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Abstract
We study the rheology of dry andwet granularmaterials in the steady quasistatic regime using the
discrete elementmethod in a split-bottom ring shear cell with focus on themacroscopic friction. The
aimof our study is to understand the local rheology of bulkflow at various positions in the shear band,
where the system is in critical state.We develop a general(ized) rheology, inwhich themacroscopic
friction is factorized into a product of four functions, on top of the classical ( )m I rheology, each of
which depends on exactly one dimensionless control parameter, quantifying the relative importance
of differentmicro-mechanicalmachanisms. These four control parameters relate the time scales of
shear rate ġt , particle stiffness tk, gravity tg and cohesion tc, respectively, with the governing time scale
of confining pressure tp.While ġt is large and thus of little importance formost of the slow flowdata
studied, it increases the friction in critical state, where the shear rate is high and decreases friction by
relaxation (creep)where the shear rate is low. tg and tk are comparable to tp in the bulk, but become
more or less dominant relative to tp at the extremes of lowpressure at the free surface and high pressure
deep inside the bulk, respectively. The effect of wet cohesion on theflow rheology is quantified by tc
decreasingwith increasing cohesion. Furthermore, the proposed rheologicalmodel predicts well the
shear thinning behavior both in the bulk and near the free surface; shear thinning rate becomes less
near the free surface with increasing cohesion.

1. Introduction

The ability to predict amaterial’s flowbehavior, its rheology (like the viscosity forfluids) givesmanufacturers an
important product quantity. Knowledge onmaterial’s rheological characteristics is important in predicting the
pourability, density and easewithwhich itmay be handled, processed or used. The interrelation between
rheology and other product dimensions oftenmakes themeasurement of viscosity themost sensitive or
convenient way of detecting changes inflowproperties. A frequent reason for themeasurement of rheological
properties can be found in the area of quality control, where rawmaterialsmust be consistent frombatch to
batch. For this purpose, flowbehavior is an indirectmeasure of product consistency and quality.

Most studies on cohesivematerials in granular physics focus on dry granularmaterials or powders and their
flow [15, 39]. However, wet granularmaterials are ubiquitous in geology andmany real-world applications
where interstitial liquid is present between the grains.Many studies have applied the ( )m I -rheology toflows of
drymaterials at varying inertial numbers I [40, 41, 43, 45, 49]. Studies of wet granular rheology includeflowof
dense non-Brownian suspensions [3, 13, 14, 21]. Here, we study partially wetted systemof granularmaterials, in
particular the pendular regime, which is also covered inmany studies [35, 38, 51].While ideally, unsaturated
granularmedia under shear show redistribution of liquid content among the contacts [28, 36], we assume a
simplistic approach of homogeneous liquid content for liquid bridges of all contacts. One of the important
aspects of partially wetted granular shearflows is the dependence of shear stress on the cohesive forces for wet
materials. Various experimental and numerical studies show that addition of liquid bridge forces leads to higher
yield strength. The yield stress at critical state can befitted as a linear function of the pressure with the friction
coefficient of dry flow mo as the slope and afinite offset c, defined as the steady state cohesion in the limit of zero
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confining pressure [35]. This finite offset c is constant in the high pressure limit. However, very little is known
regarding the rheology for granularmaterials in the low pressure limit.

Depending on the surrounding conditions, granularflows phenomenon are affected by appropriate time
scales namely, tp: time required for particles to rearrange under certain pressure, ġt : time scale related to strain
rate ġ , tk: related to the contact time between particles, tg: elapsed time for a single particle to fall through half its
diameter under the influence of gravity and tc: time scale for the capillary forces driving the flow are primarily
hindered by inertia based on particle density.While various time scales, as related to the ongoingmechanisms in
the sheared bulk of thematerial, can interfere, they also can get decoupled, in the extremes of the local/ global
condition, if one time scale gets way smaller inmagnitude than the other. A detailed description of this time
scales are given in section 3.While tk, tg and tc are global, other time scales ġt and tp depends on localfield
variables strain rate ġ and pressure p respectively.We restrict our studies to the quasi-static regime ( ˙ �gt tp) as
the effect of cohesion decreases with increasing inertial number due to the fast decrease in coordination number
[1].Moreover, the quasistatic regime observed for non-cohesive particles also persist for cohesive particles,
while the inertial regime of noncohesive particles bifurcates into two regimes: rate-independent cohesive regime
at low shear rates and inertial regime at higher shear rates [11]. In the present work, we shed light on the rheology
of non-cohesive dry aswell as cohesive wet granularmaterials at the small pressure limit, by studying free surface
flow.While the inertial number I [19], i.e. the ratio of confining pressure to strain-rate time scales, is used to
describe the change inflow rheology fromquasi-static to inertial conditions, we look at additional dimensionless
numbers that influence theflowbehavior. (i)The local compressibility *p , which is the squared ratio of the
softness and stress time scales (ii) the inverse relative pressure gradient *pg , which is the squared ratio of
gravitational and stress time scales and (iii) the Bond numberBo [48] quantifying local cohesion as the squared
ratio of stress towetting time scales are these dimensionless numbers.We show a constitutive relation based on
these dimensionless numbers in sections 4–6 of this paper. Additional relevant parameters are not discussed in
this study, namely granular temperature orfluidity. All these dimensionless numbers can be related to different
time scales or force scales relevant to the granular flow.

Granularmaterials display non-Newtonian flowbehavior for shear stresses above the so called yield stress
while they remainmostly elastic like solids below this yield stress.More specifically, granularmaterials flow like a
shear thinningfluid under sufficient stress.When dealingwithwet granularmaterials, it is therefore of
fundamental interest to understand the effect of cohesion on the bulkflow and yield behavior. Recently, the
majority of investigations of non-Newtonian flowbehavior focused on concentrated colloidal suspensions.
Shear thickening is often observed in thoseflows due to the formation offlow-induced density fluctuations
(hydroclusters) resulting fromhydrodynamic lubrication forces between particles [46]. Similar local clusters
(aggregates) can also be found in strongly cohesive wet granularmaterials, especially near to the free surface,
where attractive forces dominate their repulsive counterparts [39]. However, the strong correlations observed
between particles of close proximity in suspensions seem to be irrelevant inwet granular systems, where the
range of force interactions ismuchmore limited. On the other hand, Lin et al [22] show that contact forces
dominate over hydrodynamic forces in suspensions that show continuous shear thickening. Fall et al [7] propose
that discontinuous shear thickening of cornstarch suspensions is a consequence of dilatancy: the systemunder
flow attempts to dilate but instead undergoes a jamming transition because it is confined—a phenomenon that
was recently also explained by amoving jamming point [20]. Another possible cause for shear thickening is the
large stress required tomaintain flowdue to particle–particle friction above a critical stress as in [6, 29]. This is
more likely to happen in charge stabilized colloidal suspensions. Herewe only intended to speculate the flow
behavior of cohesive granularmaterials in relevance tomicro scale analogy for shear thickening in suspensions
and section 7 of this paper is devoted to understandmore on the behavior of wet granularmaterials with
increasing cohesion.

2.Model system

2.1. Geometry
2.1.1. Split-bottom ring shear cell
WeuseMercuryDPM [42, 50], an open-source implementation of the discrete particlemethod, to simulate a
shear cell with annular geometry and a split bottomplate, as shown infigure 1. Some of the earlier studies in
similar rotating set-ups include [37, 47, 52]. The geometry of the system consists of an outer cylinder (outer
radiusRo=110 mm) rotating around afixed inner cylinder (inner radiusRi=14.7 mm)with a rotation
frequency ofΩ=0.01 revolutions per second. The granularmaterial is confined by gravity between the two
concentric cylinders, the bottomplate, and a free top surface. The bottomplate is split at radiusRs=85 mm.
Due to the split at the bottom, a narrow shear band is formed. Itmoves inwards andwidens towards the flow
surface. This set-up thus features a wide shear band away from the bottom and the sidewalls which is thus free
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fromboundary effects. Thefilling height (H=40 mm) is chosen such that the shear band does not reach the
innerwall at the free surface.

In earlier studies [33, 39, 40], a quarter of this system ( ◦0 -f- ◦90 )was simulated using periodic boundary
conditions. In order to save computation time, herewe simulate only a smaller section of the system ( ◦0 -f-

◦30 )with appropriate periodic boundary conditions in the angular coordinate, unless specified otherwise.We
have observed no noticeable effect on themacroscopic behavior in comparisons between simulations donewith
a smaller ( ◦30 ) and a larger ( ◦90 ) opening angle. Note that for very strong attractive forces, agglomeration of
particles occur. Then, a higher length scale of the geometry is needed and thus the above statement is not true
anymore.

2.2. Contactmodel and parameters
The liquid bridge contactmodel is based on a combinationof an elastic-dissipative linear contactmodel for the
normal repulsive force and anonlinear irreversible liquid bridgemodel for the non-contact adhesive force as
described in [35]. The adhesive force is determinedby three parameters; surface tensionσ, contact angle θwhich
determine themaximumadhesive force and the liquid bridge volumeVbwhichdetermines themaximum
interactiondistance between the particles at the point of bridge rupture. The contactmodel parameters andparticle
properties are as given in table 1.Wehave apolydisperse systemof glass beadparticleswithmeandiameter

= á ñ =d d 2.2 mmp and a gaussian size distribution ( =d d 1 2min max ofwidth - á ñ á ñ »d d1 0.042 2 ).
To study the effect of inertia and contact stiffness on the non-cohesivematerials rheology, we compare our

data for non-cohesive case with data from simulations of [40] for different gravity as given below:

{ } ( )Î -g 1.0, 2.0, 5.0, 10.0, 20.0, 50.0 m s . 12

Figure 1. Shear cell set-up.

Table 1.Table showing the particle properties and constant
contactmodel parameters.

Parameter Symbol Value

Sliding friction coefficient mp 0.01

Normal contact stiffness k 120N m−1

Viscous damping coefficient go 0.002 kg−1s

Rotation frequency Ω 0.01 s−1

Particle density ρ 2000 kg m−3

Gravity g 9.81m s−2

Mean particle diameter dp 2.2 mm
Contact angle θ ◦20
Liquid bridge volume Vb 75 nl
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Wealso compare the effect of different rotation rates on the rheology for the following rotation rates:

{ } ( )W Î 0.01, 0.02, 0.04, 0.10, 0.20, 0.50, 0.75, 1.00 rps. 2

The liquid capillary force is estimated as stated in [51]. It is observed in our earlier studies [35] that the shear
stress τ for high pressure can be described by a linear function of confining pressure, p, as t m= +p co . It was
shown that the steady state cohesion c is a linear function of the surface tension of the liquidσwhile its
dependence on the volume of liquid bridges is defined by a cube root function. The friction coefficient mo is
constant andmatches the friction coefficient of dryflows excluding the small pressure limit. In order to see the
effect of varying cohesive strength on themacroscopic rheology of wetmaterials, we vary the intensity of
capillary force by varying the surface tension of the liquidσ, with a constant volume of liquid bridges
( =V 75b nl) corresponding to a saturation of 8%, as follows:

{ } ( )s Î -0.0, 0.01, 0.02, 0.04, 0.06, 0.10, 0.20, 0.30, 0.40, 0.50 N m . 31

Thefirst case, s = 0.0 Nm−1, represents the case of drymaterials without cohesion, whereas
s = 0.50 Nm−1 corresponds to the surface tension of amercury–air interface. For s > 0.50 Nm−1, smooth,
axisymmetric shear band formation is not observed and thematerials agglomerate to form clusters as shown in
figure 2, for our particle size and density. Hence,σ is limited tomaximumof 0.50 Nm−1.

2.3. Averagingmethodology
To extract themacroscopic properties, we use the spatial coarse-graining approach detailed in [24–26]. The
averaging is performed over a grid of 47-by-47 toroidal volumes, overmany snapshots of time assuming
rotational invariance in the tangentialf-direction. The averaging procedure for a three-dimensional system is
explained in [24, 26]. This spatial coarse-grainingmethodwas used earlier in [26, 33, 39, 40, 52].We do the
temporal averaging of non-cohesive simulations over a larger timewindow from30 to 440 s with 2764
snapshots to ensure the rheologicalmodels with enhanced quality data. All the other simulations are run for
200 s and temporal averaging is donewhen the flow is in steady state, between 80 and 200 s with 747 snapshots,
thereby disregarding the transient behavior at the onset of the shear. In the critical state, the shear band is
identified by the region having strain rates higher than 80% of themaximum strain rate at the corresponding
height.Most of the analysis explained in the later sections are done from this critical state data at the center of the
shear band.

2.3.1.Macroscopic quantities
The general definitions ofmacroscopic quantities including stress and strain rate tensors are included in [40].
Here, we define the derivedmacroscopic quantities such as the friction coefficient and the apparent viscosity
which are themajor subjects of our study.

The localmacroscopic friction coefficient is defined as the ratio of shear to normal stress and is defined
as m t= p.

Themagnitude of strain rate tensor in cylindrical polar coordinates is simplified, assuming ur=0 and
uz=0:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟˙ ( )g =

¶

¶
- +

¶

¶
f f fu

r

u

r

u

z

1

2
. 4

2 2

Figure 2.Cluster formation and inhomogeneity for highly cohesivematerials (s = 0.50 N m−1). Different colors blue, green and
orange indicate low to high (a) z-coordinate and (b) kinetic energy of particles respectively.
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The apparent shear viscosity is given by the ratio of the shear stress and strain rate as:

( )
� �

h
t
g

m
g

= =
p

, 5

where ġ is the strain rate.

2.4. Critical state
Weobtain themacroscopic quantities by temporal averaging as explained in section 2.3.Next we analyze the
data, neglecting data nearwalls ( < »r r 0.045min m, > »r r 0.105max m, < »z z 0.004min m) and free
surface ( > »z z 0.035max m) as shown infigure 3. Further, the consistency of the local averaged quantities also
depends onwhether the local data has achieved the critical state. The critical state is defined by the local shear
accumulated over time under a constant pressure and constant shear rate condition. This state is reached after
large enough shear, when thematerials deformwith applied strainwithout any change in the local quantities,
independent of the initial condition.We focus our attention in the regionwhere the system can be considered to
be in the critical state and thus has a well definedmacroscopic friction. To determine the region inwhich the
flow is in critical state, ˙ ( )g zmax is defined to be themaximum strain rate for a given pressure, or a given height z.
The critical state is achieved at a constant pressure and strain rate condition over regionswith strain rate larger
than the strain rate ˙ ( )g z0.1 max as shown infigure 3 corresponding to the region of shear band.While [40]
showed that for rotation rate 0.01 rps, the shear band is well established above shear rate ġ > 0.01 s−1, of our
analysis shown in the latter sections are in the shear band center is obtained by ˙ ˙ ( )g g> z0.8 max at different
heights in the system. This is defined as the regionwhere the local shear stress τ becomes independent of the local
strain rate ġ and t p becomes constant.We also extend our studies to the shear-rate dependence in critical state
which is effective for critical state data forwider regions of shear band (section 4.4). This shear rate dependence is
analyzed in the regions of strain rate (ġ ) larger than the ˙ ( )g z0.1 max at a given height z. These data include the
region from the center to the tail of the shear band, with typical cut-off factors sc=0.8 or 0.1, respectively, as
shown infigure 3, and explained in section 4.4.

3. Time scales

Dimensional analysis is often used to define the characteristic time scales for different physical phenomena that
the system involves. Even in a homogeneously deforming granular system, the deformation of individual grains
is not homogeneous. Due to geometrical and local parametric constraints at grain scale, grains are not able to
displace as affine continuummechanics dictates they should. Theflowor displacement of granularmaterials on
the grain scale depends on the timescales for the local phenomena and interactions. Each time scale can be
obtained by scaling the associated parameter with a combination of particle diameter dp andmaterial density ρ.
While some of the time scales are globally invariant, others are varying locally. The dynamics of the granularflow
can be characterized based on different time scales depending on local and global variables. First, we define the
time scale related to contact duration of particles which depends on the contact stiffness k as given by [40]:

( )r
=t

d

k
. 6k

p
3

In the special case of a linear contactmodel, this is invariant and thus represents a global time scale too. Two
other time scales are globally invariant, the cohesional time scale tc , i.e. the time required for a single particle to
traverse a length scale of d 2p under the action of an attractive capillary force and the gravitational time scale tg,
i.e. the elapsed time for a single particle to fall through half its diameter dp under the influence of the gravitational
force. The time scale tc could vary locally depending on the local capillary force fc. However, the capillary force is

Figure 3. Flow profile in the r–z planewith different colors indicating different velocities, with blue 0m s−1 to red 0.007m s−1. The
shear band is the pink and light blue area, while the arrows indicate 10% and 80%cut-off range of shear rate as specified in the text.
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weakly affected by the liquid bridge volumewhile it strongly depends on the surface tension of the liquidσ. This
leads to the cohesion time scale as a global parameter given by:

( )r r
s

= µt
d

f

d
, 7c

p

c

p
4 3

with surface tensionσ and capillary force ps»f dc p. The corresponding time scale due to gravity which is of
significance under small confining stress close to the free surface is defined as:

( )=t
d

g
. 8g

p

The global time scales for granularflow are complemented by locally varying time scales. Granularmaterials
subjected to strain undergo constant rearrangement and thus the contact network re-arranges (by extension and
compression and by rotation)with a shear rate time scale related to the local strain rate field:

( )
�

�
g

=gt
1

. 9

Finally, the time for rearrangement of the particles under a certain pressure constraint is driven by the local
pressure p. Thismicroscopic local time scale based on pressure is:

( )r
=t d

p
. 10p p

As the shear cell has an unconfined top surface, where the pressure vanishes, this time scale varies locally from
very low (at the base) to very high (at the surface). Likewise, the strain rate is high in the shear band and low
outside, so that also this time scale varies between low and high, respectively.

Dimensionless numbers influid and granularmechanics are a set of dimensionless quantities that have a
dominant role in describing theflowbehavior. These dimensionless numbers are often defined as the ratio of
different time scales or forces, thus signifying the relative dominance of one phenomenon over another. In
general, we expectfive time scales (tg, tp, tc, ġt and tk) to influence the rheology of our system.Note that among
thefive time scales discussed here, there are ten possible dimensionless ratios of different time scales.We
propose four of them that are sufficient to define the rheology that describes our results. Interestingly, all these
four dimensionless ratios are based on the common time scale tp. Thus, the time scale related to confining
pressure is important in every aspect of the granularflow. All the relevant dimensionless numbers in our system
are discussed in brief in the following two sections of this paper for the sake of completeness, even though not all
are of equal significance.

4. Rheology of dry granularmaterials

4.1. Effect of softness in the bulk of thematerials
We study here the effect of softness onmacroscopic friction coefficient for different gravity in the system. Thus
the pressure proportional to gravity is scaled in dimensionless form *p [40] given by:

( )=*p
pd

k
. 11

p

This can be interpreted as the square of the ratio of time scales, =*p t tk p
2 2, related to contact duration and

pressure respectively. Figure 4 shows themacroscopic friction coefficient as a function of the dimensionless
pressure *p and the dashed line is given by:

( ) ( ) ( ) [ ( ) ] ( )m m= = - b* * * * *p f p f p p pwith 1 , 12p o p p o

where, b » 0.50, m = 0.16o , »*p 0.90o . *po denotes the limiting dimensionless pressure around the correction
due to softness of the particles, where the correction is not applicable anymore, since -f 0p for .* *p po [27].
We have used thisfit, as our data range is too limited to derive the functional formof the fit. This is shown by the
solid line infigure 4with the plotted data fromour present simulation (&) andwith data for different gravity in
the system [40]whichwe use to describe other corrections for dry non-cohesivematerials. Despite the deviation
of data for different gravity from the trend for small *p , the agreement with our data is reasonable. The dashed
line represents the softness correction as proposed by [40]. The effect of softness is dominant in regions of large
pressure where the pressure time scale tp dominates over the stiffness time scale tk and thus the data in plot are
corresponding to higher than a critical pressure ( >*p 4g , explained in section 4.3). Here, the compressible
forces dominate over the rolling and sliding forces on the particles, the flowbeing driven by squeeze. Thus, the
macroscopic friction coefficient decreases with softness.
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4.2. Effect of inertial number
For granular flows, the rheology is commonly described by the dimensionless inertial number [30]:

˙ ( )g r=I d p , 13p

which can be interpreted as the ratio of the time scales, tp for particles to rearrange under pressure p, and the
shear rate time scale ġt for deformation due to shearflow, see section 3. It has been shown both experimentally
[10, 16, 30] and in simulations [31] that for intermediate inertial numbers (in the range )-I Io , themacroscopic
friction coefficient follow the so-called ( )m I rheology:

( ) ( ) ( )m m m m= + -
+¥I

I I

1

1
. 14I o o

o

Weassume the combined effect of softness and inertial number given as ( ) ( )m m=*p I I f, I p and thus analyze
m fp as a function of I, see figure 5.We compare our data for non-cohesivematerials which is shown to be in
agreementwith the trend of data obtained from [40] for different external rotation rates. The black solid line
corresponds to the data in the shear band center ( ˙ ˙g g> 0.8 max )fitted by equation (14)with m = 0.16o ,
m =¥ 0.40 and Io=0.07which are in close agreement with the fitting constants explained in [27]. Note that
thesefitting constants changewith the range of I that are included in the fitting. Given that we do not have data

Figure 4. Local friction coefficientμ as a function of softness p* for data with different gravity g [40] and our data (represented by&)
for >*p 4g . The solid line represents the function ( )m *pp .

Figure 5. Local friction coefficientμ scaled by the softness correction fp as a function of inertial number I. Different colors indicate
different rotation rateΩwith our data represented by◊. Black circles represent the data in the center of the shear band ( ˙ ˙g g> 0.8 max ),
other data are shown for ˙ ˙g g> 0.1 max . The solid line represents the function ( )m II given by equation (14).
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for very high inertial number fromour simulations, our present fit shows »I 0.07o and hence thefit is valid
for -I Io.

4.3. Effect of gravity close to the free surface
In this section, we investigate the effect of the another dimensionless number *pg on local friction coefficient,
given by:

( )
r

=*p
p

d g
. 15g

p

This can be interpreted as the square of the ratio of time scales, =*p t tg g p
2 2, related to gravity and pressure

respectively. The effect of inertial number and softness correction are eliminated by scalingμ by the correction
factors mI and fp respectively and studying the effect of *pg on the scaled friction coefficient. Figure 6 showsμ
scaled by m fI p as a function of dimensionless pressure *pg for different gravity g (different *p ) and different
rotation ratesΩ (different I), including our data for g=9.81 ms−2 and W = 0.01 rps which is also in agreement
with other data set. The data for different slower rotation rates and different gravitational accelerations g agree
well with our new data set, while the higher rotation rates deviate. Note that the higher rotation rates are in a
different regimewhere kinetic theory works and hence agreement with the generalized rheology is not expected
strictly. All the data for different gravity and slower rotation rates collapse and these can befitted by the solid line
given by the correction ( )*f pg g where:

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥( ) ( ) ( ) ( )m m= = - ¢ -* * *

*

*
p f p f p a

p

p
with 1 exp , 16g g o g g g g

g

go

where, ¢ »a 0.71 is the relative drop in friction coefficient at =*p 0g , »*p 1.19go is the dimensionless pressure
at which the friction coefficient drops below m0.74 o and ( )*f pg g is the correction corresponding to the
dimensionless pressure *pg . Due to lack of confining stress close to the free surface ( <*p 4g ), themacroscopic
friction coefficient exponentially decreases with decrease in *pg . Here, the gravity time scale tg dominates over
the pressure time scale tp. Thus, while the effect of gravity close to the free surface is dominant for <*p 4g ,

»*p 4g is the critical pressure abovewhich the effect of softness p* is significant as explained in section 4.1.

4.4. Shear rate dependence in critical stateflow
After having quantified the dependence of themacroscopic friction on inertial number and softness, another
correctionwas proposed in [40], taking into account a reduced, relaxed friction correction in very slow quasi-
staticflow. The same phenomenawas adddressed in [17, 19, 24] using non-local constitutive relations. Figure 7

Figure 6. Local friction coefficientμ scaled by softness correction fp and the inertial number correction mI as a function of
dimensionless pressure *pg for datawith different gravity g. Bluemarkers indicate different gwith legends given infigure 4, red
markers indicate different slower rotation rates W - 0.5 andmagentamarkers indicate faster rotation rates W > 0.5. Different
marker shapes denote different rotation rates, as labeled in figure 5, with the new simulation data (W = 0.01 rps) represented by&.
The solid line represents the function ( )*f pg g given by equation (23).

8

New J. Phys. 19 (2017) 043014 S Roy et al



is a representation of this correction fq(I)where:

⎜ ⎟
⎡
⎣⎢

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎤
⎦⎥( ) ( ) ( ) ( )m m= = - -

a

*
I f I f I

I

I
with 1 exp , 17q o q q

1

where, ( )= o ´ -*I 4.85 1.08 10 5 for very small inertial numbers ( - *I I ) and a = o0.48 0.071 . This
correction is in inspirationwith [24]where I* scales linearly with the external shear rate and thus is proportional
to the local strain-rate and the granular temperature. Although the data represented infigure 7 (black à and red
◦) include ˙ ( ) ˙ ( )g g>z z0.1c max , thefitted solid line given by ( )f Iq correction corresponds to data in the shear
band center as well as outside center (for ˙ ( ) ˙ ( )g g>z z0.1c max )which are all in the critical state. Typically, we
study the local effect for data inside the shear band center ( ˙ ( ) ˙ ( )g g>z z0.8c max )which corresponds to the data
given by red ◦which are invariant to the effect of small inertial numberwhich allows us to assume ( ) »f I 1.0q .
Hence, in the following sections, we do not take into consideration the correction fq(I), thoughwemention it.

5. Rheology ofwet-cohesive granularmaterials

5.1. Bondnumber
The Bond number (Bo) is ameasure of the strength of the adhesive force relative to the compressive force. A low
value of Bo (typicallymuch less than 1) indicates that the system is relatively unaffected by the attractive forces;
highBo indicates that the attractive force dominates in the system. ThusBo is a criticalmicroscopic parameter
that controls themacroscopic local rheology of the system.While the conventional way of defining the Bond
number as the ratio of the time scales tc and tg [48] is appropriate for single particles, or close to the free surface,
we define the local Bond number relative to the confining force:

( ) ( )=Bo p
f

pd
, 18c

p

max

2

defined as the square of the ratio between timescales related to pressure tp andwetting time scale tc. =fc
max

p g qr2 cos is themaximumcapillary force between a pair of particles, where r is the effective radius of the
interacting pair of particles. This provides an estimate of the local cohesion intensity by comparing the
maximumcapillary pressure allowed by the contactmodel f dc p

max 2 with the local pressure. A low to high
transition of local Bond number from the bottomof the shear cell to the free surface is as a result of the change in
time scale related to pressure tp from �t tp c to �t tp c respectively. Subsequently, we define the global Bond
number Bog as ameasure of the strength of cohesion in the system as:

( )=Bo
f

p d
, 19g

c

p

max

mean 2

where, pmean is themean pressure in the system. This is an experimentallymeasurable quantity and is related to
quantifying the system as awhole. The global Bond number corresponding to surface tension of liquid defined

Figure 7. Local friction coefficientμ scaled by correction factors fp, fg and mI as a function of inertial number I for dry non-cohesive
materials with data for >*p 0.003. The solid line represents the function fq(I) given by equation (17).
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in equation (3) is given by:

{ } ( )ÎBo 0.0, 0.06, 0.12, 0.24, 0.36, 0.60, 1.28, 1.94, 2.54, 3.46 . 20g

5.1.1. Effect of local bond number
The properties of the particles and the interstitialfluid strongly affect themacroscopic behavior of granular
materials. The localmacroscopic friction is studied as a function of local Bond number Bo for different wet
cohesion intensity. Figure 8 shows themacroscopic friction coefficient as a function of the local Bond number
Bo for different wet cohesion. It is evident that the friction coefficient increases with local Bond number with a
constant value mo in the lowBond number limit. For frictionless wet cohesivematerials, the rheology can be
defined by a linearfitting function given by:

( ) ( ) ( ) ( ) ( )m m= = +Bo f Bo f Bo aBowith 1 , 21c o c c

where, m = 0.15o is themacroscopic friction coefficient in the high pressure limit [35] and »a 1.47. This is
shownby the solid line infigure 8.However, it is observed that the data deviate from the solid fitting line in the
high Bond number or low pressure limit. This deviation is explained by the small pressure correction ( )*f pg g as
explained in section 4.3 and discussed in details in the next section.

5.2. Effect of gravity close to the free surface forwetmaterials
Figure 6 shows the dependence of the local friction coefficient on the local scaled pressure *pg for dry non-
cohesivematerials and this effect is small in the high pressure limit.With an attempt to separate the effect of
Bond number on the rheology of cohesivematerials, we plot the local friction coefficientμ scaled by the Bond
number correction fc and other corrections mI and fp, as a function of scaled pressure *pg as shown infigure 9.
The solid line is given by equation (23), where the non-cohesive function fits for thewet data aswell.

6. Rheologicalmodel

We studied the rheology of dry andwet granularmaterials in terms of different dimensionless numbers. The
trends are combined and shown to collectively contribute to the rheology asmultiplicative functions given by:

( ) ( ) ( ) ( ) ( ) ( ) ( )m m=* * * *I p p Bo I f p f I f Bo f p, , , . 22g I g g q c p

The proposed general(ized)multiplicative rheology function for themacroscopic friction coefficient is
dependent on four dimensionless numbers * *p p I, ,g and Bo. Table A1 in the appendix gives the summary and
details of our proposed rheologicalmodel.

This rheologicalmodel is based on constant liquid bridge volume at all contacts andwe do not take into
account liquid redistribution among contacts [28, 36]. This is a simplified approach to establish the generalized

Figure 8. Local friction coefficientμ as a function of the local Bondnumber Bo forwet cohesivematerials. The solid line represents the
function ( )m Boc given by equation (21).
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rheology andwe areworking further on liquid redistribution andwill analyze its effect on the rheology.
However, the cohesion time scale is only weakly affected by the liquid bridge volume andmainly depends on the
surface tension of the liquid. Preliminary results using a liquid redistributionmodel show that in this state, 40%
of the contacts in the shear band center become dry, resulting in a higher probability of dry contacts withmicro-
contact local Bond number =Bo 0. This results in a lower local Bond number in the shear band center. Our
present rheologicalmodel is shown to be valid for awide range of Bond number and thus use of a liquid
redistributionmodel is expected to shift data further, towards the lower Bond numbers but is expected to follow
the same trends.

For a full constitutive law, one also needs to take into account the solid volume fraction also. For dry granular
shearflow [27, 40], the constitutive relations for the volume fraction given by corrections (tofirst order) based
on dimensionless numbers *p and I as follows:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( )f f= + -*

*

*
I p

p

p

I

I
, 1 1 , 23c

c c

where, f » 0.65c is the critical or the steady state density under shear, in the limit of vanishing pressure and
inertial number. =I 0.85c is the inertial number corresponding to strain rate when the dilation turns to
fluidization. =*p 0.33c is the typical pressure for which softness leads to huge densities. Though the volume
fraction in an inhomogeneous system is a field (fluctuating around amean value), its local values are captured
by the above equation in terms of the local dimensionless numbers. The above relation shows that the volume
fraction decreases (and the friction increases)when the quasi-static regime is exceeded. However, the
generalized rheology is expected to be valid everywhere in the inhomogenous systemwhere the system has
been sheared long enough to reach the critical state, irrespective of their different volume fraction. The
volume fraction increases with increase in confining stress as shown in [27, 40]. In ongoing research [34], we
show that inter-particle cohesion has a considerable impact on the compaction of the softmaterials. Cohesion
causes additional stresses, due to capillary forces between particles, leading to an increase in volume fraction
due to higher compaction. This effect is not visible in a system of infinitely stiff particles. On the other hand,
we observe a general decrease in volume fraction due to increased cohesion, whichwe attribute to structural
changes in the bulkmaterial.

7. Local apparent viscosity

For unsaturated granularmaterials, being heterogeneous systems, it is not relevant to define their viscosity.
Nevertheless, we introduce the local apparent viscosity η of granularmaterials which is barely the ratio of the
shear stress to the strain rate as an alternative toμ. To see the combined effect of pressure and strain rate on the
local apparent viscosity, we analyze them as functions of the inertial number. For a given pressure, the inertial
number is proportional to the shear rate. Thus, the analysis of local apparent viscosity as a function of the inertial
number for small pressure ranges can be interpreted as the analysis of apparent viscosity versus strain rate.We

Figure 9. ( )m m f fI p c as a function of dimensionless pressure *pg for different global Bondnumbers. The solid line represents the
function given by equation (23).
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define the dimensionless local apparent viscosity as:

˙ ( )h
h
r

m g

r

m
= = =*

*

d k

p

d k

p

I
. 24

p p

Sincewe here focus on the data in the center of the shear band, the dependence on shear rate in the critical
stateflowwhich includes data outside the shear band center can be neglected ( ( ) ». *f I I 1q ) and thus the
rheologicalmodel for the local friction coefficient given by equation (22) is simplified by:

( ) ( ) ( ) ( ) ( ) ( )m m=* * * *p p Bo I f p f Bo f p, , . 25g I g g c p

The dimensionless variable h* can be related to three time scales namely, contact duration tk, strain rate related
time scale ġt and pressure related time scale tp as ˙h m= g* t t tk p

2.
Alternatively, the flow rules of granularmaterials can be approximated as that of a power-law fluid as given

by:

( )h = a-* KI , 261

where, m= a-*K p I is the flow consistency andα is the flowbehavior index. Theflow rules of granular
materials are pretty straightforward at high pressures with a » 0. However, deviations are observed from the
power-law behavior at small pressures.More details on the flow rules at large and small pressure are explained in
sections 7.1.2 and 7.1.3 respectively.

Figure 10 shows the local apparent viscosity h* as a function of the inertial number I for different global
Bond numbers. The data shown correspond to all the data close to the shear band center for different heights.
The inertial number is lowest at an intermediate height, and increases towards surface and base.With increasing
inertial number, the apparent shear viscosity decreases, indicating that granularmaterials flow like non-
Newtonianfluids, specifically shear-thinning fluids. It is also evident from thefigure that the flowbehavior is
different at large and small confining pressure.

Figure 10.Dimensionless local apparent shear viscosity h* as a function of inertial number I for different global Bond number Bog .
Different symbols represent data for different pressure,� .*p: 0.006, à < <*p: 0.002 0.006 and ◦ -*p: 0.002 . The lines
(dash-dotted red) and (solid green) are thefittings and the predictions obtained for .*p 0.006 and -*p 0.002 respectively as
explained in sections 7.1.2 and 7.1.3. The lines (solid blue) and (dashed cyan) are the predictions obtained from the analytical solution
as explained in section 7.1.4 for .*p 0.006 and -*p 0.002 respectively.
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7.1. Prediction of local apparent viscosity
7.1.1. Prediction of strain rate
Various numerical and experimental results suggest the presence of shear bands in granularmaterials subjected
to relativemotion [9, 12]. Often this shear band is considered as a thin layer of localized strain rate, separating
rigid blocks of constant velocity. Investigations on the shear band formation reveal that its characteristics are
influenced by a number of factors including density, confining pressure, particle size and shape, friction,
anisotropy of thematerial and cohesion [12, 39]. The shear band thickness and the distance from the center
decrease as the confining pressure increases [2]. Constitutive relations exist formany shear band properties [32],
which suggests a pathway tofinding analytical solutions.

In this section, we discuss an analytical approach to get stress and strain rate correlations from the physics of
granularmaterials and compare our analytical solutionwith the numerical results for different wet cohesion
using the generalizedμ function for themacroscopic friction, see equations (22) and (25). Themagnitude of the
strain rate is given by equation (4). It is assumed that the velocity component fu is slowly varying in z-direction
(¶ ¶ »fu z 13% of ( )¶ ¶ -f fu r u r in the shear band center), so ¶ ¶fu z is small (by one order ofmagnitude)
and is neglectedwith an approximation, so that

⎛
⎝⎜

⎞
⎠⎟ ( )�g »

¶

¶
-f fu

r

u

r

1

2
. 27

In the shear band region, the non-dimensionalized angular velocity profile ( )w p= Wfu r2 at every height can
bewell approximated by an error function [4, 5, 8, 23]:

⎜ ⎟⎛
⎝

⎞
⎠ ( )w = +

-
A B

r R

W
erf , 28c

where » »A B 0.5,W andRc are thewidth and the position of the shear band, respectively at different heights.
Most surprising is the fact that the fit works equally well for awide range of *I p Bo, , etc [39]. Equation (28)
substituted in equation (27) can be simplified as afirst order expansion of the derivative of the error function as:

⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥ ( )�g p

=
W

-
-r

W

r R

W
exp . 29c

2

The shear rate at the center of the shear band ( =r Rc) is thus given as:

( )�g p
=

WR

W
. 30c

max

The pressure for the given geometry is increasing linearly from the free surface, i.e. varies hydrostatically with the
depth inside thematerial. Further, we obtain the non-dimensional inertial number from the predicted strain
rate and pressure, so that

( )� �g

r

g
= µ

-
I

d

p

d

H z
, 31

p p
max

max max

ignoring the small variations in the bulk density.

7.1.2. Prediction of apparent viscosity ofmaterials under large pressure
The predicted local apparent viscosity from equations (24) and (25) can be simplifiedwith ( ) »*f p 1g g under

large pressure, ( )m m»II o for quasistatic states and ( ) »*f p 1p for the relatively stiff particles

( < <*p0.002 0.01) studied in our system and thus can bewritten as:

[ ] ( )h
m

= +*
*p

I
aBo1 . 32o

For dry non-cohesivematerials,Bo=0 and *p is slowly changing at high pressure. For wet cohesive
materials, themagnitude of apparent viscosity is thus determined by the term ( )f Boc . However, the flow
behavior index forwetmaterials is also constant under high confining pressure for the same reason as stated for
drymaterials as µBo p1 . Table 2 shows the value of the index a - 1 for different Bog . Under high confining
pressure,α is independent of cohesion and a » 0, a - 1corresponding to the slope of the red dashed–dotted
lines infigure 10. Thus, h µ -* I 1 and a » 0 confirms that both dry andwet granularmaterials behave like a
power lawfluid under large confining pressure.

7.1.3. Prediction of apparent viscosity ofmaterials under small pressure
Wet cohesivematerials confined to small pressure near the surface showmore interesting behavior. Here, the
pressure and strain rate are very small, i.e. large tp and ġt make confining pressure and strain rate less dominant,
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so that tg and tc are the two interacting time scales. The rheology is now strongly dependent on the corrections
( )*f pg g and ( )f Boc but not on the correction ( ) »*f p 1p ( <*p 0.005)under small confining pressure. The

strain rate close to the center of the shear band and free surface is almost constant since the shear band is wide so
that »f 1q while m m»I o.We use this simplified constant strain rate to predict the apparent viscosity near the
surface of the shear cell where the pressure is very small. The apparent shear viscosity for wet cohesivematerials
confined to small pressure ismore intricate and is predicted by from equations (24) and (25)with ( ) »*f p 1p as:

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥[ ] ( )h

m
= + - ¢ -*

* *

*

p

I
aBo a

p

p
1 1 exp . 33o g

go

Figure 10 shows the prediction of apparent viscosity at small pressure as given by the green solid lines. Non-
cohesivematerials uptoweakly cohesivematerials ( <Bo 0.60g ), at low pressure, are less viscous than those at
high pressure, as shown in thefigure. For global Bond number =Bo 0.60g , materials for a given inertial number
have the same apparent viscosity independent of pressure. For even higher cohesion ( >Bo 0.60g ), theflow
behavior changes qualitatively. Though, the apparent viscosity decreases with the inertial number (h µ d-* I ),
even for cohesivematerials, the qualitative decay power δ decreases towards zero (d l 0). For a given inertial
number, thematerial near the surface has higher apparent viscosity than in the bulk and at the base.Materials
confined by small pressure thus display reduced shear thinningwith increase in cohesion. This is represented by
the direction of black arrowsmarkedwith Bog infigure 10. Thus, granularmaterials have different shear-
thinning properties depending on local confining pressure andBond number.

7.1.4. Analytical prediction of apparent viscosity
Weextract the position and thewidth of the shear bandRc andW respectively from the fit function in
equation (28). Both position andwidth of the shear band depend on the height in the system and the position
moves inwardswith increasing height (decreasing pressure). Predictions of the position of the shear band center
as a function of height is given in [44]. Since the analytical prediction discussed here is not significantly affected
by this varying position of the shear band, we use themean shear band position R̄c for our prediction. The shear
bandmoves inwardwith increase in global Bond number [39]. Thus themean shear band position R̄c decreases
with increasing Bog (not shownhere).

Thewidth of the shear band is predicted as function of height as given by [32]:

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( )= - -
b

W z W
z

H
1 1 , 34top

2

where b = 0.6 for non-cohesivematerials and b< <0.5 0.7 for cohesivematerials arefittedwell by our data.
Assuming the pressure varying hydrostatically and the bulk density as r r» 0.6b , we translate equation (34) to
W as a function of p. Substituting equations (31) and (34) in (13) and rearranging, we get the inertial number
Imax in the shear band center as a function of the local pressure p. Further, by substituting p, we get h*max in the
shear band center and thus obtain a quantitatively accurate prediction of h*max (Imax), plotted as blue solid lines
and cyan dashed lines infigure 10.

The results show that the analytical solution is in good agreementwith our numerical results. Focusing on
the slope of the small pressure line, we observe that it changes with increasing cohesion in the sameway as shown
by numerical data. It is observed from the analytical solution that this change in slope is governed by m. Thus, the
shear-thinning rate formaterials under small pressure depends on local friction coefficient, which depends on
the corrections ( )*f pg g and fc(Bo).

7.2. Eliminating the effect of cohesion and gravity
Under larger confining pressure (as stated in section 7.1.2), with increase in cohesion, the apparent viscosity of
the granularfluid increases, however, the flowbehavior remains qualitatively the same even for very high
cohesion. Formaterials confined to large pressure, where p is slowly varying, the apparent viscosity is
inversely proportional to the strain rate and approximately also to the inertial number. At smaller pressure, the
materials aremore free only under the effect of gravity, with less dominant forces due to particle contacts.
Therefore, cohesion is relativelymore dominant for higher local Bond numbers, resulting in the qualitative
change in shear thinning rate (α). Thus the flowofmaterials is affected by both dimensionless numbersBo and

Table 2.Table showing the flowbehavior index under large pressure constraint (red dashed–dotted lines fitted tofigure 10).

Bog 0.0 0.06 0.12 0.24 0.36 0.60 1.28 1.94 2.54 3.46

a - 1 −0.94 −0.81 −0.92 −0.82 −0.89 −1.00 −0.93 −1.10 −1.23 −1.09
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*pg at the same time. Then, the granularfluid appears to no longer behave like a power-lawfluid. Several of these
rheological correction factorsmake theflowbehavior evenmore nonlinear under small pressure. In order to see
the rheology of the granular fluid under small pressure, which is devoid of the effect of these dimensionless
numbers, we rescale the local dimensionless apparent viscosity h* by ( )f Boc and ( )*f pg g and analyze it as a

function of inertial number. Figure 11(a) shows the dimensionless apparent viscosity h* scaled by fc(Bo) as a
function of inertial number for different cohesion. All the data for different cohesion collapse to a single plot for
the triad of different pressure scales. Further, we rescale ( )h* f Boc by ( )*f pg g and plot it as a function of inertial
number for different cohesion as shown infigure 11(b). Thefitted solid line corresponding to the data at large
pressure is given by equation (26)with a = 0 and »K 0.01. Furthermore, the fitted dashed line corresponding
to the data at small pressure is given by equation (26)with a = -1and » ´ -K 5.6 10 6. This is explained
theoretically by substituting p* in equation (13) and using equation (33)with constant friction coefficient m0
yielding:

( ) ( )
( )�h m g r

=
*
*f Bo f p

d

I k
. 35

c g g

o p
3 2

2

Thus, for slowly varying strain rate at small pressure, h* is proportional to -I 2 and is represented by equation (26)
with a = -1. This eventually explains the earlier observations in [25].

Thus, theflowbehavior for granularmaterials in a simple hypothetical case with high confining stress
constant friction coefficient can be approximated by that of a power-lawfluidflowbehavior. However, formore
realistic systems, e.g., unit operations at low stress, several other factors influence theflow rheology, e.g., near to
the free surface. Thus, under small pressure, granularmaterials behavemore interestingly and complex than a
power-lawfluid.

8.Discussions and conclusions

The rheology of dry aswell as wet granularmaterials (in the pendular regime) has been studied by simulations
using the discrete elementmethod in steady state shear. Our results show that the conventional ( )m I rheology
must bemodified to take into account other factors such as cohesion, contact softness, corrections at small
pressures where gravity dominates, and a generalized inertial number dependence for very slow quasi-static flow
(creep) in the tails of the shear bands. The trends are combined and shown to collectively contribute to the
rheology asmultiplicative functions, i.e. ignoring one contribution can lead to inconsistent results. This new
generalized rheologicalmodel applies to awide range of parameters fromdry non-cohesive to strongly cohesive
materials, and contains also both the small and the large pressure limits. Note that additional contributions from
viscous forces should be included in case of rapid flow.Our ongoingwork shows that the generalized rheology is
independent of system configuration, pressure or volume control, in the critical state and is applicable for both
homogeneous simple shear and inhomogeneous systems like the split-bottom shear cell. Given this is justified,
the shear thinning behavior for granularmaterials is valid for every locally reached critical state, irrespective of
the system configuration formoderate to low pressure and in the dense regime.

Figure 11. (a)Dimensionless local apparent viscosity h* scaledby theBondnumber correction fc as a functionof the inertial number I.
(b)Dimensionless local apparent viscosity h* scaledby theBondnumber correction fc and small pressure correction fg as a function of
the inertial number I. Different symbols represent data for different pressure, à .*p: 0.006, < <*p•: 0.002 0.006 and -� *p:
0.002 respectively. Thefitted solid anddashed lines for large and small pressure are given by equation (26)with a = 0 and a = -1
respectively.
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Furthermore,we study the apparent viscosity as a functionof inertial number for granularfluids of varying
cohesive strength.Most strikingly, the cohesive strengthnot only increases themagnitudeof the apparent viscosity,
but alsodecreases the shear thinning rate, but only formaterial under small confiningpressure e.g. close to the free
surface.This variable shear thinningbehavior of granularmaterials, close to a free surface, is attributed to thehigher
localBondnumber i.e. it is a lowpressure effect. Thus, theflowrheology (friction and apparent viscosity) is predicted
by theproposed rheologymodel for dry andwet granularmaterials under both lowandhigh confining stress.
Further,wedevelop an analytical solution for the apparent viscosity using theproposed rheology (with some
simplifications) and show that the results are in good agreementwithournumerical analysis.Materials have less shear
thinningwith an increase in cohesion asquantifiedby thehighBondnumbers under small confiningpressure.

Finally, it is shown that the effect of eachof thedimensionless numbers canbe eliminatedby rescaling, and thus
the scaled apparent viscosity of a simple systemwith a (small) constant friction coefficient is predicted as that of a
power-lawfluidwithBagnold type scalingwithI .

As anoutlook,we aim to implement the generalized rheologicalmodel in a continuumdescriptionof the split-
bottomshear cell geometry.A successful implementation is only thefirst step for validation andpaves theway touse
this rheologicalmodel in industrial applications formaterialflowdescriptions.Weaim to also includehigherorder
effects of theBondnumber in the generalized rheology.We included the small pressure (free surface) correction in
the rheology, as an effect of gravity. It is to benoted that even in amicro-gravity system, bothpressure andgravity
change identically and thus the corresponding correction termremains the same as in a systemwithhigh gravity.
Thus this correction corresponds to an effect active at interfaces or at the free-surface.Next step is toperform the
micro-structural analysis [39] also for our systemand inparticular close to the free surface inorder tounderstand the
changeof the shear thinning rate. Another openquestion concerns the creep correction and its relation to themicro-
structure andgranular temperature. Last, the present rheologyhas tobemerged tokinetic theory in the rapid,
collisionalflowregime [45],whichpresents another openchallenge.
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