distributions with the q-indices, qPL

c = 1.37 > qBL
c

and qPL
v = 1.79 > qBL

v , respectively, while the dotted lines are as in Fig. 6.

same scaling (as in Fig. 6) and the CPDs for CC transitions are well fitted by
the q-Gaussian distribution, where the q-index is given by qPN

c = 1.19 ≃ qBL
c

(the solid lines in Figs. 8(a) and (b)) such that the effect of microscopic frictions
and that of poly-dispersity compete with each other. However, the CPDs for
VV transitions slightly deviate from the symmetric q-Gaussian distribution
(the solid lines in Figs. 8(c) and (d)) such that the microscopic frictions violate
the symmetry of the CPDs, where the best fit to our numerical results gives
the q-index, qPN

v = 1.09 < qBL
v . Therefore, microscopic frictions are more

significant than the poly-dispersity for correlations between virtual contacts.

4 Summary

In this study, we have investigated mechanical responses of bi-dispersed fric-
tional particles, poly-dispersed frictionless particles, and poly-dispersed fric-
tional particles to isotropic compressions by two-dimensional MD simulations.
The complicated restructuring of force-chain networks during relaxation has
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Fig. 8 (Color online) The CPDs for (a) CC and (c) VV transitions after the same scaling as
in Fig. 6, where (b) and (d) are semi-logarithmic plots of (a) and (c), respectively. The poly-
dispersed frictional particles are used in the MD simulations, where the different symbols
represent different values of the scaled strain increment, γ, as listed in the legends of (a) and
(c). The solid lines are the q-Gaussian distributions with the q-indices, qPN

c = 1.19 ≃ qBL
c

and qPN
v = 1.09 < qBL

v , respectively, while the dotted lines are as in Fig. 6.

Table 2 The q-indices for the CPDs in CC and VV, where qBL
s , qBN

s , qPL
s , and qPN

s are
those for bi-dispersed frictionless particles [7], bi-dispersed frictional particles, poly-dispersed
frictionless particles, and poly-dispersed frictional particles, respectively.

s qBL
s qBN

s qPL
s qPN

s

c 1.13 1.06 1.37 1.19
v 1.39 1.21 1.79 1.09

been described by the stochastic approach to non-affine deformations, i.e. the
mean and fluctuations of generalized overlaps, where the deviation from affine
deformations is quantified by the slope (as) and offset (bs) for the mean values,
and standard deviation (vs) of the fluctuations. As we found in our previous
study of bi-dispersed frictionless particles [7], those coefficients (as, bs, and
vs) for poly-dispersed frictional particles are also proportional to the scaled
strain increment, γ = δϕ/(ϕ − ϕJ). We have found that the deviation from
affine responses significantly increases with the increase of γ, while the re-
sponses of virtual contacts are mostly affine in average (except for their huge
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fluctuations). After the non-affine deformations of poly-dispersed frictional
particles, the PDFs of generalized overlaps are broadened in the positive side
(i.e. real contacts), while their changes in the negative side (i.e. virtual con-
tacts) are almost the same with affine deformations. We have introduced the
Chapman-Kolmogorov equation (9) and master equation (10) to describe the
non-affine evolution of the PDFs, where the statistics of microscopic responses
of generalized overlaps are fully determined by the CPDs, W (ξ′|ξ), and transi-
tion rates, T (ξ′|ξ). To understand the effects of microscopic frictions and size-
distributions on the restructuring of force-chain networks, we have compared
our results of the CPDs with the previous study of bi-dispersed frictionless
particles [7], where the shapes or tails of the CPDs are well characterized by
the q-indices in the q-Gaussian distributions (Table 2). We have found that the
tails of the CPDs for bi-dispersed frictional particles are narrower than those
for bi-dispersed frictionless particles such that correlations of contacts and vir-
tual contacts are suppressed by the microscopic frictions (Fig. 6). On the other
hand, the tails of the CPDs for poly-dispersed frictionless particles are much
wider than those for bi-dispersed frictionless particles so that the correlations
are significantly increased by the increase of poly-dispersity (Fig. 7). The same
trends have been observed in MD simulations of poly-dispersed frictional par-
ticles (Fig. 8). It should be noted that the self-similarity of the CPDs has been
confirmed, regardless microscopic frictions and size-distributions, where all the
CPDs are nicely collapsed after the scaling by γ. However, the symmetry of
the CPDs for VV transitions might be violated by microscopic frictions (Figs.
6(d) and 8(d)), where we need more systematic studies of the dependence of
the CPDs on the microscopic friction coefficient, µ.

In conclusion, the restructuring of force-chain networks during non-affine
deformations is described by the stochastic approach to generalized overlaps.
The non-affinity of their microscopic changes increases with the scaled strain
increment, though their statistics are governed by the self-similar conditional
probabilities. From the shapes of the CPDs, it was found that correlations of
generalized overlaps are suppressed (increased) by microscopic frictions (poly-
dispersity).
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