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Highlights
• Fast generation of DEM packings through 3D feature-based image processing.
• An iterative Bayesian approach for a coarse-to-fine search in DEM parameter space.
• Posterior predictions are passed consistently over iterations via variational Gaussian mixtures.
• Interparticle stiffness and friction require less iterations to identify than rolling parameters.
• Increasing interparticle friction leads to larger macroscopic friction and smaller mean effective pressure during oedometric

compression, whereas increasing stiffness has the opposite effect.

Abstract

The nonlinear, history-dependent macroscopic behavior of a granular material is rooted in the micromechanics between
constituent particles and irreversible, plastic deformations reflected by changes in the microstructure. The discrete element
method (DEM) can predict the evolution of the microstructure resulting from interparticle interactions. However, microme-
chanical parameters at contact and particle levels are generally unknown because of the diversity of granular materials with
respect to their surfaces, shapes, disorder and anisotropy.

The proposed iterative Bayesian filter consists in recursively updating the posterior distribution of model parameters and
iterating the process with new samples drawn from a proposal density in highly probable parameter spaces. Over iterations
the proposal density is progressively localized near the posterior modes, which allows automated zooming towards optimal
solutions. The Dirichlet process Gaussian mixture is trained with sparse and high dimensional data from the previous iteration
to update the proposal density.

As an example, the probability distribution of the micromechanical parameters is estimated, conditioning on the experimen-
tally measured stress–strain behavior of a granular assembly. Four micromechanical parameters, i.e., contact-level Young’s
modulus, interparticle friction, rolling stiffness and rolling friction, are chosen as strongly relevant for the macroscopic
behavior. The a priori particle configuration is obtained from 3D X-ray computed tomography images. The a posteriori
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expectation of each micromechanical parameter converges within four iterations, leading to an excellent agreement between
the experimental data and the numerical predictions. As new result, the proposed framework provides a deeper understanding
of the correlations among micromechanical parameters and between the micro- and macro-parameters/quantities of interest,
including their uncertainties. Therefore, the iterative Bayesian filtering framework has a great potential for quantifying parameter
uncertainties and their propagation across various scales in granular materials.
c⃝ 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Keywords: Iterative parameter estimation; Sequential Monte Carlo; Dirichlet process mixture model; Discrete element method; X-ray tomography;
Cyclic oedometric compression

1. Introduction

The Discrete Element Method (DEM) captures the collective behavior of a granular material by tracking the
kinematics of the constituent grains [1]. DEM (coupled with other methods) can provide comprehensive cross-
scale insights [2–7] that are difficult to obtain in either state-of-the-art experiments or sophisticated continuum
models. DEM models allow to reproduce the macroscopic behavior of granular materials, starting from contact
laws and particle characteristics. However, these microscopic quantities are not always directly measurable. Thus,
the identification of micromechanical parameters has to be treated as an inverse problem.

Recently, it has become possible to measure micromechanical properties via ad-hoc experiments [8,9]. How-
ever, (i) often micro-properties greatly vary among grains of the same specimen and the average values are
typically considered; (ii) for most industrial applications, fictitious non-physical parameters, e.g., rolling stiffnesses
[10–12] are used in conjunction with physically based contact laws to match with experimental data. To tackle the
issues mentioned above, it is often preferable to infer the micromechanical parameters from the history-dependent
macroscopic measurements, following an “inverse-modeling calibration” approach [13].

Among a handful of optimization methods for the calibration of DEM models [14,15], the design of experiments
(DOE) is efficient in searching for possible solutions with a manageable size of DEM model evaluations [16–20].
The efficiency of the DOE depends on orthogonal arrays constructed according to combinatorial theory [21,22].
The DOE helps in selecting a suitable number of representative trial sets of parameters and thus requires the
knowledge of the interdependence between the parameters before conducting numerical “experiments”. Moreover,
the optimization methods generally make use of the characteristic bulk properties (e.g., Young’s modulus, peak- and
critical-state macroscopic friction), which could lead to local rather than global optima. Without the full stress–strain
curves, the dependency of granular materials on stress and fabric history cannot be accounted for as well.

The Bayesian framework provides a promising and rigorous basis for solving the above-mentioned inverse
problem [23,24]. Recently, Hadjidoukas et al. [25] employed the Transitional Markov Chain Monte Carlo (TMCMC)
algorithm to sample the posterior distribution of microscopic parameters and quantify the associated uncertainties
for DEM simulations of granular materials. A versatile computational framework 54U was further developed for
Bayesian uncertainty quantification and propagation of complex physical models [26]. The framework also allows
for Bayesian model selection, i.e., the evaluation of the robustness of physical models (at various scales) conditioned
on experimental data. Recent interest in atomistic-level uncertainties has led to several attempts for Bayesian
calibration and model selection in molecular dynamics (MD) simulations [27–29]. For example, Kulakova et al.
[30] inferred the repulsion exponent of the Lennard-Jones potential in MD simulations from experimental data.
Nevertheless, the above approaches may not be directly applicable to DEM simulations of dense granular materials
because the history-dependency was not considered therein.

Compared with optimization methods, sampling posterior distributions seems to be better suited for complex
DEM models because (i) multi-modal and complex-shaped posterior distributions can be sampled, without knowing
the interdependence between parameters; (ii) uncertainties are directly linked to the macroscopic quantities of
interest (QOIs) through the ensemble. To take into account history-dependent material responses in Bayesian
calibration, the inverse problem can be formulated by recursively applying the Bayes’ theorem, e.g., via sequential
Monte Carlo (SMC) methods [31,32]. Apart from Bayesian parameter estimation for physical models [33–36], SMC
methods have been applied in various research fields such as target tracking, robotics and fault detection [37–42].

A drawback of the conventional SMC methods is that a significant number of model evaluations are needed,
especially for high dimensional parameter space. To improve computational efficiency, a new iterative Bayesian
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filtering framework is developed. Within each iteration, the posterior distribution of model parameters, conditioned
on experimental data, is recursively updated by the SMC filter. The key to iterative Bayesian filtering is the ability
to resample from a proposal density, that is, the posterior distribution or modes obtained from the previous iteration,
for the following iteration. Over iterations, the proposal density is progressively localized near the posterior modes.
The resampling algorithm makes use of the Dirichlet process Gaussian mixture to nonparametrically construct the
proposal density function from the existing samples and their weights that approximate the posterior distribution.
The computational power is thus allocated to model evaluations which could lead to high posterior probabilities.
The approximation converges after a sufficient number of iterations and only the posterior modes where the most
probable parameters are located remain.

The present approach allows to infer micromechanical parameters of DEM models from macroscopic measure-
ments in a fast and automated manner. The efficiency of the Bayesian approach is demonstrated by calibrating DEM
simulations of glass beads under cyclic oedometric compression. The initial particle configuration is obtained from
3D feature-based image analysis. A uniform proposal density is initially adopted to sample parameter space from an
initial guess. The predictive capability of the DEM model is evaluated through the statistics on the micromechanical
and macroscopic quantities [43–46]. After three iterations, the uncertainties in all QOIs reduce to less than 5%. The
micro–micro and micro–macro correlations are extracted from the landscape of the posterior distribution. To the
authors’ knowledge, this work is the first attempt to bridge DEM simulations and the history-dependent macroscopic
behavior of granular materials within an iterative Bayesian framework.

The remainder of this paper is organized as follows. Section 2 briefly explains DEM modeling of granular
materials. Section 3 introduces the fundamental components of the iterative Bayesian filtering framework, including
the state space model, sequential Bayesian filtering, and the multi-level sampling algorithm. Section 4 showcases
the capability of the iterative Bayesian filter in estimating the micromechanical parameters for DEM modeling of
glass beads under oedometric compression. Section 6 discusses the (re)sampling algorithm which plays an essential
role in the “coarse-to-fine search”, computational efficiency involved with the implementation, and uncertainty
quantification and propagation for multiscale simulations. Conclusions are drawn in Section 7.

2. DEM modeling

The open-source DEM package YADE [47] is employed to perform 3D DEM simulations of dense granular
materials. DEM represents granular materials as packings of solid particles with simplified geometries and
vanishingly small interparticle overlaps. Governed by springs, dashpots and sliders upon collision, the kinematics
of the particles are updated within the explicit time integration scheme, based upon the net forces and moments
resulting from interparticle forces. To mimic the effect of surface roughness, rolling/twisting stiffness is typically
adopted in addition to stiffnesses in normal and tangential directions. Both interparticle tangential forces and contact
moments are bounded by Coulomb type yield criteria (see Section 2.2 for details).

2.1. Packing generation

A common practice to initialize DEM simulations of dense granular materials is through “dynamic random
packing generation” [48] which typically requires a significant amount of computational time. However, even if the
same macroscopic properties such as stress and porosity are satisfied, randomly generated packings may behave
very differently due to a subtle difference in their microstructures [49]. 3D X-ray imaging of granular materials
offers a detailed morphological description of grains and their configuration relations [50,51]. Using this prior
information, the packing generation stage can be greatly accelerated with improved accuracy. For this task, 3D
feature-based imaging processing is applied here to extract the particle configuration from 3D X-ray computed
tomography (3DXRCT) images with high accuracy (see Fig. 1 and Section 4.2 for details).

2.2. Contact laws

The dynamical behavior of a DEM model can be described by contact-level force–displacement/moment–rotation
laws, such as those defined in Eqs. (1)–(5). The contact laws that describe interparticle interactions are briefly
explained as follows. For two contacting spheres with a normal overlap un , a relative tangential displacement dus
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Fig. 1. Workflow of Bayesian calibration for DEM simulations of granular materials.

and a relative rotational angle θ c at the contact point, the interparticle normal and tangential forces Fn and dFs ,
and contact moments Mc are calculated as

Fn =
2Ecun

3(1 − ν2
c )

√
r∗∥un∥, (1)

dFs =
2Ec dus

(1 + νc)(2 − νc)

√
r∗∥un∥, (2)

∥Fs∥ ≤ tan µ∥Fn∥, (3)

Mc = kmθ c, (4)

∥Mc∥ ≤ ηm∥Fn∥(r1 + r2)/2, (5)

where Ec and νc are the contact-level Young’s modulus and Poisson’s ratio, µ is the interparticle friction, r∗ is the
equivalent radius defined as 1/(1/r1 + 1/r2), r1 and r2 are the radii of the two grains, km is the rolling stiffness,
and ηm is the rolling friction which controls the plastic limit of Mc.
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The advantage of a DEM model is that it recovers the elastoplasticity of the granular material by capturing
the micromechanics at the contact level, provided that the parameters (e.g., in Eqs. (1)–(5)) are properly calibrated.
However, the micromechanical approach poses a great difficulty for Bayesian parameter estimation because it needs
to deal with both material and geometrical nonlinearity and a nonlinear filtering problem is generally analytically
intractable. In addition, the posterior distributions can have complex landscapes and evolutions, especially when
fictitious parameters like km and ηm are used [36]. Hence, a new iterative Bayesian filtering framework is proposed
to tackle the above challenges.

3. Iterative Bayesian parameter estimation

The posterior distribution of model states and parameters can be approximated by SMC methods [52]. To
efficiently sample parameter space, a multi-level sampling algorithm is implemented. For the first iteration of
Bayesian filtering (k = 0), the parameter values are uniformly sampled from quasi-random numbers. For the
subsequent iterations (k > 0), new parameter values are drawn from the posterior distribution obtained from the
previous iteration. The new Bayesian filtering framework allows to iteratively sample near potential posterior modes,
with an increasing sample density over the iterations until the posterior expectations converge.

3.1. Nonlinear non-Gaussian state space model

A nonlinear, non-Gaussian state space model with unknown parameters Θ can be written in the generic form [52]

xt = F(xt−1,Θt−1) + ν t , (6)

yt = H(xt ,Θt ) + ωt , (7)

Θt = Θt−1, (8)

where F is the dynamical model for the states xt which describe a hidden Markov process with the initial distribution
p(x0) and transition distribution p(xt |xt−1). If the measurements yt are conditionally independent given xt , the
measurement model H is reduced to the identity matrix Id with d being the number of independent measurements.
The unknown parameters Θ are augmented as part of the model states, i.e., x̂t = (xt ,Θt ), which allows to use SMC
methods for quantifying parameter uncertainty [52]. Note that the dynamical model in Eq. (8) indicates that the
parameter space is sampled only at the initialization of the Bayesian filtering problem. Because Θ is sampled only
at the initialization, the transition distribution p(x̂(i)

t |x̂(i)
t−1) is fully deterministic. The modeling and measurement

errors ν t and ωt are sampled from N (0,ΣM
t ) and N (0,ΣD

t ), respectively. The covariance matrices ΣM
t and ΣD

t
which correlate the errors of the model states and the physical measurements are assumed to be diagonal.

In this work, the DEM underlying dynamical model F captures the evolution of the granular microstructure
resulting from the interaction between grains (see Eqs. (1)–(5) and the parameters Θ = {Ec, µ, km, ηm}). The
irreversibility and history-dependence of granular materials are reflected by the mobilization of the microstructures
due to interparticle sliding and/or rolling. The macroscopic model states xt comparable to the physical measurements
yt are extracted from microscopic quantities such as interparticle forces and orientations. Both xt and yt include
three independent variables, namely porosity n, mean stress p′ and deviatoric stress q. The modeling error ν t is
neglected for simplicity; the covariance matrix ΣD

t of the measurement error is assumed to be σ 2diag(yt ), with
the normalized covariance σ being the only user-defined parameter. Note that other assumptions and correlation
structures can be used for modeling the errors. However, a detailed study on these aspects is beyond the scope of
the current work.

3.2. Bayesian Filtering

The aim of Bayesian filtering is to estimate the hidden augmented states x̂t = (xt ,Θt ) at time t given a sequence
of measurements y1:t , namely the marginal posterior distribution p(x̂t |y1:t ) and the associated expectations of the
form

E[ ft (x̂t )|y1:t ] =

∫
ft (x̂t )p(x̂t |y1:t ) dx̂t , (9)
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where ft is a p(x̂t |y1:t )-integrable function that describes an arbitrary quantity of interest as a function of the model
states. Given the state space model (Eqs. (6)–(8)), we can write the full posterior distribution of the model parameters
via Bayes’ rule:

p(x0:t ,Θ|y1:t ) =
p(y1:t |x0:t ,Θ)p(x0:t |Θ)p(Θ)

p(y1:t )
. (10)

With the augmentation of the state space x̂t = (xt ,Θt ), Eq. (10) becomes

p(x̂0:t |y1:t ) ∝

t∏
ti =1

p(yti |x̂ti )p(x̂ti |x̂ti −1)p(x̂0). (11)

For time t > 0, it is convenient to rewrite the posterior distribution in the recursive form

p(x̂0:t |y1:t ) ∝ p(yt |x̂t )p(x̂t |x̂t−1)p(x̂1:t−1|y1:t−1), (12)

where the likelihood distribution p(yt |x̂t ) and transition distribution p(x̂t |x̂t−1) can be easily evaluated by sampling
from a given proposal density.

3.2.1. Bayesian sequential importance sampling
In sequential importance sampling (SIS), Np samples, and thus Np model evaluations, are drawn from a proposal

density π (x̂0:t |y1:t ) which has a support no less than that of the target distribution, that is p(x̂0:t |y1:t ) in Eq. (11).
To correct the approximation, each sample x̂(i)

0:t , updated until time t , is associated with an importance weight w
(i)
t ,

that is

w
(i)
t =

p(x̂(i)
0:t |y1:t )

π (x̂(i)
0:t |y1:t )

=

t∏
ti =1

p(yti |x̂
(i)
ti )p(x̂(i)

ti |x̂(i)
ti −1)

p(x̂(i)
0 )

π (x̂(i)
0:t |y1:t )

. (13)

Because the dynamical model is history-dependent, the parameter values Θ(i) are sampled only at time t = 0.
Given that y0 is typically known in a calibration, the augmented model states (x(i)

0 ,Θ(i)) can be assembled with
x(i)

0 = F(xp
ct ,Θ

(i)) to exactly match y0 where xp
ct represents particle positions and radii from 3DXRCT images. For

time t > 0, the importance weights are recursively updated with the measurements yt :

w
(i)
t ∝ p(yt |x̂(i)

t )p(x̂(i)
t |x̂(i)

t−1)w(i)
t−1. (14)

With the covariance matrix of the measurement error ΣD
t , the likelihood p(yt |x̂t ) can be evaluated by the

multi-variate Gaussian distribution:

p(yt |x̂(i)
t ) =

1
(2π )d/2|ΣD

t |
×

exp{−
[yt − H(x(i)

t )]
T
ΣD

t
−1[yt − H(x(i)

t )]
2

},

(15)

where d is the dimension of the model state vector x(i)
t and H is the measurement model in matrix form. The Monte

Carlo approximations of the posterior expectations (see Eq. (9)) and variances are then computed as

Ê[ ft (x̂t )|y1:t ] =

Np∑
i=1

w
(i)
t ft (x̂(i)

t ), (16)

V̂ar[ ft (x̂t )|y1:t ] =

Np∑
i=1

w
(i)
t ( ft (x̂(i)

t ) − Ê[ ft (x̂t )|y1:t ])2. (17)

The posterior distribution represented by the empirical distribution formed with the augmented states and the
associated weights is

p(x̂t |y1:t ) ≈

Np∑
i=1

w
(i)
t δ(x̂t − x̂(i)

t ), (18)

with δ(·) the Dirac delta function. Note that the importance weights {w
(i)
t ; i = 1, . . . , Np} are normalized to sum

to unity at each time step.
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3.3. An efficient multi-level sampling algorithm

3.3.1. Initial sampling using quasi-random numbers
Because the posterior distribution of the model parameters is unknown, a non-informative proposal density is

used to uniformly explore the parameter space in the first iteration (k = 0), namely,

Θ(i)
∼ U(Θ) and w

(i)
0 =

1
Np

. (19)

The initial sampling is done with quasi-random numbers so as to identify “all” possible posterior modes. In
fact, the use of deterministic quasi-random numbers leads to the so-called sequential quasi-Monte Carlo (SQMC)
filter [53], which is recently proved to have better accuracy and smaller error rate than the SMC filter which uses
pseudo-random numbers [54].

With the samples drawn from quasi-random numbers only at time t = 0, the evaluation of the importance
weights with Eq. (14) becomes simple. However, the initial uniform sampling is inefficient because no experimental
measurement is involved in choosing the proposal density. Resampling during the measurement updates is also not
feasible because each sample trajectory has to be kept intact until the last time step T , for nonlinear, history-
dependent dynamical models [55]. Since the randomness enters the augmented state space only through the
parameters at time t = 0 (i.e., self-assembling state space in [56]), the SMC methods are ensured to degenerate
namely, all but a few importance weights become negligible, as time approaches infinity. An efficient way to
circumvent weight degeneracy is to reinitialize the samples and weights, and solve the same Bayesian filtering
problem again with a more sensible proposal density, as described below.

3.3.2. Iterative resampling using the estimated posterior as proposal density
As can be seen in Eq. (13), the proposal density should already contain knowledge updated with the measurement

data. Ideally, one would directly sample from the posterior distribution p(x̂0:t |y1:t ) or at least its approximation.
Therefore, when repeating Bayesian filtering (k > 0), the posterior distribution of the parameters obtained at the
end of the previous iteration pk−1(Θ|y1:T ) is adopted as the proposal density. Thus, the model states propagating
from t = 0 to T depend only on the randomness reintroduced in Θ(i). Similar to Section 3.3.1, new parameter
values are sampled from this new proposal density only at time t = 0 via,

Θ(i)
∼ pk−1(Θ|y1:T ) and w

(i)
0 =

∑Np
1 pk−1(Θ(i)

|y1:T )
pk−1(Θ(i)|y1:T )

. (20)

As time loops from 1 to T , a new set of sample trajectories {x̂(i)
t ; t = 1, . . . , T } that evolve deterministically

according to Eqs. (1)–(5) are generated. The measurement sequence y is reversed in time for the odd-numbered
iterations, i.e., Y = {y1:T , yT :1, y1:T , . . . }, in order to ensure global continuity in the measurement updates, meaning
that the resampling for the kth iteration takes place at the most adjacent time when the proposal density is estimated
in the (k − 1)th iteration.

For each iteration with k > 0, the proposal density is constructed by training a nonparametric mixture of Gaussian
distributions with the old samples and importance weights from the previous iteration. The new samples and weights
are initialized according to Eq. (20) and then updated by Eq. (14) as in the first iteration. The Bayesian approach
to training Gaussian mixtures will be briefly explained in Section 3.5. Because the closer to the posterior modes
the higher the sample density, resampling from the repeatedly updated proposal density allows to zoom into highly
probable parameter subspaces in very few iterations. With the multi-level sampling and Bayesian SIS schemes (see
Section 3.2.1), the iterative Bayesian filtering framework brings three major advantages:

(i) The posterior distribution is iteratively estimated with increasing refinement in the posterior landscape.
(ii) The multi-level sampling algorithm keeps allocating model evaluations in parameter subspaces where the

posterior probabilities are expected to be high, thus significantly improving computational efficiency.
(iii) Resampling from an updated proposal density happens only between two consecutive iterations, which can

circumvent the weight degeneracy problem while keeping sample trajectories intact within each iteration.
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Table 1
Iterative Bayesian filtering framework pseudocode.

Input:
Np : sample size
Θmin and Θmax : initial guess of parameter ranges
α: precision parameter of the Dirichlet process Gaussian mixture model

Output:
Posterior distribution/modes of micromechanical parameters

Steps:
1. Draw Np parameter values {Θ (i)

; i = 1, . . . , Np} from a proposal density, run model evaluations, and assemble augmented model
states x̂0:T = (x0:T ,Θ)

• If k = 0, Θ (i)
∼ U(Θ) and set the corresponding important weights w

(i)
0 to 1/Np

• If k > 0, Θ (i)
∼ pk−1(Θ |y1:T ) and set w

(i)
0 to

∑Np
1 pk−1(Θ (i)

|y1:T )/pk−1(Θ (i)
|y1:T )

2. Assume the normalized covariance parameter σ

3. For each t = 1, . . . , T , update importance weights as w
(i)
t ∝ p(yt |x̂

(i)
t )w(i)

t−1 where the likelihood p(yt |x̂
(i)
t ) follows a multi-variate

Gaussian distribution
4. Compute the effective sample size E SS = 1/(

∑Np
1 (w(i)

t )2 Np)
• For k = 0, repeat from step 2 if E SS > 20%
• For k > 0, repeat from step 2 if E SS is not at its maximum

5. Approximate the posterior distribution pk (Θ |y1:T ) with the importance weights at time T , i.e., p(Θ |y1:T ) ≈
∑Np

1 w
(i)
T δ(Θ − Θ (i))

6. Compute the posterior expectations Êk [Θ |y1:T ] and variances V̂ark [Θ |y1:T ] with Eqs. (16) and (17)
7. Repeat from step 1 if abs(̂Ek [Θ |y1:T ] − Êk−1[Θ |y1:T ])/Êk [Θ |y1:T ] > 10−2

3.4. Iterative sequential Monte Carlo filter

A multi-level sampling algorithm is implemented for iterative Bayesian filtering. For the first iteration (k = 0),
a non-informative uniform proposal density is considered. For the subsequent iterations (k > 0), the posterior
distribution pk−1(Θ|y1:T ) from the previous iteration is chosen as the proposal density. Irrespective of the
(re)sampling method, no sample (and model evaluation) is rejected/resampled during any iteration of Bayesian
filtering. The multi-level sampling algorithm and the SMC filter for (re)initializing the samples and approximating
the posterior distribution, respectively, are implemented in the Bayesian calibration toolbox ‘‘GrainLearning’’, as
illustrated schematically in Fig. 1. Table 1 shows the pseudo-code of the iterative Bayesian filter.

Fig. 2 illustrates the resampling of parameters using a Dirichlet process Gaussian mixture model (DPGMM) that
is trained with the initial quasi-random samples and their importance weights. After obtaining the first approximation
of the posterior distribution at k = 0, a DPGMM is trained with the ensemble (samples and weights) shown
in Fig. 2(b). An efficient variational inference method [57] is employed to determine the number of Gaussian
components needed to approximate the distribution, their parameters (e.g., means and variances), and mixing
proportions. Fig. 2(c) demonstrates how new parameters for the subsequent iteration are drawn from the Gaussian
mixture. Note that although the illustration is in 2D, DPGMMs can perform comparably well in high dimensional
space, as will be discussed later in Section 4.

The normalized covariance parameter σ for the first iteration is chosen such that the effective E SS =

1/(
∑Np

1 (w(i)
t )2 Np) [52] is larger than E SS = 20%. The goal is to have a sufficient number of effective samples for

estimating the proposal density. For the following iterations, the appropriate σ which maximizes E SS is selected.
Fig. 3 shows the variation of E SS at time t = T with an increasing σ . The same Bayesian filtering problem is solved
repeatedly, with the proposal density and samples updated for each iteration, until the posterior expectations do not
vary between two iterations. The other essential parameters except for σ are the hyperparameters that optimize the
number of Gaussian components and mixing proportions in training the nonparametric mixture model.

3.5. Bayesian nonparametric density estimation via the Dirichlet process Gaussian mixture

Choosing an appropriate proposal density is pivotal to the effectiveness of any SMC filters. Because the posterior
distribution on micromechanical parameters can be multimodal [36], a Gaussian mixture model (GMM) can help
characterize the complex-shaped probability density function. However, the determination of the number of mixture
components and their parameters can be challenging, especially when sparse and high dimensional data are involved.
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Fig. 2. (a) Initial parameter sets drawn from quasi-random numbers, (b) A mixture model trained with updated posterior probabilities and
(c) new parameters resampled from the trained mixture. Note that all weighted samples in (b) are utilized in the training process; a few
samples are not clearly visible because their weights are small but not negligible.

Fig. 3. Variation of the effective sample size (E SS) at time t = T with an increasing normalized covariance parameter σ .

In this work, we take advantage of Bayesian nonparametrics, the Dirichlet process (DP) mixture in particular, to
allow inferring an approximate posterior distribution over the mixture parameters using the variational inference
method of Blei and Jordan [57]. The basic idea of variational inference is to formulate the computation of posterior
distributions into an optimization problem which depends on a number of unknown hyperparameters. In contrast
to finite GMMs that take as input the number of mixture components and thus are prone to “overfitting” [58,59],
DPGMMs select the active components from an infinite Gaussian mixture by assigning the mixing proportions in
a “stick-breaking” process.

In this section, Bayesian nonparametric density estimation is briefly reviewed. The Gaussian mixture model
formulation is outlined. The Dirichlet process which generates the conjugate priors on the mixture parameters is
introduced below, with its convenient properties and stick-breaking representation highlighted in Section 3.5.2.

3.5.1. Dirichlet process Gaussian mixture models
Let {x̂(1), . . . , x̂(N )

}
1 be the statistically exchangeable samples of the model states in Section 3.2, drawn from the

posterior distribution F(·) := p(x̂1:T |y1:T ) in Section 3.3.2. A nonparametric mixture model can be constructed to
estimate F(·) as

F(·) =

∫
φ∈Φ

f (·|φ) dG(φ), (21)

1 The sample size is enlarged by copying each sample for N · w
(i)
T times (N > Np). The subscript for time t is dropped for simplicity.
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where φ contains the mixture parameters (e.g., mean and covariance), f (·|φ) is the conditional density on mixture
components (with parameters φ), and G(φ) is the mixing distribution [60]. In Bayesian nonparametric methods, G
is treated as an unknown “infinite-dimensional” parameter which requires a prior distribution in the usual way [61].
The draws from this prior are a collection of random probability distributions that belong to the same family G0

on the φ parameter space.
A mixture model with K Gaussian components may be written as

p(x̂|φ1, . . . , φK ) =

K∑
j=1

π jN (x̂|µ j , S−1
j ), (22)

where φ j = {µ j , S−1
j } is the mixture parameter for component j , π contains the nonzero mixing proportions that

sum to unity, and µ j and S j are the means and precisions (inverse covariances). We can now introduce a stochastic
indicator variable, ci , i = 1, . . . , N , associated each sample x̂(i), to encode which component has generated the
sample. The indicators can conveniently take values from 1, . . . , K , where K is the total number of mixture
components. Suppose that we know the mixing proportions π . Given that the likelihood of finding n j samples
belonging to component j is multinomial [62], the distribution of the indicators can be written as

p(c1, . . . , cn|π ) =

K∏
j=1

π
n j
j . (23)

The key to generalize the parametric GMM to the nonparametric DPGMM is the use of (conditional) conjugate
priors on the mixture parameters [62]. A typical choice is a Dirichlet distribution, conjugate to the multinomial
distribution, which means that the posterior resulting from a Dirichlet prior and a multinomial likelihood is also
a Dirichlet distribution. The Dirichlet process (DP), introduced by Ferguson [63], is a stochastic process that
generalizes the Dirichlet distribution to infinite dimensions and thus can be conveniently used to set priors on
unknown parameters.

3.5.2. The Dirichlet process
Given a Dirichlet process (Dir), parameterized by a scaling parameter α > 0 and a base measure G0, a random

probability distribution G distributed according to DP(G0, α), satisfies for any K and K -partitions {A1, . . . , Ak} of
the sample space,

(G(A1), . . . , G(AK )) ∼ Dir(αG0(A1), . . . , αG0(AK )), (24)

where the base measure G0 defines the expectation E(G) = G0 and α is a precision parameter that controls the
variance. Eqs. (23) and (24) show that samples drawn from the nonparametric mixture model that is constructed with
a DP prior can be partitioned according to the distinct values of the parameters. Through the DP construction with
K -partitions, the DGPMM is mathematically convenient to update the posterior distribution on unknown parameters.
Let φ1, . . . , φn be n samples independently drawn from G and G ∼ DP(G0, α). Because of conjugacy, the posterior
distribution of G|φ1, . . . , φn is also a DP, namely

G|φ1, . . . , φn ∼ DP(
α

α + n
G0 +

1
α + n

n∑
k=1

δφk , α + n). (25)

Another important property is that realizations of the DP are discrete, with probability one. One can show that G
admits the so-called stick-breaking representation, established by Sethuraman [64].

G =

∞∑
j

π jδφ j . (26)

This representation makes clear that G is discrete, with the support encompassing an infinite set of φ j , drawn
independently from G0. The mixing proportions π are assigned by successively breaking a unit length “stick” into
an infinite number of pieces, following π j = β j

∏ j−1
l=1 (1 − βl) and β j ∼ Beta(1, α). For the sake of brevity, the

priors on the means and precisions are not detailed here. Interested readers are encouraged to consult [57–59].
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3.5.3. Variational inference for Dirichlet process mixtures
Markov Chain Monte Carlo (MCMC) sampling allows for the computation of likelihoods and posteriors

involved in estimating DPGMMs. However, MCMC methods can be slow and difficult to diagnose. Here, the
variational inference method introduced by Blei and Jordan [57] is utilized for the sake of efficiency. Variational
inference consists in reformulating the computation of conditional distributions as an optimization problem,
relaxing the problem by including information from a prior distribution, and computing optimum estimates of
the hyperparameters of the prior distribution. It can be understood as an extension of expectation–maximization
that maximizes a lower bound on the marginal likelihood instead of data likelihood. We make use of the publicly
available open-source package scikit-learn [65] and in particular the BayesianGaussianMixture class, in which
the coordinate ascent algorithm for mean-field variational inference of Blei and Jordan [57] is implemented.

The hyperparameter α plays an essential role in estimating the posterior distribution of {φi ; i = 1, . . . , N }, along
with the base measure G0 which is Gaussian in BayesianGaussianMixture. It can be proved from Eq. (26) that
the probability of φn being different from any parameters in {φ1, . . . , φN−1} is proportional to α. Therefore, a lower
value of α activates only a few components apart from many negligible ones, whereas a higher value of α leads to
many unique φ j and a larger K . The other parameter is the upper bound on the number of Gaussian components
Kmax for the truncation of the stick-breaking construction. For the application in Section 4, Kmax is set to Np/10,
assuming clustering of 10 samples on average; α is set to 0.01 because a small number of Gaussian components
is preferred. The elements in each sample, i.e., the micromechanical parameters Θ = {Ec, µ, km, ηm} and the
macroscopic quantities x = {n, p′, q}, are assumed to be correlated via a full covariance matrix.

4. Application: DEM modeling of a glass bead packing under oedometric compression

The Bayesian calibration tool is applied to DEM modeling of glass beads subjected to cyclic oedometric
compression. The micromechanical parameters considered here are Ec, µ, km and ηm in Eqs. (1)–(5). Parameters
values, randomized according to the multi-level sampling algorithm in Section 3.3.2, are assigned to model
evaluations for identifying the optimal parameters and quantifying the micro- and macro-uncertainties conditioned
on the experimental data.

4.1. Packing preparation, 3DXRCT imaging and oedometric experiment

In the experiment, two glass bead specimens were prepared with extreme care, such that their sizes, porosities
and particle size distribution (PSD) were almost the same. Both specimens were isotropically compressed until
reaching an effective confining pressure of 5 MPa. Subsequently, one specimen was solidified with resin to perform
3D X-ray computed tomography (3DXRCT) imaging (see Fig. 5), whereas the other was kept in the triaxial cell for
the mechanical tests. The representative volume shown in Fig. 4(b) is selected, such that the material enclosed is
homogeneous from the viewpoint of local voxel-based porosity (see the yellow cube highlighted in Fig. 4(a)). The
cyclic oedometric experiment was conducted at a strain rate of 2.0 × 10−4 %/s, with the axial strain εa increasing
from 0% to 1.75% and then varying between approximately 1.75% and 1.0% for two cycles. The experimental data
contains approximately 100 stress and strain measurements. The three measurement vectors that consist of mean
effective stress p′, deviatoric stress q and porosity n, respectively, are used for the calibration.

4.2. Initial particle configuration from image analysis

Fig. 5 shows the workflow of 3D feature-based image processing. Empowered by the Trainable Weka Segmen-
tation [66] and MorphoLibJ library [67], the workflow is ad hoc developed to (i) segment multiphase 3DXRCT
images (Figs. 5(d) and 5(e)), (ii) separate touching objects (Figs. 5(f)–5(h)), and (iii) characterize the morphological
features of the objects, e.g., particle size distribution as shown in Fig. 4(c). The novelty here is the combination of
morphological operations and machine learning algorithms to extract image features for segmenting multiphase
images. Note that image segmentation becomes extremely difficult when defects are present and adjacent to
particle-void boundaries (Fig. 5(a)). Because of the similar attenuation coefficients of voids and defects (and the
partial-volume effect [68]), the particles encompassing defects tend to be thresholded as “porous” objects (Fig. 5(c))
and thus overly segmented into small fragments, by the watershed algorithm. While the non-local means (NLM)
denoising (Fig. 5(b)) preserves image sharpness at the boundaries [50], the machine learning based classifier takes
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Fig. 4. Input and output of 3D feature-based image processing: (a) representative volume selected from the specimen (volume-rendered
3DXRCT images), (b) reconstruction of individual glass beads in the selected representative volume, and (c) particle size distributions
obtained from morphological analysis and laser diffraction spectroscopy.

Fig. 5. Workflow of 3D feature-based image processing.

the pixels of highlighted morphological features, such as plate- and blob-like structures, as training data. Once
trained, the classifier is able to handle the rest of the similar images.

The resulting representative volume contains 4526 fully reconstructed glass beads, as displayed in Fig. 4(b).
By fitting the reconstructed glass beads into perfect spheres, one can estimate the equivalent diameters and other
morphological characteristics. Fig. 4(c) shows the PSD obtained from the 3D image analysis. The second peak at
around 62.5 µm seems to coincide with the unimodal distribution from the laser diffraction analysis. The difference
between the two PSDs can be attributed to agglomerates that form when dispersing small particles into the carrier
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Table 2
Upper and lower limits of the parameters to generate quasi-random numbers for the first iteration.

Ec (GPa) µ km (10−6 Nm) ηm

Θmax 200 0.5 10 0.5
Θmin 100 0.3 0 0.1

fluid during the laser diffraction analysis. However, a detailed morphological characterization of the glass beads is
outside the scope of this paper.

4.3. DEM Simulation of oedometric compression

The glass bead specimen subjected to cyclic oedometric compression is modeled using the DEM, with the initial
particle configuration obtained from the 3DXRCT images. “Random” model evaluations are managed by the multi-
level sampling algorithm (Section 3.3.2), and their results are sequentially processed according to Bayesian updating
(Section 3.3.1).

Although the geometrical representation of the DEM model is facilitated by the 3DXRCT images, the DEM
packing still needs to undergo an initial “dynamic relaxation” stage in order to recover the periodicity of the
representative volume. At this stage, the standard material properties of glass beads, e.g., Ec = 70 GPa, are used,
and the rolling stiffness km and rolling friction ηm are set to zero. The interparticle friction µ is gradually reduced
to match both initial porosity (n0 = 0.391) and effective confining pressure (p0 = 5 MPa), as in the experiment.
It is worth noting that the 3DXRCT image acquisition is performed at the same confining pressure. During the
initial relaxation stage, the particles readjust their positions towards equilibrium at p0 = 5 MPa, while a high
background damping is used to maximize kinetic energy dissipation [69,70]. When the equilibrium state is reached,
the porosity is checked against the experimental value (n0 = 0.391). If the porosity is too big, the interparticle
friction µ is reduced by 1%, and hence another relaxation substage continues.

After the DEM packing stabilizes at the desired initial porosity and confining pressure, the model evaluations
are initialized, with the rolling resistance activated and the parameters drawn from the proposal density. From the
initial guess of Ec, µ, km and ηm in Table 2, a four-dimensional Halton sequence [71] is generated and employed
as the parameter samples for the first iteration of Bayesian filtering. Adopting the randomized parameter values
causes n0 and p0 in the simulations to slightly deviate from their experimental values. Therefore, each model
evaluation starts with a second “dynamic relaxation” stage to correct n0 and p0. Until the correct initial porosity
and confining pressure are restored, the interparticle friction is periodically reduced while keeping p0 constant.
After the correction finishes, the interparticle friction is raised back to the “randomized” value before the cyclic
oedometric loading commences.

In each model evaluation, the DEM packing is uniaxially compressed and then subjected to two unloading–
reloading cycles, as for the experiment in Section 4.1. The DEM simulation is strain-controlled, so that n, p′ and
q can be obtained at the exact levels of εa where the measurements were made. When applying a load increment,
a global damping ratio of 0.2 is adopted to ensure numerical stability [72]. To obtain quasistatic simulation results,
the global damping ratio is increased to 0.9 after each load increment so as to maximize kinetic energy dissipation.
The time step dt is fixed to 1/10 of the critical time step as defined in [47]. Note that it is also possible to leave dt
as a free parameter to optimize, such that the computational cost is reduced to the largest extent for a given level
of accuracy [19,73]. It may be tempting to already use the randomized parameter values from the time when the
particle configuration is imported into each model evaluation. Although this is feasible, the computational cost will
increase dramatically because each model evaluation would include a complete “dynamic relaxation” stage which
is more expensive than simulating the oedometric experiment.

5. Bayesian calibration of micromechanical parameters

5.1. Evolution of identified parameters

As all DEM simulations of a single iteration proceed along the oedometric loading path, the measurement
data yt and the model state samples {x(i)

t ; i = 1, . . . , Np} at time t are passed to the SMC filter to update
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Fig. 6. Evolution of identified parameters over axial strain εa during each sequential Bayesian filtering. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

the posterior distribution p(x̂t |y1:t ). To track the evolution of the ensemble (samples and weights), the posterior
expectations and variances are calculated along the loading path [25,27]. Given the parameter samples and associated
importance weights, the posterior expectations Ê[Θt ] and variances V̂ar[Θt ] can be evaluated according to Eqs. (16)
and (17).2 Ê[Θt ] contains the posterior expectations of the respective parameters Ê[Ec(t)], Ê[µ(t)], Ê[km(t)] and
Ê[ηm(t)] updated until time step t , whereas V̂ar[Θt ] consists of the corresponding variances. Note that the posterior
expectations Ê[Θt ] are defined as the “identified micromechanical parameters” rather than individual parameter
sets that possess high posterior probabilities.

√
V̂ar[Θt ] are divided by Ê[Θt ] to obtain the coefficients of variation

namely C OVEc (t), C OVµ(t), C OVkm (t) and C OVηm (t).
In this study, four iterations of sequential Bayesian filtering are sufficient for the posterior expectations to

converge. Each iteration contains 100 DEM model evaluations (Np = 100) that constitute the ensemble. The
parameters are (re)sampled from either the initial or the updated proposal density (see Section 3.3). For each
iteration, the normalized covariance parameter σ is selected according to Section 3.4, such that the effective sample
size is sufficiently large.

Figs. 6 and 7 show the evolutions of the posterior expectations and COVs during the cyclic compression. The
identified parameters are plotted as functions of axial strain εa which controls the quasistatic loading/unloading
as in the experiment. The evolution of the identified parameters with εa reflects the underlying Bayesian updating
mechanism during the loading history; it does not mean that the parameters keep changing in the simulations.

During the first iteration, it is clear that all identified parameters Ê[Ec], Ê[µ], Ê[km] and Ê[ηm] keep changing
until the unloading–reloading cycles. Interestingly, the change of the identified parameters are negligible during the
unloading–reloading cycles, except for Ê[µ]. This is in line with the fact that the interparticle friction dominates
the plastic deformation of granular materials.

Ê[km] is another key parameter for the shear strength of granular materials [35,36]. Similar to µ, Ê[km] during
the unloading–reloading cycle at the second iteration (Fig. 6(c)) also suggests that the identified parameters readjust

2 The measurement sequence y1:T which the parameter vector Θt is conditioned on are dropped here for brevity.
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Fig. 7. Evolution of coefficients of variation over axial strain εa during each sequential Bayesian filtering.

further as more relevant experimental data become available. Interestingly, the change of Ê[km] and Ê[ηm] during the
unloading–reloading cycles at the first iteration appears to be less pronounced (red line in Fig. 6(c), (d)), compared
with those in the second and third iterations (green and blue lines). The difference in the identified rolling parameters
between the iterations reveals that the quality of the ensemble is improved iteratively, as can be observed from the
decreasing uncertainty in Fig. 7(c), (d). Fig. 7 shows that both C OVEc and C OVµ decrease almost monotonically
during all iterations, whereas C OVkm and C OVηm increase only in the first two iterations. The increasing coefficients
of variation suggest that multiple modes emerge in the posterior distributions on km and ηm , and the initial quasi-
random sampling is insufficient to find the optimal solutions. Because the DPGMM constructs a smooth and
continuous distribution over the identified posterior models, potential optima can be efficiently explored at later
iterations. Interestingly, in the last two iterations, all parameter uncertainties, particularly C OVkm and C OVηm ,
appear to fluctuate between certain values during the unloading–reloading cycles. The hystereses in Figs. 7 suggest
that the importance weights on the samples within different posterior modes are updated differently, depending
on the unloading or reloading stage. The hystereses again proves the significance of including the unloading–
reloading branches of stress–strain curves in Bayesian calibration and the multimodal posterior landscape on the
rolling parameters.

Note that the “identified” parameters at the end of the first iteration are almost the same as those at the beginning
of the second iteration3 (red and green lines in Fig. 6). The continuity can also be observed between the other pairs of
consecutive iterations as well. The continuity in the coefficients of variation (except for km) is also shown in Fig. 7.
This means that the knowledge updated from the previous iteration is successfully passed to the iterations afterwards,
through the DP Gaussian mixture trained with the previously approximated posterior distribution. Because of the
negligible change of the posterior expectations during the fourth iteration, the Bayesian calibration is finished after
four iterations of sequential Bayesian filtering. Further details on the convergence will be discussed in Sections 5.3
and 6.1.

3 To ensure continuity in the measurement updates, the measurement sequence is reversed in time at the second and fourth iterations.
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Fig. 8. Comparison of experimental data and numerical predictions given by the posterior ensemble and the parameter sets associated to
the top three highest posterior probabilities at the first (a, b), second (c, d), third (e, f) and fourth (g, h) iterations. The red shaded areas
indicate an uncertainty range of ±2σ . (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

5.2. Numerical predictions versus experimental data

To understand how the quality of the identified parameters is improved over the iterations of sequential Bayesian
filtering, the numerical predictions of the macroscopic variables, namely, porosity n, mean stress p′ and deviatoric
stress ratio q/p′ are compared with the experimental data in Fig. 8. The numerical predictions therein are obtained
using the parameter sets associated with the three highest posterior probabilities. The prediction of the posterior
ensemble for p′ and q/p′, also plotted in Fig. 8, is represented by the respective expectations and standard deviations
(dark red lines and shaded areas), calculated in a similar fashion as Ê[Θt ] and V̂ar[Θt ] in Eqs. (16) and (17).



284 H. Cheng, T. Shuku, K. Thoeni et al. / Computer Methods in Applied Mechanics and Engineering 350 (2019) 268–294

As shown in Fig. 8(a), (b), the numerical predictions obtained at the first iteration do not match well with the
experimental stress–strain εa–q/p and porosity–pressure n–p responses. The uncertainty is minimal at the beginning
because the packing preparation ensures all model evaluations start from the same state. As stress anisotropy
increases, the uncertainties in p′ and q/p′ keep increasing. Because the initial porosity n0 in the simulations is
servo-controlled to be precisely the same as in the experiment (see Section 4.3), the uncertainty in n never exceeds
0.5%. Fig. 8(c), (d) and (e), (f) show that the accuracy of both the ensemble and the individual model evaluations
increases over the iterations. After two iterations, C OVp′ becomes less than 5%, whereas the maximum C OVq/p′

remains bigger than 10%. After the third iteration, the best three numerical predictions lie perfectly on the top of
the experimental data in Fig. 8(e), with C OVp′ vanishingly small and C OVq/p′ at a minimum of 3%. Note that
in Fig. 8(f) the ensemble expectation of n initially deviates from the three model evaluations. This is because the
samples located further away from the posterior modes are initialized with higher importance weights, according to
Eq. (20). It takes a few Bayesian updating steps before the correct modes can reemerge in the posterior distribution
and the ensemble expectation rematches with the three model evaluations. The mismatch becomes more pronounced
in Fig. 8(h) at the end of the loading history, that is, at the beginning of the fourth iteration because the measurement
sequence is reversed (see Section 3.3.2).

At the fourth iteration, we observe a negligible change in the posterior distribution, with the majority of the
samples located on the posterior modes (see Fig. 9(d)) and the uncertainty in each macroscopic QOI as low as
1%, throughout the loading history. The Bayesian approach works well because it extracts and makes use of
the hidden relations between the micro- and macro-quantities given the measurement data, without reproducing
every experimental detail. For example, simulating surface asperities with non-spherical particles in DEM requires
a significant computational cost. Alternatively, the rolling resistance can mimic the effect of surface roughness and
asperities on the macroscopic stress–strain behavior to a large extent. By means of Bayesian updating, the intrinsic
relationships between the physical and non-physical parameters are identified. The micro–macro correlations are
implicitly utilized in the iterative (re)sampling of the parameter/state space.

5.3. Evolution of the posterior distribution over iterations

The dependence between micromechanical parameters can be understood from the landscape of the posterior
distribution. Fig. 9 compares the snapshots of the posterior distribution approximated at the beginning and the end
of each iteration. While the diagonal panels indicate the marginals of the joint posterior distribution, the above-
and below-diagonal panels present the 2D projections of the posterior distribution at the beginning (blue) and the
end (red) of each iteration. The projections in the above- and below-diagonal 2D parameter spaces are colored by
the associated posterior probability densities. The posterior distribution at the end of the first iteration (Fig. 9(a))
appears to be multimodal. Each mode of the distribution suggests a highly probable parameter subspace which may
contain a potential posterior estimate. The distribution updated at the end (below-diagonal panels of Fig. 9(a)) is
adopted as the new proposal density for initializing the second iteration.

Similarity between the posterior distributions that link two consecutive iterations (e.g., the below-diagonal and
above-diagonal panels of Figs. 9(a) and 9(b)) confirms that the DPGMM allows to resample between the highly
probable parameter subspaces, so that multiple peaks resulting from the previous iteration are merged into a smooth
complex-shaped proposal density for reinitializing the succeeding iteration. Although the posterior distributions of
two consecutive iterations are approximated with different ensembles, their ensemble expectations and variances
are mostly consistent as shown in Figs. 6 and 7. Over the iterations, the proposal density and thus the posterior
distribution become progressively localized and degenerate into multiple peaks with fluctuating probabilities, which
give rise to the hystereses in Fig. 6.

Note that the ranges of Ec and µ explored in the third iteration (Fig. 9(c)) are much smaller than the initially
sampled ones (see Table 2 and Fig. 9(a)), whereas the ranges of km and ηm are almost the same between these
two iterations. Although the sample density for Ec and µ is high, the posterior distribution remains multimodal
throughout the third iteration. The complexity of the posterior distribution is mostly attributed to the importance
weights associated with the nonphysical parameters km and ηm . This suggests that most computational time is used
in identifying the nonphysical parameters km and ηm whose posterior distributions are mostly multimodal.

The Bayesian calibration could be stopped after three iterations because the numerical predictions using the
optimal parameters match the experimental data very well, as shown in Fig. 8(c), (d). Nevertheless, an additional
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Fig. 9. Posterior distribution approximated at the beginning (blue) and the end (red) of sequential Bayesian filtering. 2D projections of the
posterior distribution in the above- and below-diagonal panels are colored by the posterior probability densities. Note that in order to clearly
observe the convergence, only the primary mode of the posterior is shown in the subplot (d). See the supplementary videos for the complete
evolutions of the posterior distribution over the loading history. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

iteration is performed in order to estimate the posterior distribution near the modes for checking convergence.
Fig. 9(d) also shows that the “stopping criterion” is satisfied at the fourth iteration. The excellent agreement between
the initial and final posterior distributions in Fig. 9(d) also suggests that the accuracy is already sufficient in the third
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iteration for the dual purpose of parameter identification and uncertainty quantification. Therefore, in Section 5.4
the posterior distribution obtained at the third iteration will be used to discuss the uncertainties associated with the
micromechanical parameters.

5.4. Uncertainty propagation from micro to macro

Sequential Bayesian filtering can quantify the evolution of uncertainties propagating from model parameters to
macroscopic QOIs (e.g., Figs. 7 and 8), conditioned on a given history of physical states (e.g., stress anisotropy in
this work). Through the samples and associated weights, the uncertainties of the micromechanical parameters can be
directly linked to the uncertainties of the macroscopic quantities, such as stress, porosity and coordination number
C∗ (the average number of contacts per particle). This is of great interest for multiscale characterization of granular
materials because uncertainty propagation from microscale to macroscale is pivotal to the design optimization
of granular-based products. Uncertainty quantification and propagation allow us to understand how important a
microscopic property is to a macroscopic QOI, subjected to various physical processes.

Fig. 10 shows the evolution of individual pairs of micro–macro coefficients of variation for the first three
iterations. The macroscopic uncertainties increase until the peak stress ratio is reached because the covariance
matrix is scaled with the measurement data. During the first iteration, C OVp′ is reduced from 10% to 5%, whereas
C OVq/p′ oscillates around 10%. The uncertainty reduction at the first iteration is mostly owing to the 8% decrease
of C OVEc , with C OVp′ decreasing from 10% to 4% at the macroscale. During the second iteration, C OVEc again
decreases more than C OVµ, followed by C OVkm and C OVηm which hardly change. After two iterations, while
C OVkm and C OVηm remain larger than 35%, C OVEc and C OVµ drop down to approximately 7%, which jointly
lead to the 5% decrease in all macroscopic uncertainties. Further decrease of the macroscopic uncertainties at the
third iteration is mostly attributed to the optimization of km and ηm , which significantly affects n and C∗. Because
the normalized covariance parameter on n is scaled by a factor of 0.01, the uncertainties in n and C∗ are very
low from the beginning. However, enforcing small errors on n and C∗ does not guarantee low uncertainties in the
predictions of p′ and q. Note that C OVn is consistently smaller than C OVC∗ , which probably relates to the fact
that the coordination number can be different between DEM packings that have the same global porosity. It appears
that the uncertainties in n and C∗ are reduced by first locating the posterior modes on Ec and µ at the first two
iterations and then optimizing the plausible combinations of km and ηm at the third iteration.

Similar to the proposal density (e.g., Fig. 2), the posterior distribution on the macroscopic QOIs can be obtained
and plotted against that on the micromechanical parameters, using the DPGMM density estimator. Figs. 11(a)–11(c)
show the micro–macro correlations at the three characteristic states, namely the initial and peak anisotropy states and
the end of first unload, during the first iteration of Bayesian filtering. As expected, there exists a strong correlation
between Ec and p′ already at the initial state. It is interesting to see that the correlation between Ec and q/p′

changes from proportional to inversely proportional, as the stress anisotropy increases. The dependence of q/p′

on µ and km becomes much clearer at the peak stress anisotropy state. The porosity n appears to be independent
of any micromechanical parameters because n0 ≈ 0.391 is strictly satisfied during the packing preparation. These
correlations still remain valid, even after the end of the first unload (Fig. 11(c)).

The second iteration gives a more accurate overview of the landscape of the posterior distribution because of the
updated proposal density. In the second iteration, already at the initial state (Fig. 11(d)), the correlations between
q/p′, µ and km are clearer than in the first iteration. Interestingly, C∗ appears to be proportional to km , which
means the increase of surface asperities, taken into account by km , leads to a larger coordination number. The new
correlation that appears in Figs. 11(e) and 11(f) is the inverse proportionality of C∗ to µ. The other correlations
remain the same as in the first iteration, but with much clearer structures.

As shown in Figs. 11(g)–11(i), the micro–macro correlations are localized in the vicinity of the posterior modes,
with all macroscopic uncertainties lower than 3%, Nevertheless, similar correlation structures such as the dependence
of q/p′ on µ and km and the inverse proportionality of q/p′ to Ec are still observable. However, since the resampling
only takes place near the posterior modes, the correlation structures estimated by the DPGMM at the third iteration
are incomplete.
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Fig. 10. Relationship between the pairs of micro–macro coefficients of variation (C OV ) during the first (red), second (green) and third
(blue) iterations of Bayesian filtering. The beginning of each iteration is marked with a solid circle. Open squares and triangles represent
the peak stress ratio state and the end of the second loading branch. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

6. Discussion

6.1. Sampling parameter space with an iteratively updated proposal density

As discussed in Sections 5.1 and 5.3, the main advantage of iterative Bayesian filtering is the ability to update
the proposal density through the Bayes theorem and then pass it to the following iteration consistently. The transfer
of the updated posterior over iterations is accomplished by the resampling steps which enable the coarse-to-fine
search, as shown in Fig. 12. The importance weights on the samples are taken into account by the DPGMM density
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Fig. 11. Approximated posterior distributions projected on all pairs of micromechanical parameters and macroscopic quantities of interest at
the three characteristic states. Note that the scales vary between the subfigures for different iterations. The posterior distributions associated
with porosity n are not shown in Figs. 11(d)–11(i) because porosity becomes uncorrelated to all parameters after the first iteration.

estimator (Fig. 2(b)), which allows the approximation to localize in the highly probable regions, as shown in
Figs. 12(a)–12(h). Note that only the 2D projections on the Ec–µ and km–ηm planes are plotted in Fig. 12 for
the sake of brevity.
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Fig. 12. Parameter samples that are progressively localized near the posterior modes over the iterations.

As demonstrated in Fig. 12(a), the initial quasi-random sampling in the to-be-explored parameter space gives
uniformly distributed samples (Np = 100). A larger sample size could be employed to obtain a more accurate global
picture of the posterior distribution [35,36]. However, to have the same sample density as in Fig. 12(d), it would
require at least 5000 DEM model evaluations initialized by the quasi-random sampler. This is neither practical
nor necessary for the purpose of parameter estimation. It is more sensible to allocate the computational power to
the highly probable parameter subspaces. Note that the current DEM model has four dominant micromechanical
parameters. For contact models that have more parameters, one needs a larger sample size because the convergence
rate of the quasi-MC error decreases with increasing dimensionality [54]. Fortunately, the number of parameters in
DEM models is typically small, compared with those in most macroscopic constitutive models.

Another important issue relevant to the performance of the coarse-to-fine search is the construction of the
Dirichlet process Gaussian mixture model (DPGMM). As explained in Section 3.5, the DP mixtures for the proposal
density estimation are constructed using the variational inference method [57]. Compared with the conventional
Gaussian mixture model (GMM), the DPGMM is advantageous in constructing a smooth and continuous probability
distribution on a relatively small number of samples. First, the estimated proposal density is not subjected to
the number of components initially assumed by the user because this parameter is also iterated by variational
inference. When fitting a conventional GMM with samples, the expectation–maximization algorithm tends to use
as many Gaussian components as possible. The resulting probability distribution will be very different, depending
on the assumed number of components. On the other hand, the variational inference for the Gaussian mixture
using a Dirichlet process prior does not depend on the maximum number of components initially assumed, and
therefore reduces the uncertainty involved in the construction of the proposal density. In addition, unlike the
conventional GMM, no singularity/over-fitting problems arise in the DPGMM, even though a large number of
Gaussian components is assumed. It should be noted that no constraints are put on the parameter space, and the
DPGMM can construct distributions even beyond the existing parameter space because the DPGMM tends to use
the least number of active components. If the initial guess was not able to capture at least one posterior mode,
the resampling scheme could explore outside the current parameter space, at the cost of more iterations and model
evaluations.
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The marginals and 2D projections of the posterior distribution in Fig. 9(d) and the samples in Fig. 12(d) show
that the complex posterior landscape which suggests the interdependence of the parameters is filtered out after four
iterations. This is because the current resampling algorithm generates fewer samples in the regions where optimal
solutions are less likely to be located. These samples and the potential ones nearby, which may later be picked
up by the multi-level sampler, tend to be, unfortunately, overlooked by the DPGMM density estimator. In order to
retain the quality of the multimodal distribution, one can perform quasi-random sampling within the complex-shaped
parameter subspace, bounded by a certain threshold of posterior probability. In doing so, the sample density near
and away from the posterior modes is almost the same.

6.2. Computational efficiency

The iterative Bayesian filtering framework is implemented as a calibration tool for the open-source DEM package
YADE [47]. At each iteration, “random” parameter sets are passed to YADE to initiate model evaluations (DEM
simulations) that can be parallelized on a multi-core processor. In this work, the computational time needed
for one DEM simulation of glass beads to undergo the cyclic oedometric loading path is approximately 3–4 h,
on a dual-core system (Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz). Because the model evaluations are all
independent, the computational speed can be significantly increased by simply distributing them on a computer
cluster, e.g., parallelizing 3 × 100 model evaluations on a 100-core computer cluster allows the calibration to finish
within one day. The (re)sampling of parameters for each iteration takes place after the model evaluations results
are processed by the SMC filter. Through iterative resampling, the parameter space is explored at multiple levels
of sample density, depending on the proposal distribution that targets the modes of the posterior distribution. Only
3 × 100 model evaluations are needed to accurately approximate the complex-shaped posterior distribution. The
fourth iteration is needed only for checking convergence. The non-iterative Bayesian filter [36], however, would
require more than 5000 DEM model evaluations to maintain the same level of sample density at the fourth iteration.
In addition, the target level of accuracy also determines the number of model evaluations. In fact, the calibration
could have finished after two iterations, i.e., 2 × 100 model evaluations because the numerical predictions obtained
using the most probable combination of parameters are already in an excellent agreement with the experimental
data, as shown in Fig. 8(c), (d).

Note that in the current work, each DEM simulation undergoes the entire loading history, before the macroscopic
variables are passed to the SMC filter. Alternatively, all model evaluations could be stopped at a certain time step,
provided that the approximation of the posterior distribution has already converged. This would definitely improve
the computation efficiency, but requires the “on-line” application of SMC filtering to the model states, as soon as they
become available in each model evaluation. Besides reducing the computational cost involved in DEM simulations,
improving the resampling algorithm such that the dimensionality can be lowered after a few time steps/iterations
will significantly improve the convergence rate. As discussed in Section 5.1, the dynamic updating of the identified
Ec and µ only occurs during the first and second iterations of Bayesian filtering. Therefore, it may be more sensible
to consider only km and ηm as the unknown parameters in the third/fourth iteration because the convergence speed
increases with decreasing dimensionality.

It is very important to discuss the efficiency of the proposed Bayesian framework for high dimensional problems.
According to Gerber and Chopin [54], the overall complexity of the sequential quasi-MC sampling is O{N log(N )},
which is relevant for the first iteration. If the same resampling algorithm was adopted by the remaining iterations, it
would require approximately 581 model evaluations for calibrating six unknown parameters. However, in this work,
after the first iteration, the resampling is performed using the DPGMM as the proposal density. Because the sample
density becomes increasingly high near the posterior modes over the iterations, the number of model evaluations
necessary for a six-dimensional problem should be lower than 581. Nevertheless, the relationship between the
number of unknown parameters and the required size of the ensemble will be further investigated in a future
dedicated work.

6.3. Bayesian uncertainty quantification for multiscale simulations of granular material

In the present work, the identification of the micromechanical parameters and the quantification of the associated
uncertainties are accomplished by approximating the posterior distribution and its evolution over the loading
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history. Using the identified parameters, the DEM packing can either be employed as a representative volume
element to pass the local constitutive behavior to a macroscale finite element solver or stacked up to assemble
a large-scale DEM simulation domain. Both approaches can lead to the Bayesian uncertainty quantification of
granular mechanics across scales. The Bayesian framework is able to bridge the gap between multiscale simulations
and experiments where numerical predictions and experimental measurements are obtained at various scales. For
example, with the particle kinematics measured by 3D X-ray tomography, in addition to the macroscopic stress–
strain measurements, it would be possible to quantify model uncertainties and their propagation from micro to
macro within the Bayesian filtering framework [74]. The propagation of microscopic uncertainties to a continuum
description of granular materials would also provide new insights into the micro–macro transition problem [75].
Furthermore, stochastic multiscale simulations [76] can be conducted conveniently, using material parameters drawn
from the posterior distribution, e.g., estimated by the current Bayesian framework. For example, implementing a
heterogeneous distribution of material properties in multiscale simulations is a typical approach to identify the
sources of aleatory uncertainty [77]. The epistemic uncertainty associated with the formulation of contact laws can
be evaluated by the so-called Bayes factor, which can then guide the development of new contact laws [25].

7. Conclusions

A fast, efficient and automated Bayesian calibration procedure for DEM modeling of dense granular materials is
developed, based on an iteratively improved/localized approximation of the posterior distribution of micromechan-
ical parameters, conditioned on experimental data. The previously developed calibration tool [36] is extended to
enable an automated coarse-to-fine search in high-dimensional parameter space, by introducing a resampling step
between iterations of nonlinear, non-Gaussian Bayesian filtering. Within each iteration, sequential Monte Carlo
filtering is applied to the augmented model states and measurement data, along a given loading path. The iterative
resampling scheme takes advantage of the Dirichlet process Gaussian mixture model to update a proposal density
that targets the posterior modes where optimal parameters are located. The multi-level sampling algorithm allows to
zoom into these highly probable parameter subspaces over iterations and characterize the local posterior landscape
with great detail. The agreement of the posterior expectations before and after one iteration of Bayesian filtering is
adopted as the convergence criterion.

To demonstrate its performance, the iterative Bayesian filter is applied to estimate the micromechanical
parameters for DEM modeling of glass beads under cyclic oedometric compression. The DEM packing is initiated
with a particle configuration acquired by 3D feature-based image processing, specially developed for segmenting
3DXRCT images of multiphase materials (particles, defects and voids in this work). The parameter sets, either
sampled from the initial quasi-random sequence or resampled from the updated proposal density, are passed to the
model evaluations that are parallelized on a computer cluster. The macroscopic state variables, i.e., porosity, stress
and strain, along the cyclic oedometric path are returned to the sequential Monte Carlo filter. The quasi-random
sequence generates samples uniformly to avoid overlooking global optima within the to-be-explored parameter
space. The updated proposal density is constructed by estimating a nonparametric Gaussian mixture from the
ensemble obtained at the end of the previous iteration. For identifying the posterior distribution of the parameters
conditioned on the experimental stress–strain curves, 3 × 100 DEM model evaluations, that is three iterations of
sequential Bayesian filtering, are sufficient. A fourth iteration is employed for convergence check.

In addition to the major goal of parameter identification, the iterative Bayesian filter is able to quantify corre-
lations and uncertainties across scales. Key findings relevant to the uncertainties in micro–micro and micro–macro
correlations are summarized as follows:

(i) The posterior expectations of the contact-level Young’s modulus Ec and interparticle friction µ which
dominate the macroscopic stress–strain behavior converge within very few iterations. The decrease of
uncertainties in the rolling parameters km and ηm requires more iterations, compared with Ec and µ that
have clear physical origins.

(ii) The uncertainties in micromechanical parameters drop more significantly in the unloading–reloading cycles
than in the initial loading branch of the oedometric compression, which confirms the importance of
incorporating elastoplastic behavior in parameter identification.

(iii) The macroscopic uncertainties could be efficiently reduced by first identifying Ec and µ, and then search for
the posterior modes on km and ηm in later iterations.
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(iv) Our micro–macro correlations from the first three iterations support what intuition suggests: an increase of
Ec leads to a larger effective pressure p′ and a smaller macroscopic friction q/p′; an increase of µ gives rise
to a larger q/p′ and a smaller coordination number C∗; and both q/p′ and C∗ increase with an increasing
km . However, our method allows for a quantification of such intuitive trends.

The proposed iterative Bayesian filter is expedient because it enables an automated coarse-to-fine search for the
most probable regions in high dimensional parameter space. The major advantage of implementing the iterative
version of the sequential Monte Carlo filter is that the posterior distribution, which is difficult to acquire or assume,
can now be learned through few iterations. With the iteratively updated proposal density, the computational power
is allocated to samples which may potentially possess high posterior probabilities, thus greatly improving the
efficiency of Bayesian calibration. The iterations are handled by a Python script which interfaces to DEM packages
and manages the model evaluations. The current implementation is easily parallelizable because of the “off-line”
estimation of the posterior distribution. Although the “off-line” implementation is simple, an “on-line” iterative
Bayesian filter, i.e., incorporating the multi-level sampling and convergence check during each iteration can further
improve the computational efficiency. In addition to the “on-line” implementation, future work will involve the
quantification and propagation of uncertainties from micro to macro to facilitate predictive multiscale modeling of
granular materials.
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