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Abstract

We study the rheology of dry and wet granular materials in the steady quasistatic regime using the
discrete element method in a split-bottom ring shear cell with focus on the macroscopic friction. The
aim of our study is to understand the local rheology of bulk flow at various positions in the shear band,
where the system is in critical state. We develop a general(ized) rheology, in which the macroscopic
friction is factorized into a product of four functions, on top of the classical 1 (I') rheology, each of
which depends on exactly one dimensionless control parameter, quantifying the relative importance
of different micro-mechanical machanisms. These four control parameters relate the time scales of
shear rate t, particle stiffness #, gravity ¢, and cohesion t,, respectively, with the governing time scale
of confining pressure t,. While ¢ is large and thus of little importance for most of the slow flow data
studied, it increases the friction in critical state, where the shear rate is high and decreases friction by
relaxation (creep) where the shear rate is low. t,and #; are comparable to ¢, in the bulk, but become
more or less dominant relative to ¢, at the extremes of low pressure at the free surface and high pressure
deep inside the bulk, respectively. The effect of wet cohesion on the flow rheology is quantified by ¢,
decreasing with increasing cohesion. Furthermore, the proposed rheological model predicts well the
shear thinning behavior both in the bulk and near the free surface; shear thinning rate becomes less
near the free surface with increasing cohesion.

1. Introduction

The ability to predict a material’s flow behavior, its rheology (like the viscosity for fluids) gives manufacturers an
important product quantity. Knowledge on material’s rheological characteristics is important in predicting the
pourability, density and ease with which it may be handled, processed or used. The interrelation between
rheology and other product dimensions often makes the measurement of viscosity the most sensitive or
convenient way of detecting changes in flow properties. A frequent reason for the measurement of rheological
properties can be found in the area of quality control, where raw materials must be consistent from batch to
batch. For this purpose, flow behavior is an indirect measure of product consistency and quality.

Most studies on cohesive materials in granular physics focus on dry granular materials or powders and their
flow [15, 39]. However, wet granular materials are ubiquitous in geology and many real-world applications
where interstitial liquid is present between the grains. Many studies have applied the 1 (I)-rheology to flows of
dry materials at varying inertial numbers 1[40, 41, 43, 45, 49]. Studies of wet granular rheology include flow of
dense non-Brownian suspensions [3, 13, 14, 21]. Here, we study partially wetted system of granular materials, in
particular the pendular regime, which is also covered in many studies [35, 38, 51]. While ideally, unsaturated
granular media under shear show redistribution of liquid content among the contacts [28, 36], we assume a
simplistic approach of homogeneous liquid content for liquid bridges of all contacts. One of the important
aspects of partially wetted granular shear flows is the dependence of shear stress on the cohesive forces for wet
materials. Various experimental and numerical studies show that addition of liquid bridge forces leads to higher
yield strength. The yield stress at critical state can be fitted as a linear function of the pressure with the friction
coefficient of dry flow 11, as the slope and a finite offset ¢, defined as the steady state cohesion in the limit of zero
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confining pressure [35]. This finite offset cis constant in the high pressure limit. However, very little is known
regarding the rheology for granular materials in the low pressure limit.

Depending on the surrounding conditions, granular flows phenomenon are affected by appropriate time
scales namely, t,: time required for particles to rearrange under certain pressure, t.: time scale related to strain
rate 7, t;: related to the contact time between particles, t,: elapsed time for a single particle to fall through halfits
diameter under the influence of gravity and #.: time scale for the capillary forces driving the flow are primarily
hindered by inertia based on particle density. While various time scales, as related to the ongoing mechanisms in
the sheared bulk of the material, can interfere, they also can get decoupled, in the extremes of the local/ global
condition, if one time scale gets way smaller in magnitude than the other. A detailed description of this time
scales are given in section 3. While t, t,and t. are global, other time scales ¢, and t, depends on local field
variables strain rate 4 and pressure p respectively. We restrict our studies to the quasi-static regime (¢ > t,) as
the effect of cohesion decreases with increasing inertial number due to the fast decrease in coordination number
[1]. Moreover, the quasistatic regime observed for non-cohesive particles also persist for cohesive particles,
while the inertial regime of noncohesive particles bifurcates into two regimes: rate-independent cohesive regime
atlow shear rates and inertial regime at higher shear rates [11]. In the present work, we shed light on the rheology
of non-cohesive dry as well as cohesive wet granular materials at the small pressure limit, by studying free surface
flow. While the inertial number I[19], i.e. the ratio of confining pressure to strain-rate time scales, is used to
describe the change in flow rheology from quasi-static to inertial conditions, we look at additional dimensionless
numbers that influence the flow behavior. (i) The local compressibility p*, which is the squared ratio of the
softness and stress time scales (ii) the inverse relative pressure gradient pg*, which is the squared ratio of
gravitational and stress time scales and (iii) the Bond number Bo [48] quantifyinglocal cohesion as the squared
ratio of stress to wetting time scales are these dimensionless numbers. We show a constitutive relation based on
these dimensionless numbers in sections 4—6 of this paper. Additional relevant parameters are not discussed in
this study, namely granular temperature or fluidity. All these dimensionless numbers can be related to different
time scales or force scales relevant to the granular flow.

Granular materials display non-Newtonian flow behavior for shear stresses above the so called yield stress
while they remain mostly elastic like solids below this yield stress. More specifically, granular materials flow like a
shear thinning fluid under sufficient stress. When dealing with wet granular materials, it is therefore of
fundamental interest to understand the effect of cohesion on the bulk flow and yield behavior. Recently, the
majority of investigations of non-Newtonian flow behavior focused on concentrated colloidal suspensions.
Shear thickening is often observed in those flows due to the formation of flow-induced density fluctuations
(hydroclusters) resulting from hydrodynamic lubrication forces between particles [46]. Similar local clusters
(aggregates) can also be found in strongly cohesive wet granular materials, especially near to the free surface,
where attractive forces dominate their repulsive counterparts [39]. However, the strong correlations observed
between particles of close proximity in suspensions seem to be irrelevant in wet granular systems, where the
range of force interactions is much more limited. On the other hand, Lin et al [22] show that contact forces
dominate over hydrodynamic forces in suspensions that show continuous shear thickening. Fall et al [ 7] propose
that discontinuous shear thickening of cornstarch suspensions is a consequence of dilatancy: the system under
flow attempts to dilate but instead undergoes a jamming transition because it is confined—a phenomenon that
was recently also explained by a moving jamming point [20]. Another possible cause for shear thickening is the
large stress required to maintain flow due to particle—particle friction above a critical stress as in [6, 29]. This is
more likely to happen in charge stabilized colloidal suspensions. Here we only intended to speculate the flow
behavior of cohesive granular materials in relevance to micro scale analogy for shear thickening in suspensions
and section 7 of this paper is devoted to understand more on the behavior of wet granular materials with
increasing cohesion.

2. Model system

2.1. Geometry

2.1.1. Split-bottom ring shear cell

We use MercuryDPM [42, 50], an open-source implementation of the discrete particle method, to simulate a
shear cell with annular geometry and a split bottom plate, as shown in figure 1. Some of the earlier studies in
similar rotating set-ups include [37, 47, 52]. The geometry of the system consists of an outer cylinder (outer
radius R, = 110 mm) rotating around a fixed inner cylinder (inner radius R; = 14.7 mm) with a rotation
frequency of 2 = 0.01 revolutions per second. The granular material is confined by gravity between the two
concentric cylinders, the bottom plate, and a free top surface. The bottom plate is split at radius Ry = 85 mm.
Due to the split at the bottom, a narrow shear band is formed. It moves inwards and widens towards the flow
surface. This set-up thus features a wide shear band away from the bottom and the side walls which is thus free
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Figure 1. Shear cell set-up.

Table 1. Table showing the particle properties and constant
contact model parameters.

Parameter Symbol Value
Sliding friction coefficient Ky 0.01

Normal contact stiffness k 120N m™!
Viscous damping coefficient Y, 0.002kg's
Rotation frequency Q 0.01s~"
Particle density p 2000kg m
Gravity g 9.81ms >
Mean particle diameter d, 2.2 mm
Contact angle 0 20°

Liquid bridge volume Vb 75 nl

from boundary effects. The filling height (H = 40 mm) is chosen such that the shear band does not reach the
inner wall at the free surface.

In earlier studies [33, 39, 40], a quarter of this system (0° < ¢ < 90°) was simulated using periodic boundary
conditions. In order to save computation time, here we simulate only a smaller section of the system (0° < ¢ <
30°) with appropriate periodic boundary conditions in the angular coordinate, unless specified otherwise. We
have observed no noticeable effect on the macroscopic behavior in comparisons between simulations done with
asmaller (30°) and alarger (90°) opening angle. Note that for very strong attractive forces, agglomeration of
particles occur. Then, a higher length scale of the geometry is needed and thus the above statement is not true
anymore.

2.2. Contact model and parameters
The liquid bridge contact model is based on a combination of an elastic-dissipative linear contact model for the
normal repulsive force and a nonlinear irreversible liquid bridge model for the non-contact adhesive force as
described in [35]. The adhesive force is determined by three parameters; surface tension o, contact angle # which
determine the maximum adhesive force and the liquid bridge volume V}, which determines the maximum
interaction distance between the particles at the point of bridge rupture. The contact model parameters and particle
properties are as given in table 1. We have a polydisperse system of glass bead particles with mean diameter
d, = (d) = 2.2 mm and a gaussian size distribution (d;n /dimax = 1/2 of width1 — (d)?/(d?) ~ 0.04).

To study the effect of inertia and contact stiffness on the non-cohesive materials rheology, we compare our
data for non-cohesive case with data from simulations of [40] for different gravity as given below:

g € {1.0,2.0, 5.0, 10.0, 20.0, 50.0} m s~2. (1)
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Figure 2. Cluster formation and inhomogeneity for highly cohesive materials (¢ = 0.50 N m~"). Different colors blue, green and
orange indicate low to high (a) z-coordinate and (b) kinetic energy of particles respectively.

We also compare the effect of different rotation rates on the rheology for the following rotation rates:

Q € {0.01, 0.02, 0.04, 0.10, 0.20, 0.50, 0.75, 1.00} rps. 2)

The liquid capillary force is estimated as stated in [51]. It is observed in our earlier studies [35] that the shear
stress T for high pressure can be described by a linear function of confining pressure, p,as 7 = p,p + c.Itwas
shown that the steady state cohesion cis alinear function of the surface tension of the liquid o while its
dependence on the volume of liquid bridges is defined by a cube root function. The friction coefficient 1, is
constant and matches the friction coefficient of dry flows excluding the small pressure limit. In order to see the
effect of varying cohesive strength on the macroscopic rheology of wet materials, we vary the intensity of
capillary force by varying the surface tension of the liquid o, with a constant volume of liquid bridges
(Wb = 75 nl) corresponding to a saturation of 8%, as follows:

o € {0.0, 0.01, 0.02, 0.04, 0.06, 0.10, 0.20, 0.30, 0.40, 0.50} N m~". 3)

The first case, o = 0.0 N m ™', represents the case of dry materials without cohesion, whereas
o = 0.50 N m ™' corresponds to the surface tension of a mercury—air interface. For ¢ > 0.50 N'm ™', smooth,
axisymmetric shear band formation is not observed and the materials agglomerate to form clusters as shown in

figure 2, for our particle size and density. Hence, o is limited to maximum of 0.50 N'm™".

2.3. Averaging methodology

To extract the macroscopic properties, we use the spatial coarse-graining approach detailed in [24-26]. The
averaging is performed over a grid of 47-by-47 toroidal volumes, over many snapshots of time assuming
rotational invariance in the tangential ¢-direction. The averaging procedure for a three-dimensional system is
explained in [24, 26]. This spatial coarse-graining method was used earlier in [26, 33, 39, 40, 52]. We do the
temporal averaging of non-cohesive simulations over a larger time window from 30 to 440 s with 2764
snapshots to ensure the rheological models with enhanced quality data. All the other simulations are run for
200 s and temporal averaging is done when the flow is in steady state, between 80 and 200 s with 747 snapshots,
thereby disregarding the transient behavior at the onset of the shear. In the critical state, the shear band is
identified by the region having strain rates higher than 80% of the maximum strain rate at the corresponding
height. Most of the analysis explained in the later sections are done from this critical state data at the center of the
shear band.

2.3.1. Macroscopic quantities
The general definitions of macroscopic quantities including stress and strain rate tensors are included in [40].
Here, we define the derived macroscopic quantities such as the friction coefficient and the apparent viscosity
which are the major subjects of our study.

The local macroscopic friction coefficient is defined as the ratio of shear to normal stress and is defined
as = 7/p.

The magnitude of strain rate tensor in cylindrical polar coordinates is simplified, assuming #, = 0 and

u, = 0:
‘ 2 2
ﬁzl(%_”_é)%%), @

2 or r 0z
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Figure 3. Flow profile in the 7~z plane with different colors indicating different velocities, with blue 0 m s ' tored 0.007 m s . The
shear band is the pink and light blue area, while the arrows indicate 10% and 80% cut-off range of shear rate as specified in the text.

The apparent shear viscosity is given by the ratio of the shear stress and strain rate as:

n="l=H )
Y gl

where 7 is the strain rate.

2.4. Critical state

We obtain the macroscopic quantities by temporal averaging as explained in section 2.3. Next we analyze the
data, neglecting data near walls (r < i, &~ 0.045m, 7 > Ty & 0.105m, z < zpy, ~ 0.004 m)and free
surface (z > Zmax ~ 0.035 m) as shown in figure 3. Further, the consistency of the local averaged quantities also
depends on whether the local data has achieved the critical state. The critical state is defined by the local shear
accumulated over time under a constant pressure and constant shear rate condition. This state is reached after
large enough shear, when the materials deform with applied strain without any change in the local quantities,
independent of the initial condition. We focus our attention in the region where the system can be considered to
be in the critical state and thus has a well defined macroscopic friction. To determine the region in which the
flowis in critical state, 4 __(z) is defined to be the maximum strain rate for a given pressure, or a given height z.
The critical state is achieved at a constant pressure and strain rate condition over regions with strain rate larger
than the strain rate 0.1%,  _(z) as shown in figure 3 corresponding to the region of shear band. While [40]
showed that for rotation rate 0.01 rps, the shear band is well established above shear rate 4 > 0.01s™", of our
analysis shown in the latter sections are in the shear band center is obtained by 4 > 0.8, (2) at different
heights in the system. This is defined as the region where the local shear stress 7 becomes independent of the local
strain rate + and 7/p becomes constant. We also extend our studies to the shear-rate dependence in critical state
which is effective for critical state data for wider regions of shear band (section 4.4). This shear rate dependence is
analyzed in the regions of strain rate () larger than the 0.1%___(z) ata given height z. These data include the
region from the center to the tail of the shear band, with typical cut-off factors s, = 0.8 or 0.1, respectively, as
shown in figure 3, and explained in section 4.4.

3. Time scales

Dimensional analysis is often used to define the characteristic time scales for different physical phenomena that
the system involves. Even in a homogeneously deforming granular system, the deformation of individual grains
is not homogeneous. Due to geometrical and local parametric constraints at grain scale, grains are not able to
displace as affine continuum mechanics dictates they should. The flow or displacement of granular materials on
the grain scale depends on the timescales for the local phenomena and interactions. Each time scale can be
obtained by scaling the associated parameter with a combination of particle diameter d, and material density p.
While some of the time scales are globally invariant, others are varying locally. The dynamics of the granular flow
can be characterized based on different time scales depending on local and global variables. First, we define the
time scale related to contact duration of particles which depends on the contact stiffness k as given by [40]:
Pdp3

= Pt (6)
In the special case of a linear contact model, this is invariant and thus represents a global time scale too. Two
other time scales are globally invariant, the cohesional time scale t,, i.e. the time required for a single particle to
traverse alength scale of d, /2 under the action of an attractive capillary force and the gravitational time scale £,
i.e. the elapsed time for a single particle to fall through halfits diameter d, under the influence of the gravitational
force. The time scale ¢, could vary locally depending on the local capillary force f,.. However, the capillary force is
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weakly affected by the liquid bridge volume while it strongly depends on the surface tension of the liquid . This
leads to the cohesion time scale as a global parameter given by:

d,* d,?
te = pTPO( p_p’ 7
¢ g

with surface tension o and capillary force f. ~ mod,. The corresponding time scale due to gravity which is of
significance under small confining stress close to the free surface is defined as:
d
14
te=|—. ®
4
The global time scales for granular flow are complemented by locally varying time scales. Granular materials
subjected to strain undergo constant rearrangement and thus the contact network re-arranges (by extension and
compression and by rotation) with a shear rate time scale related to the local strain rate field:

ty = —. 9

Finally, the time for rearrangement of the particles under a certain pressure constraint is driven by the local
pressure p. This microscopic local time scale based on pressure is:

= dpg. (10)

As the shear cell has an unconfined top surface, where the pressure vanishes, this time scale varies locally from
very low (at the base) to very high (at the surface). Likewise, the strain rate is high in the shear band and low
outside, so that also this time scale varies between low and high, respectively.

Dimensionless numbers in fluid and granular mechanics are a set of dimensionless quantities that have a
dominant role in describing the flow behavior. These dimensionless numbers are often defined as the ratio of
different time scales or forces, thus signifying the relative dominance of one phenomenon over another. In
general, we expect five time scales (t,, t,, ¢, t; and t;) to influence the rheology of our system. Note that among
the five time scales discussed here, there are ten possible dimensionless ratios of different time scales. We
propose four of them that are sufficient to define the rheology that describes our results. Interestingly, all these
four dimensionless ratios are based on the common time scale ¢,. Thus, the time scale related to confining
pressure is important in every aspect of the granular flow. All the relevant dimensionless numbers in our system
are discussed in brief in the following two sections of this paper for the sake of completeness, even though not all
are of equal significance.

4. Rheology of dry granular materials

4.1. Effect of softness in the bulk of the materials
We study here the effect of softness on macroscopic friction coefficient for different gravity in the system. Thus
the pressure proportional to gravity is scaled in dimensionless form p* [40] given by:

_
=22,

This can be interpreted as the square of the ratio of time scales, p* = #*/t,?, related to contact duration and
pressure respectively. Figure 4 shows the macroscopic friction coefficient as a function of the dimensionless
pressure p* and the dashed line is given by:

1, (P%) = 1 f, (p*) with £,(p*) = [1 — (p*/p)"1, (12)

where, 3 & 0.50, 11, = 0.16, p* ~ 0.90. p * denotes the limiting dimensionless pressure around the correction
due to softness of the particles, where the correction is not applicable anymore, since fp < Ofor p* > p*[27].
We have used this fit, as our data range is too limited to derive the functional form of the fit. This is shown by the
solid line in figure 4 with the plotted data from our present simulation («) and with data for different gravity in
the system [40] which we use to describe other corrections for dry non-cohesive materials. Despite the deviation
of data for different gravity from the trend for small p*, the agreement with our data is reasonable. The dashed
line represents the softness correction as proposed by [40]. The effect of softness is dominant in regions of large
pressure where the pressure time scale ¢, dominates over the stiffness time scale #; and thus the data in plot are
corresponding to higher than a critical pressure ( pg* > 4, explained in section 4.3). Here, the compressible
forces dominate over the rolling and sliding forces on the particles, the flow being driven by squeeze. Thus, the
macroscopic friction coefficient decreases with softness.

p* (11)
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Figure 4. Local friction coefficient y as a function of softness p* for data with different gravity g [40] and our data (represented by <)
for p* > 4.Thesolid line represents the function 4, (p*).
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Figure 5. Local friction coefficient j scaled by the softness correction f, as a function of inertial number I. Different colors indicate
different rotation rate 2 with our data represented by . Black circles represent the data in the center of the shear band ( > 0.84,, )
other data are shown for 4 > 0.14, . The solid line represents the function ; (I') given by equation (14).

4.2. Effect of inertial number
For granular flows, the rheology is commonly described by the dimensionless inertial number [30]:

I=5dy/\p/p

which can be interpreted as the ratio of the time scales, t, for particles to rearrange under pressure p, and the
shear rate time scale ¢, for deformation due to shear flow, see section 3. It has been shown both experimentally
[10, 16, 30] and in simulations [31] that for intermediate inertial numbers (in the range I < I,), the macroscopic
friction coefficient follow the so-called p (I) rheology:

13)

(D = py + (fog — 1) (14)

14+ L/I°
We assume the combined effect of softness and inertial number given as 1 (p*, I) = p; (I) f, and thus analyze
11/, asafunction of I, see figure 5. We compare our data for non-cohesive materials which is shown to be in
agreement with the trend of data obtained from [40] for different external rotation rates. The black solid line
corresponds to the data in the shear band center (5 > 0.8+, ) fitted by equation (14) with i, = 0.16,

o, = 0.40and I, = 0.07 which are in close agreement with the fitting constants explained in [27]. Note that
these fitting constants change with the range of I that are included in the fitting. Given that we do not have data

7



10P Publishing

NewJ. Phys. 19 (2017) 043014 SRoyetal

0 1 1 1 1 )
0 2 4 6 8 10

Figure 6. Local friction coefficient ys scaled by softness correction f, and the inertial number correction /i, asa function of
dimensionless pressure pg* for data with different gravity g. Blue markers indicate different g with legends given in figure 4, red

markers indicate different slower rotation rates 2 < 0.5 and magenta markers indicate faster rotation rates €2 > 0.5. Different
marker shapes denote different rotation rates, as labeled in figure 5, with the new simulation data (€2 = 0.01 rps) represented by <.
The solid line represents the function fg ( pg*) given by equation (23).

for very high inertial number from our simulations, our present fit shows I, ~ 0.07 and hence the fit is valid
for I < I,.

4.3. Effect of gravity close to the free surface
In this section, we investigate the effect of the another dimensionless number pg* on local friction coefficient,
given by:

* L (15)

P = .
S pdpg

This can be interpreted as the square of the ratio of time scales, R?* = t* / t,%, related to gravity and pressure
respectively. The effect of inertial number and softness correction are eliminated by scaling y by the correction
factors i, and fp respectively and studying the effect of pg* on the scaled friction coefficient. Figure 6 shows p
scaled by 1, f, as a function of dimensionless pressure pg* for different gravity g (different p*) and different
rotation rates (2 (different I), including our data for ¢ = 9.81 ms™*and Q = 0.01 rps which is also in agreement
with other data set. The data for different slower rotation rates and different gravitational accelerations g agree
well with our new data set, while the higher rotation rates deviate. Note that the higher rotation rates arein a
different regime where kinetic theory works and hence agreement with the generalized rheology is not expected
strictly. All the data for different gravity and slower rotation rates collapse and these can be fitted by the solid line
given by the correction f, ( Rg*) where:
P
1, () = 11, £, (p,*) with f,(p*) =|1 — a’ exp| — ﬁ , (16)
go

where, a’ = 0.71is the relative drop in friction coefficient at pg* =0, By 0* ~ 1.19 is the dimensionless pressure
at which the friction coefficient drops below 0.74 4, and fg ( gg*) is the correction corresponding to the
dimensionless pressure Rg*' Due to lack of confining stress close to the free surface ( Rg* < 4), the macroscopic
friction coefficient exponentially decreases with decrease in Rg*. Here, the gravity time scale t, dominates over
the pressure time scale t,.. Thus, while the effect of gravity close to the free surface is dominant for gg* < 4,

pg* ~ 4 isthe critical pressure above which the effect of softness p™ is significant as explained in section 4.1.

4.4. Shear rate dependence in critical state flow

After having quantified the dependence of the macroscopic friction on inertial number and softness, another
correction was proposed in [40], taking into account a reduced, relaxed friction correction in very slow quasi-
static flow. The same phenomena was adddressed in [17, 19, 24] using non-local constitutive relations. Figure 7
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Figure 7. Local friction coefficient j scaled by correction factors f,, f,and 1, as a function of inertial number I for dry non-cohesive
materials with data for p* > 0.003. The solid line represents the function f,(I) given by equation (17).

is arepresentation of this correction f,(I) where:
. I\
,uq(I) = uofq(I) with fq(I) = [1 — exp(—(I—*) )], 17)

where, I* = (4.85 & 1.08) x 107> for very small inertial numbers (I < I*)and o; = 0.48 + 0.07. This
correction is in inspiration with [24] where I scales linearly with the external shear rate and thus is proportional
to thelocal strain-rate and the granular temperature. Although the data represented in figure 7 (black ¢ and red
o)include 4.(z) > 0.17, . _(2), the fitted solid line given by fq (I) correction corresponds to data in the shear
band center as well as outside center (for 4. (z) > 0.14,. (z)) which are all in the critical state. Typically, we
study the local effect for data inside the shear band center (4.(z) > 0.87, . (z)) which corresponds to the data
given by red o which are invariant to the effect of small inertial number which allows us to assume f, (I) ~ 1.0.
Hence, in the following sections, we do not take into consideration the correction f,(I), though we mention it.

5. Rheology of wet-cohesive granular materials

5.1.Bond number

The Bond number (Bo) is a measure of the strength of the adhesive force relative to the compressive force. A low
value of Bo (typically much less than 1) indicates that the system is relatively unaffected by the attractive forces;
high Bo indicates that the attractive force dominates in the system. Thus Bo is a critical microscopic parameter
that controls the macroscopic local rheology of the system. While the conventional way of defining the Bond
number as the ratio of the time scales ¢, and #, [48] is appropriate for single particles, or close to the free surface,
we define the local Bond number relative to the confining force:

max

Bo(p) = o (18)

defined as the square of the ratio between timescales related to pressure ¢, and wetting time scale ¢.. ™ =
27ry cos 6 is the maximum capillary force between a pair of particles, where r is the effective radius of the
interacting pair of particles. This provides an estimate of the local cohesion intensity by comparing the
maximum capillary pressure allowed by the contact model f.™* /d,* with the local pressure. Alow to high
transition of local Bond number from the bottom of the shear cell to the free surface is as a result of the change in
time scale related to pressure ¢, from ¢, < t.to t, > t, respectively. Subsequently, we define the global Bond
number Bog as a measure of the strength of cohesion in the system as:

f max
_Jc

BOg = P meande >

(19)

where, p™®@" is the mean pressure in the system. This is an experimentally measurable quantity and is related to
quantifying the system as a whole. The global Bond number corresponding to surface tension of liquid defined
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Figure 8. Local friction coefficient y as a function of the local Bond number Bo for wet cohesive materials. The solid line represents the
function p. (Bo) given by equation (21).

in equation (3) is given by:

Bo, € {0.0, 0.06, 0.12, 0.24, 0.36, 0.60, 1.28, 1.94, 2.54, 3.46}. (20)

5.1.1. Effect of local bond number

The properties of the particles and the interstitial fluid strongly affect the macroscopic behavior of granular
materials. The local macroscopic friction is studied as a function of local Bond number Bo for different wet
cohesion intensity. Figure 8 shows the macroscopic friction coefficient as a function of the local Bond number
Bo for different wet cohesion. It is evident that the friction coefficient increases with local Bond number with a
constant value £, in the low Bond number limit. For frictionless wet cohesive materials, the rheology can be
defined by a linear fitting function given by:

11,(Bo) = p1,f.(Bo) with f.(Bo) = (1 + aBo), 21

where, 11, = 0.15 is the macroscopic friction coefficient in the high pressure limit [35] and a ~ 1.47. Thisis
shown by the solid line in figure 8. However, it is observed that the data deviate from the solid fitting line in the
high Bond number or low pressure limit. This deviation is explained by the small pressure correction fg ( Rg*) as
explained in section 4.3 and discussed in details in the next section.

5.2. Effect of gravity close to the free surface for wet materials

Figure 6 shows the dependence of the local friction coefficient on the local scaled pressure pg* for dry non-
cohesive materials and this effect is small in the high pressure limit. With an attempt to separate the effect of
Bond number on the rheology of cohesive materials, we plot the local friction coefficient y scaled by the Bond
number correction f, and other corrections 1; and f,, as a function of scaled pressure pg* asshown in figure 9.
The solid line is given by equation (23), where the non-cohesive function fits for the wet data as well.

6. Rheological model

We studied the rheology of dry and wet granular materials in terms of different dimensionless numbers. The
trends are combined and shown to collectively contribute to the rheology as multiplicative functions given by:

il p*, p*, Bo) = 1, (DF, (p.H)f, (D, (Bof, (p*). (22)

The proposed general(ized) multiplicative rheology function for the macroscopic friction coefficient is
dependent on four dimensionless numbers p*, pg*, I'and Bo. Table A1 in the appendix gives the summary and
details of our proposed rheological model.

This rheological model is based on constant liquid bridge volume at all contacts and we do not take into
account liquid redistribution among contacts [28, 36]. This is a simplified approach to establish the generalized
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Figure9. / (1 f, » f.) asa function of dimensionless pressure pg* for different global Bond numbers. The solid line represents the
function given by equation (23).

rheology and we are working further on liquid redistribution and will analyze its effect on the rheology.
However, the cohesion time scale is only weakly affected by the liquid bridge volume and mainly depends on the
surface tension of the liquid. Preliminary results using a liquid redistribution model show that in this state, 40%
of the contacts in the shear band center become dry, resulting in a higher probability of dry contacts with micro-
contactlocal Bond number Bo = 0. This results in a lower local Bond number in the shear band center. Our
present rheological model is shown to be valid for a wide range of Bond number and thus use of aliquid
redistribution model is expected to shift data further, towards the lower Bond numbers but is expected to follow
the same trends.

For a full constitutive law, one also needs to take into account the solid volume fraction also. For dry granular
shear flow [27, 40], the constitutive relations for the volume fraction given by corrections (to first order) based
on dimensionless numbers p* and I as follows:

*
o, p*) = ¢c[1 + %](1 - IL) (23)

where, ¢, & 0.65is the critical or the steady state density under shear, in the limit of vanishing pressure and
inertial number. I, = 0.85is the inertial number corresponding to strain rate when the dilation turns to
fluidization. p* = 0.33is the typical pressure for which softness leads to huge densities. Though the volume
fraction in an inhomogeneous system is a field (fluctuating around a mean value), its local values are captured
by the above equation in terms of the local dimensionless numbers. The above relation shows that the volume
fraction decreases (and the friction increases) when the quasi-static regime is exceeded. However, the
generalized rheology is expected to be valid everywhere in the inhomogenous system where the system has
been sheared long enough to reach the critical state, irrespective of their different volume fraction. The
volume fraction increases with increase in confining stress as shown in [27, 40]. In ongoing research [34], we
show that inter-particle cohesion has a considerable impact on the compaction of the soft materials. Cohesion
causes additional stresses, due to capillary forces between particles, leading to an increase in volume fraction
due to higher compaction. This effect is not visible in a system of infinitely stiff particles. On the other hand,
we observe a general decrease in volume fraction due to increased cohesion, which we attribute to structural
changes in the bulk material.

7. Local apparent viscosity

For unsaturated granular materials, being heterogeneous systems, it is not relevant to define their viscosity.
Nevertheless, we introduce the local apparent viscosity 1 of granular materials which is barely the ratio of the
shear stress to the strain rate as an alternative to . To see the combined effect of pressure and strain rate on the
local apparent viscosity, we analyze them as functions of the inertial number. For a given pressure, the inertial
number is proportional to the shear rate. Thus, the analysis of local apparent viscosity as a function of the inertial
number for small pressure ranges can be interpreted as the analysis of apparent viscosity versus strain rate. We
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Figure 10. Dimensionless local apparent shear viscosity 1* as a function of inertial number I for different global Bond number Bo,.
Different symbols represent data for different pressure, v: p* > 0.006, ¢: 0.002 < p* < 0.006and o: p* < 0.002 . Thelines
(dash-dotted red) and (solid green) are the fittings and the predictions obtained for p* > 0.006 and p* < 0.002 respectivelyas
explained in sections 7.1.2 and 7.1.3. The lines (solid blue) and (dashed cyan) are the predictions obtained from the analytical solution
as explained in section 7.1.4 for p* > 0.006 and p* < 0.002 respectively.

define the dimensionless local apparent viscosity as:

e mp/y :WP_*‘
Jdpkp Jdpkp I

Since we here focus on the data in the center of the shear band, the dependence on shear rate in the critical
state flow which includes data outside the shear band center can be neglected ( fq (I > I*) = 1) and thus the
rheological model for the local friction coefficient given by equation (22) is simplified by:

1(p*, p*> Bo) = pu; (Df, (M. (Bo)f, (p). (25)

The dimensionless variable 77* can be related to three time scales namely, contact duration #, strain rate related
time scale t,-y-and pressure related time scale t, as 77* = ptyti [ty - . .

Alternatively, the flow rules of granular materials can be approximated as that of a power-law fluid as given
by:

(24)

it = KI°, (26)

where, K = u\/j? I~ is the flow consistency and « is the flow behavior index. The flow rules of granular
materials are pretty straightforward at high pressures with a. ~ 0. However, deviations are observed from the
power-law behavior at small pressures. More details on the flow rules at large and small pressure are explained in
sections 7.1.2 and 7.1.3 respectively.

Figure 10 shows the local apparent viscosity 7* as a function of the inertial number I for different global
Bond numbers. The data shown correspond to all the data close to the shear band center for different heights.
The inertial number is lowest at an intermediate height, and increases towards surface and base. With increasing
inertial number, the apparent shear viscosity decreases, indicating that granular materials flow like non-
Newtonian fluids, specifically shear-thinning fluids. It is also evident from the figure that the flow behavior is
different at large and small confining pressure.
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7.1. Prediction of local apparent viscosity

7.1.1. Prediction of strain rate

Various numerical and experimental results suggest the presence of shear bands in granular materials subjected
to relative motion [9, 12]. Often this shear band is considered as a thin layer of localized strain rate, separating
rigid blocks of constant velocity. Investigations on the shear band formation reveal that its characteristics are
influenced by a number of factors including density, confining pressure, particle size and shape, friction,
anisotropy of the material and cohesion [12, 39]. The shear band thickness and the distance from the center
decrease as the confining pressure increases [2]. Constitutive relations exist for many shear band properties [32],
which suggests a pathway to finding analytical solutions.

In this section, we discuss an analytical approach to get stress and strain rate correlations from the physics of
granular materials and compare our analytical solution with the numerical results for different wet cohesion
using the generalized p function for the macroscopic friction, see equations (22) and (25). The magnitude of the
strain rate is given by equation (4). It is assumed that the velocity component 1 is slowly varying in z-direction
(Ougy [0z =~ 13% of (Quy /Or — ugy/r) inthe shear band center), so Ou, /0z is small (by one order of magnitude)
and is neglected with an approximation, so that

. Nl au(/) - Uy (27)
’YNZ or r)

In the shear band region, the non-dimensionalized angular velocity profile w = ug4 /(27r2) at every height can
be well approximated by an error function [4, 5, 8, 23]:

w:AJrBerf(r_RC), (28)
w

where A =~ B = 0.5, Wand R_are the width and the position of the shear band, respectively at different heights.
Most surprising is the fact that the fit works equally well for a wide range of I, p*, Bo etc[39]. Equation (28)
substituted in equation (27) can be simplified as a first order expansion of the derivative of the error function as:

. JTrQ [r — R, ]2
= exp| — . 29
¥ W p[ W (29)
The shear rate at the center of the shear band (r = R,) is thus given as:
~TR
max — . 30
¥ W (30)

The pressure for the given geometry is increasing linearly from the free surface, i.e. varies hydrostatically with the
depth inside the material. Further, we obtain the non-dimensional inertial number from the predicted strain
rate and pressure, so that

_ ;Ymaxdp x 'j/maxdp

Imax >
p/p  VH -z

(3D

ignoring the small variations in the bulk density.

7.1.2. Prediction of apparent viscosity of materials under large pressure
The predicted local apparent viscosity from equations (24) and (25) can be simplified with f o ( pg*) ~ lunder

large pressure, y; (I) ~ p, for quasistatic states and fp (p*) = 1for the relatively stiff particles
(0.002 < p* < 0.01) studied in our system and thus can be written as:

il

I [1 + aBo] . (32)

For dry non-cohesive materials, Bo = 0 and \/p—* is slowly changing at high pressure. For wet cohesive
materials, the magnitude of apparent viscosity is thus determined by the term £, (Bo). However, the flow
behavior index for wet materials is also constant under high confining pressure for the same reason as stated for
dry materials as Bo oc 1/p. Table 2 shows the value of the index o — 1 for different Bo,. Under high confining
pressure, a is independent of cohesion and a &~ 0, @ — 1 corresponding to the slope of the red dashed—dotted
lines in figure 10. Thus, % oc I"'and a ~ 0 confirms that both dry and wet granular materials behave like a
power law fluid under large confining pressure.

7.1.3. Prediction of apparent viscosity of materials under small pressure
Wet cohesive materials confined to small pressure near the surface show more interesting behavior. Here, the
pressure and strain rate are very small, i.e. large ¢, and ¢, make confining pressure and strain rate less dominant,
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Table 2. Table showing the flow behavior index under large pressure constraint (red dashed—dotted lines fitted to figure 10).

Bo

¢ 0.0 0.06 0.12 0.24 0.36 0.60 1.28 1.94 2.54 3.46

a—1 —0.94 —0.81 -0.92 —0.82 —0.89 —1.00 —-0.93 —1.10 —-1.23 —1.09

so that f,and ¢, are the two interacting time scales. The rheology is now strongly dependent on the corrections

fg ( gg*) and f, (Bo) but not on the correction fp (p*) ~ 1 (p* < 0.005) under small confining pressure. The
strain rate close to the center of the shear band and free surface is almost constant since the shear band is wide so
that fq ~ 1while p1; ~ 1,. We use this simplified constant strain rate to predict the apparent viscosity near the
surface of the shear cell where the pressure is very small. The apparent shear viscosity for wet cohesive materials
confined to small pressure is more intricate and is predicted by from equations (24) and (25) with fp (p*) = las:

* *
0 = P E 1| (33)

!
_T[l—i—aBo] 1 —a'exp A —

go

Figure 10 shows the prediction of apparent viscosity at small pressure as given by the green solid lines. Non-
cohesive materials upto weakly cohesive materials (Bo, < 0.60), at low pressure, are less viscous than those at
high pressure, as shown in the figure. For global Bond number Bo, = 0.60, materials for a given inertial number
have the same apparent viscosity independent of pressure. For even higher cohesion (Bo; > 0.60), the flow
behavior changes qualitatively. Though, the apparent viscosity decreases with the inertial number (n* oc I-?),
even for cohesive materials, the qualitative decay power ¢ decreases towards zero (6 — 0). For a given inertial
number, the material near the surface has higher apparent viscosity than in the bulk and at the base. Materials
confined by small pressure thus display reduced shear thinning with increase in cohesion. This is represented by
the direction of black arrows marked with Bog in figure 10. Thus, granular materials have different shear-
thinning properties depending on local confining pressure and Bond number.

7.1.4. Analytical prediction of apparent viscosity
We extract the position and the width of the shear band R.and W respectively from the fit function in
equation (28). Both position and width of the shear band depend on the height in the system and the position
moves inwards with increasing height (decreasing pressure). Predictions of the position of the shear band center
as a function of height is given in [44]. Since the analytical prediction discussed here is not significantly affected
by this varying position of the shear band, we use the mean shear band position R, for our prediction. The shear
band moves inward with increase in global Bond number [39]. Thus the mean shear band position R, decreases
with increasing Bo, (not shown here).

The width of the shear band is predicted as function of height as given by [32]:

278
W) = me[l -(r- %)] , (3

where 3 = 0.6 for non-cohesive materials and 0.5 < 3 < 0.7 for cohesive materials are fitted well by our data.
Assuming the pressure varying hydrostatically and the bulk density as p, ~ 0.6p, we translate equation (34) to
Was a function of p. Substituting equations (31) and (34) in (13) and rearranging, we get the inertial number
Iax in the shear band center as a function of the local pressure p. Further, by substituting p, we get nj;ax in the
shear band center and thus obtain a quantitatively accurate prediction of nﬁm (Imax)> plotted as blue solid lines
and cyan dashed lines in figure 10.

The results show that the analytical solution is in good agreement with our numerical results. Focusing on
the slope of the small pressure line, we observe that it changes with increasing cohesion in the same way as shown
by numerical data. It is observed from the analytical solution that this change in slope is governed by . Thus, the
shear-thinning rate for materials under small pressure depends on local friction coefficient, which depends on
the corrections f, . ( pg*) and f(Bo).

7.2. Eliminating the effect of cohesion and gravity

Under larger confining pressure (as stated in section 7.1.2), with increase in cohesion, the apparent viscosity of
the granular fluid increases, however, the flow behavior remains qualitatively the same even for very high
cohesion. For materials confined to large pressure, where \/p is slowly varying, the apparent viscosity is
inversely proportional to the strain rate and approximately also to the inertial number. At smaller pressure, the
materials are more free only under the effect of gravity, with less dominant forces due to particle contacts.
Therefore, cohesion is relatively more dominant for higher local Bond numbers, resulting in the qualitative
change in shear thinning rate (c). Thus the flow of materials is affected by both dimensionless numbers Bo and
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Figure 11. (a) Dimensionless local apparent viscosity 77* scaled by the Bond number correction f, as a function of the inertial number I.
(b) Dimensionless local apparent viscosity n* scaled by the Bond number correction f, and small pressure correction j:g as a function of
the inertial number I. Different symbols represent data for different pressure, : p* > 0.006, : 0.002 < p* < 0.006 and *: p* <
0.002 respectively. The fitted solid and dashed lines for large and small pressure are given by equation (26) with &« = 0O and o = —1
respectively.

pg* at the same time. Then, the granular fluid appears to no longer behave like a power-law fluid. Several of these
rheological correction factors make the flow behavior even more nonlinear under small pressure. In order to see
the rheology of the granular fluid under small pressure, which is devoid of the effect of these dimensionless
numbers, we rescale the local dimensionless apparent viscosity 7* by f.(Bo) and fg ( pg*) and analyzeitasa
function of inertial number. Figure 11(a) shows the dimensionless apparent viscosity 77* scaled by f.(Bo) as a
function of inertial number for different cohesion. All the data for different cohesion collapse to a single plot for
the triad of different pressure scales. Further, we rescale n*/f. (Bo) by f, i ( Rg*) and plotitasa function of inertial
number for different cohesion as shown in figure 11(b). The fitted solid line corresponding to the data atlarge
pressure is given by equation (26) with « = 0 and K = 0.01. Furthermore, the fitted dashed line corresponding
to the data at small pressure is given by equation (26) with « = —land K ~ 5.6 x 107%. This is explained
theoretically by substituting p* in equation (13) and using equation (33) with constant friction coefficient 1,

yielding:
I F , (35)
f.(Bo)f, (B, r Nk

Thus, for slowly varying strain rate at small pressure, n* is proportional to I~2 and is represented by equation (26)
with a = —1. This eventually explains the earlier observations in [25].

Thus, the flow behavior for granular materials in a simple hypothetical case with high confining stress
constant friction coefficient can be approximated by that of a power-law fluid flow behavior. However, for more
realistic systems, e.g., unit operations at low stress, several other factors influence the flow rheology, e.g., near to
the free surface. Thus, under small pressure, granular materials behave more interestingly and complex than a
power-law fluid.

8. Discussions and conclusions

The rheology of dry as well as wet granular materials (in the pendular regime) has been studied by simulations
using the discrete element method in steady state shear. Our results show that the conventional x (I) rheology
must be modified to take into account other factors such as cohesion, contact softness, corrections at small
pressures where gravity dominates, and a generalized inertial number dependence for very slow quasi-static flow
(creep) in the tails of the shear bands. The trends are combined and shown to collectively contribute to the
rheology as multiplicative functions, i.e. ignoring one contribution can lead to inconsistent results. This new
generalized rheological model applies to a wide range of parameters from dry non-cohesive to strongly cohesive
materials, and contains also both the small and the large pressure limits. Note that additional contributions from
viscous forces should be included in case of rapid flow. Our ongoing work shows that the generalized rheology is
independent of system configuration, pressure or volume control, in the critical state and is applicable for both
homogeneous simple shear and inhomogeneous systems like the split-bottom shear cell. Given this is justified,
the shear thinning behavior for granular materials is valid for every locally reached critical state, irrespective of
the system configuration for moderate to low pressure and in the dense regime.
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Furthermore, we study the apparent viscosity as a function of inertial number for granular fluids of varying
cohesive strength. Most strikingly, the cohesive strength not only increases the magnitude of the apparent viscosity,
but also decreases the shear thinning rate, but only for material under small confining pressure e.g. close to the free
surface. This variable shear thinning behavior of granular materials, close to a free surface, is attributed to the higher
local Bond number i.e. it is a low pressure effect. Thus, the flow rheology (friction and apparent viscosity) is predicted
by the proposed rheology model for dry and wet granular materials under both low and high confining stress.
Further, we develop an analytical solution for the apparent viscosity using the proposed rheology (with some
simplifications) and show that the results are in good agreement with our numerical analysis. Materials have less shear
thinning with an increase in cohesion as quantified by the high Bond numbers under small confining pressure.

Finally, it is shown that the effect of each of the dimensionless numbers can be eliminated by rescaling, and thus
the scaled apparent viscosity of a simple system with a (small) constant friction coefficient is predicted as that of a
power-law fluid with Bagnold type scaling with I.

As an outlook, we aim to implement the generalized rheological model in a continuum description of the split-
bottom shear cell geometry. A successful implementation is only the first step for validation and paves the way to use
this rheological model in industrial applications for material flow descriptions. We aim to also include higher order
effects of the Bond number in the generalized rheology. We included the small pressure (free surface) correction in
the rheology, as an effect of gravity. It is to be noted that even in a micro-gravity system, both pressure and gravity
change identically and thus the corresponding correction term remains the same as in a system with high gravity.
Thus this correction corresponds to an effect active at interfaces or at the free-surface. Next step is to perform the
micro-structural analysis [39] also for our system and in particular close to the free surface in order to understand the
change of the shear thinning rate. Another open question concerns the creep correction and its relation to the micro-
structure and granular temperature. Last, the present rheology has to be merged to kinetic theory in the rapid,
collisional flow regime [45], which presents another open challenge.
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Appendix. Summary of the generalized rheological model

Table Al. List of rheological correction functions for application in a continuum model, see equation (22).

Dimensionless numbers Corrections Coefficients from fits Coefficients in [27]
Inertial number (I) W= p, + f%;"; H, = 0.16, Ho = 0.15,
o/ fiy, = 0.40 + 0.01, fhy, = 0.42,
1, = 0.07 & 0.007 1, = 0.06
Softness (p*) fr=1- */pH"? Taken from [27] B = 0.50,
n* = 0.90
Y
Small pressure (p,*) fo=1~- a eXP(*I{g*/Pgo*) a = 0.71 £ 0.03,
P =119 & 0.05
Small inertial number (1) .fq =1—exp (*( %)al) oy = 0.48 £ 0.07, See [24] for a similar correction
I* = (4.85 + 1.08) x 10>
Bond number (Bo) f. =1+ aBo a =147 £+ 0.17
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