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Abstract. Poroelasticity theory predicts wave velocities in a saturated porous medium through a coupling
between the bulk deformation of the solid skeleton and porous fluid flow. The challenge emerges below the
characteristic wavelengths at which hydrodynamic interactions between grains and pore fluid become important.
We investigate the pressure and volume fraction dependence of compressional- and shear-wave velocities in
fluid-saturated, random, isotropic, frictional granular packings. The lattice Boltzmann method (LBM) and dis-
crete element method (DEM) are two-way coupled to capture the particle-pore fluid interactions; an acoustic
source is implemented to insert a traveling wave from the fluid reservoir to the saturated medium. We extract
wave velocities from the acoustic branches in the wavenumber-frequency space, for a range of confining pres-
sures and volume fractions. For random isotropic granular media the pressure-wave velocity data collapse on a
single curve when scaled properly by the volume fraction.

1 Introduction

Understanding wave propagation in saturated granular me-
dia is vital for non-destructive soil testing, seismic inver-
sion and oil exploration, among others. Extensive work
has been done to investigate the dispersion and attenua-
tion properties of dry granular media in both laboratory
experiments and computer simulations [1,2,3]. The dis-
crete element method (DEM) has been used to capture the
microscopic kinematics associated with wave propagation
in dry granular media. To simulate wave propagation in
saturated granular media, however, the momentum and en-
ergy exchange between fluid, solid and/or gas phases must
be taken into account in a fully coupled framework.

While conventional computational fluid dynamics
methods are sufficient for modeling dilute suspensions of
particles, direct numerical simulation techniques, such as
the coupled lattice Boltzmann-discrete element method
(LBM-DEM), are better suited for wave modeling be-
cause it captures the fluid flow and particle-fluid interac-
tions at the (sub)pore scale. In the past decade, coupled
LBM-DEM simulations have been applied to solve various
geotechnical and geophysical problems, including sedi-
mentation [3], hydraulic fracture [5], piping erosion [6],
etc.

In the present work, the two-way coupled LBM-DEM
is utilized to model the fluid-solid interaction at the pore
scale, relevant to the propagation of pressure and shear
waves in saturated poroelastic media. LBM resolves the
pore fluid flow due to (oscillating) pressure gradients in the
pores, while DEM captures the change of particle motion
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and interparticle forces, induced by wave perturbation.
The fluid-solid coupling is handled with the momentum
exchange method (MEM) [7] which computes the hydro-
dynamic forces on solid particles and updates local flow
at the no-slip fluid-solid interfaces. To propagate elastic
waves in the fluid-solid system, an oscillating fluid pres-
sure boundary condition that emits pressure waves from
the fluid is implemented.

In previous work [8], the hydro-micromechanical
modeling framework was compared with the poroelastic-
ity theory [9], for saturated, ordered, isotropic, packings
of frictionless spheres. In this work, saturated, random,
cubic packings of frictional spheres are considered. The
ability of the hydro-micromechanical model is tested by
computing the pressure-wave velocity relationship at var-
ious initial volume fractions. The space-time evolution of
in-phase particle/fluid velocities are measured during wave
propagation and processed in the wavenumber-frequency
space. Along the acoustic branches, the wave velocities
are extracted for different initial volume fractions.

2 Coupled LBM-DEM for wave modeling

The local hydrodynamics in the pore space of a granular
medium is solved by the discrete Boltzmann equation with
a Bhatnagar-Gross-Krook (BGK) collision operator. The
BGK operator uses a single relaxation time for the proba-
bility distribution of local fluid velocities towards an equi-
librium distribution. Interactions between contacting solid
particles are modeled with DEM.

DEM represents granular materials as packings of
solid particles with simplified geometries (e.g., spheres)
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and tiny interparticle overlaps [10]. The particles in con-
tact interact with their neighbors via repulsive springs and
viscous dashpots, resulting in momentum exchange be-
tween particles. After all forces acting on each particle, ei-
ther from the neighboring particle or the surrounding fluid,
are known, the kinematics of each particle is updated by
Newton’s second law via explicit time integration.

The Hertz-Mindlin contact laws are used to relate
the interparticle forces between two touching solid parti-
cles and the overlaps in normal and tangential displace-
ments. From the contact force network in a given mi-
crostructural configuration, the effective static stress ten-
sor is given by the average over the particle assembly
σ′ = 1

V
∑

c∈Nc
Fc ⊗ dc where Nc is the total number of con-

tacts contained within the volume V of the granular assem-
bly including the pore space, and dc is the branch vector
connecting the centers of each pair of contacting particles
in the force network.

The fluid-solid coupling scheme is implemented
following the link-based momentum exchange method
(MEM) [11]. The main idea is to project solid obstacles
onto the lattice, and converting a node between “solid”
and “fluid” dynamically, depending on the motion of the
solid obstacles. Each solid node has at least one link with
neighboring fluid nodes. Along the links, momentum is
exchanged and no-slip boundary conditions are applied on
the solid surface. From the exchanged momentum, the hy-
drodynamic force arises as a consequence of the no-slip
condition applied to fluid advecting towards solid nodes.
Interested readers are referred to [8] for further details.

3 Oscillating pressure boundary condition

An oscillating fluid pressure boundary is employed to send
acoustic waves from the fluid boundary into the saturated
porous material. Our approach consists in enforcing LBM
boundary nodes to emit the correct numbers of fluid par-
ticles, which macroscopically leads to oscillations in the
velocity component along the propagation direction. To
model fluid flow in porous media, pressure boundary con-
ditions are typically set with constant local fluid densities.
The flow is then driven by an imposed pressure gradient
between two opposite boundaries [12].

Figure 1: Snapshot of a propagating wave in a fluid-
saturated granular material.

Table 1: Initial interparticle friction coefficient versus
solid volume fractions at a confining pressure of 10 MPa

µi 0.0115 0.0470 0.4005 0.4418 1.220
φ10 MPa 0.6448 0.6322 0.6200 0.5741 0.5633

Figure 2: The space-time evolution of particle velocity
in the longitudinal (x) direction for σ′c = 10 MPa and
φ10 MPa = 0.6322. The color code indicates the velocity
component (m/s) in the longitudinal direction.

Figure 3: The space-time evolution of particle velocity in
the transverse (z) direction for σ′c = 10 MPa and φ10 MPa =

0.6322. The color code indicates the velocity component
(m/s) in the transverse direction.

To propagate plane waves from the pressure bound-
aries, the densities at the boundary nodes are locked to
periodic functions that oscillate around ρ f for finite time
tn, where ρ f is the fluid density. For the pressure boundary
nodes that agitate a single wavefront, the local fluid densi-
ties varies according to ρ = ρ f + ρ′[1 − cos(ωt)],∀t ≤ tn,
where ω is the input angular frequency. It is important to
ensure the maximum perturbation ρ′ � ρ f and the com-
putational Mach number M = |umax|/c � 1, so that non-
linear wave effects are avoided and LBM remains a valid
approximation of the Navier-Stokes equations. Readers
are referred to [8] for details.

4 Elastic wave propagation in
fluid-saturated, random, isotropic
granular packings

Five granular packings of monodisperse particles (r = 5
mm) are randomly generated and compacted to a confining
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pressure σ′c = 10 MPa, using different initial interparticle
friction coefficients (see Table 1), resulting in different ini-
tial volume fractions φ10MPa.

Similar to [8], the properties of glass particles
(Young’s modulus E = 70 GPa and Poisson’s ratio ν =

0.2) are used and the packings are much longer in the lon-
gitudinal than the transverse direction, as shown in Fig. 1.
Before the simulation of wave propagation, each pack-
ing is loaded to obtain isotropic stress states in a pres-
sure range of σ′c ∈ (10, 200) MPa. After equilibrium is
achieved at each stress state (with a sufficiently long re-
laxation), a pressure wave is generated from one of the
fluid boundaries with an input angular frequency, e.g.,
ω/2π = 5.2 kHz for Figs. 4c and 4d. Fig. 1 shows a snap-
shot of the simulation of elastic wave propagation in the
saturated granular packing. The first and last layers of par-
ticles (perpendicular to the x-axis) close to the pressure
boundaries are fixed in space, while the other four side
boundaries are periodic.

During the simulation, the space-time evolution of the
particle and fluid velocities are recorded (see Figs. 3 and
2), and further processed in the wavenumber-frequency
space to obtain the acoustical branches (see Figs. 4a and
4b). . Fig. 2 shows that the wavefront increasingly widens
and the energy dissipates as the P-wave travels in space
and time. Note that an extremely slow and diffusive wave
exists near the source, suggesting the presence of a sec-
ondary slow P-wave, which has been observed in regular
granular crystals [8] and predicted by [9].

Figs. 4a and 4b show the frequency domain response
obtained from the discrete Fourier transform (DFT). The
acoustic branches, highlighted red, suggest a linear rela-
tionship between wavenumber k and frequency ω, as ex-
pected for the in-phase motion of the fluid and particles
within the primary wave front. For each combination of

(a) P-wave dispersion (52 kHz) (b) S-wave dispersion (52 kHz)

(c) P-wave dispersion (5.2 kHz) (d) S-wave dispersion (5.2 kHz)

Figure 4: Wavenumber-frequency domain response and
the acoustic branches for σ′c = 10 MPa and φ10MPa =

0.6322. Color code indicates the DFT of the particle ve-
locity in the longitudinal (a, c) and transverse (b, d) direc-
tions; dashed lines give the wave velocities (inset).

confining pressure and solid volume fraction, we fit these
acoustic branches with straight lines, thereby obtaining the
pressure-wave velocity relationship. Furthermore, another
input frequency (ω/2π = 52 kHz) is used to agitate P- and
S-waves in the granular packing at a confining pressure
σ′c = 10 MPa, with φ10MPa = 0.6322 (see Figs. 4c and 4d),
to explore the frequency dependence of wave velocities.

5 Results and discussion

As a first test for LBM-DEM modeling framework, we ex-
plore the dependence of wave velocities on volume frac-
tion. Figs. 5a-a shows the relationships between the pres-
sure and the P-wave velocities for different initial volume
fractions, at an input frequency of 5.2 kHz. As expected,
wave velocities increase monotonically, as the packing
fraction and the confining pressure increases. For the com-
pressional wave, it appears that all curves are parallel to
each other. By extracting the P-wave velocities at σ′c = 10
MPa and relating the values with the initial volume frac-
tion, a linear scaling function is found for the compres-
sional wave velocities, Fp(φ) = φ10MPa + 0.217. As shown
in Figs. 5a-b, all curves collapse universally on the same
trend, regardless of the initial solid volume fractions. The

(a) P-wave velocity

(b) S-wave velocity

Figure 5: Pressure–wave velocity relationships for differ-
ent initial volume fractions (ω/2π = 5.2 kHz).

3

EPJ Web of Conferences 249, 14003 (2021) https://doi.org/10.1051/epjconf/202124914003
Powders and Grains 2021



trend suggests a potential approach to improve the theoret-
ical prediction of P-wave velocities considering the effect
of the microstructure [13] in random, isotropic, monodis-
perse, granular materials.

Cheng et al. [8] showed that the S-wave velocities in
saturated, isotropic, frictionless granular crystals are not
much affected by the hydrodynamic coupling due to the
pore fluid flow. Similar observations have been reported
both experimentally and theoretically. Compared to the
hydrodynamic coupling, the role of the porosity or solid
volume fraction is more significant in modifying the S-
wave velocities, as shown in Fig. 5b-a. For the shear wave
velocity, we use a different normalization function, that is
Fs(e) = (2.17−e)2/(1+e) with the void ratio e = (1−φ)/φ.
This empirical function is widely used in geotechnical en-
gineering [13] to remove the dependence of the shear mod-
ulus of a dry soil sample on the void ratio. Fig. 5b-b shows
the curves normalized by Fs(e). It appears that all curves
collapse at confining pressures lower than 100 MPa. The
marked discrepancy at the high confining pressures may be
attributed to the very high pressure and/or very high solid
fractions for which the empirical correlation from soil me-
chanics fails to work.

The (normalized) pressure-wave velocity relationships
are obtained with an input frequency of 5.2 kHz (see 4).
Although not shown here, we have observed that further
reducing this frequency does not lead to a significant in-
crease of the wave velocities. However, with an input fre-
quency of 52 kHz, the wave velocities obtained from the
wavenumber-frequency domain increase by 5% for the P-
wave and 1% for the S-wave, as shown in Figs. 4c and
4d. The decreasing trend, albeit with a small difference, is
inline with the poroelasticity theory and many experimen-
tal observations, that is the wave velocities of saturated
porous media increases with an increasing input frequency
of the traveling wave. Such behavior is fundamentally dif-
ferent from that of dry granular materials, in which a de-
creasing wave velocity is typically observed with an in-
creasing input frequency.

6 Conclusions

A hydro-micromechanically coupled LBM-DEM frame-
work has been used to simulate wave propagation in sat-
urated poroelastic granular media. The hydrodynamics
in the pore fluid is resolved with LBM, and the transla-
tional and rotational motion of solid particles with DEM.
The novelty of the work lies in the application of the
two-way coupled LBM-DEM method to study the fluid-
solid interaction at local level, induced by small-amplitude
waves traveling in saturated media. An oscillating pres-
sure boundary is used to propagate planar pressure waves
from the fluid phase into the saturated mixture. We con-
sider fluid-saturated, random, isotropic granular packings
of frictional spheres, extending our previous investigations
on regular granular crystals [8]. Granular packings ob-
tained at the same initial confining pressure but with differ-
ent volume fractions are loaded under isotropic compres-
sion. After stabilizing each isotropic stress state, a pres-
sure wave is agitated by the fluid nodes with a varying den-

sity. The in-phase particle/fluid velocity fields and their
discrete Fourier transform in the wavenumber-frequency
space allow to obtain the wave velocities. The frequency
dependence is briefly investigated with two input frequen-
cies of the traveling waves.

From the coupled LBM-DEM simulations, pressure-
wave velocity relationships are obtained for different ini-
tial volume fractions. For random isotropic granular me-
dia the pressure-wave velocity data collapse on a single
curve when scaled properly by the initial volume frac-
tion, suggesting a potential approach to improve theoret-
ical poroelasticity. Because the pore fluid flow does not
contribute significantly to the shear waves, a normaliza-
tion function widely used in geotechnical engineering is
sufficient to remove the effect of volume fraction on the
shear waves. The increasing trend of the wave velocities
with higher input frequency is also well captured by the
coupled LBM-DEM simulations. Further work involves
improving existing theoretical predictions of wave veloc-
ities for fluid-saturated granular materials, incorporating
the dependence on input wave frequency, solid volume
fraction, and anisotropy.
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