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Abstract

The finite element method (FEM) is commonly used for modeling continuum media, while particle simulation methods
ike the so-called discrete element method (DEM) are used for discrete systems. Coupling the discrete (DEM) and continuum
FEM) methods is conventionally achieved through a direct mapping between discrete particles and finite elements. Coarse-
raining (CG) is a micro–macro transition (discrete-to-continuum) method that maps discrete particle data onto smooth,
ifferentiable fields that satisfy the continuum equations. By choosing an appropriate length scale (the coarse-graining width
), the coarse-grained fields are then homogenized and projected onto a FEM spatial discretization.

This concept is utilized here to reformulate FEM-DEM coupling methods, both surface and volume, where in the limiting
ase of c → 0, the classical coupling is recovered. For surface coupling, the discrete particle–surface contact forces are first
apped onto a continuous surface traction field (using CG) which is then coupled to the continuum FEM model. For volume

oupling (also known as the Arlequin framework), the homogenization operators are enriched with CG functions, offering a
on-local coupling approach between discrete particles, their continuum fields, and the finite elements.

The CG enrichment represents a new strategy that consists of (1) a discrete-to-continuum mapping and (2) a continuum-
o-continuum coupling based on “CG-enriched homogenization” (CGH). It is shown for surface coupling that the CG-enriched
ormulation not only leads to more accurate results, conserving symmetry, but also reduces energies generated by the coupling.
or volume coupling, there is consistently less numerical dissipation with than without CG-enrichment, especially when the
ynamic load contains high-frequency content. Finally, the optimal CG widths are identified for very simple test cases, with
hich the surface or volume coupling performs best.

CGH can be potentially extended beyond the present examples, by considering other continuum fields (e.g., higher-order)
nd equations (e.g., multi-physics), and used to formulate other multi-scale modeling methods.
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1. Introduction

Granular materials are ubiquitous in nature and industry, e.g., from the geological units (e.g., sands and rocks) that
onstitute the Earth’s subsurface [1,2] to pharmaceutical powders and agricultural grains [3–5]. The composition
f these particulate materials can be highly heterogeneous, with their bulk properties arising from interparticle
ollisions and microstructural evolution [6]. The emergent mesoscopic and macroscopic behavior can therefore
e quite complex, even for one physical process alone (e.g., dilatancy [7], plasticity [8], anisotropy [9], and
atcheting [10] in the solid state and non-locality [11], shear thickening/thinning [12], and segregation [13] in the
uid state). The full spectrum of this complex behavior cannot be easily unified in a single numerical framework.

In a continuum description, a granular medium can be treated as a continuum body in which a constitutive law
r closure relation is essential to solve the material’s boundary value problem. For example, constitutive laws for
ensely packed granular materials, like soils and rocks, are developed within the framework of critical state soil
echanics, based on advanced plasticity theories in which microstructural evolution such as fabric anisotropy [14],

article breakage [15], etc., are taken into account. On the other hand, fast granular flow can be effectively modeled
y incorporating a granular rheology (e.g., µ(I ) [16]) or by rewriting the yield functions of soil plasticity as a
on-Newtonian viscosity [17,18] in the Navier–Stokes equations.

The Discrete Element Method (DEM), also known as the Discrete Particle Method, is commonly used to simulate
ranular materials [19]. It calculates the motion of individual particles by applying forces and torques that stem
rom either external body forces or particle–particle interactions. The Discrete Element Method can be enriched by
oupling it to a continuum solver, resolving two major limitations:

Firstly, DEM is too inefficient to simulate large quantities of granular material. Ideally, this should be resolved
y using an up-scale continuum method, efficient enough to simulate large-scale, industrial machinery. However, all
vailable constitutive models for granular fluids or solids are based on simplifying assumptions that limit their range
f applicability. It is appealing to develop a multi-scale setting in which a continuum description is used where the
onstitutive equations are known and DEM is used where they are not known.

Secondly, DEM usually assumes that external objects that interact with particles are immobile and rigid. Although
exible discrete elements (e.g., facets and cylinders) have become available recently (for example [20–22]), the
aterial behavior approximated with these elements can only be elastic, with limited accuracy. A continuum

escription of these external bodies under the impact of particles (leading to irrecoverable deformation) can be
chieved most accurately with FEM. Particles’ interaction with deformable structures may strongly influence the
heological properties of the granular bulk [11,23] and is relevant to many industrial applications, such as sand-filled
eotubes [24,25], monopile installation [26,27], and clogging [28].

Concurrent multi-scale methods aim to address both challenges: “surface coupling” can be used to simulate the
nteraction of particles with deformable bodies, whereas “volume coupling” is well suited to simulate most of the
ranular material as a continuous bulk, and only use DEM in regions where the continuum model does not suffice.
hese two approaches can also be combined, as shown in Fig. 1.

The most common approach to couple FEM and DEM is surface coupling. As the name suggests, the exchange
f information occurs at interacting surfaces of multiple domains [29,30]. In volume coupling (also known as the

Fig. 1. Example of a concurrent multi-scale simulation. ΩFE1 denotes a deformable structure, ΩDE the domain of the discrete particle
imulation, and ΩFE2 the domain of a continuum model for the granular bulk. The surface interactions between the particles and the
eforming structure are handled at ΓC, while a volume-transition from a discrete to a continuum model is achieved in ΩC.
2
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Arlequin framework [31,32]), the computational models are coupled within an overlapping volume by applying
kinematic constraints on their solutions and weighting the governing equations based on the partition of unity.
Originally proposed by Dhia and Rateau [31] for coupling FEM models with different mesh resolutions, the
Arlequin framework was extended by Wellmann and Wriggers [26] to couple FEM and DEM for concurrent
multi-scale modeling of granular materials. Recently, Yue et al. [33] developed a similar hybrid discrete–continuum
framework in which the DEM model is coupled with the material point method (MPM) model for simulating
free-flowing granular materials. Another approach that has been popular recently is the hierarchical multi-scale
framework [34–36] where the material’s constitutive model is substituted by DEM simulations at the level of
integration points.

A fundamental challenge in FEM-DEM coupling is how to map between microscopic and macroscopic scales
uch that information lost and numerical artifacts are minimized. In these aforementioned studies and those cited
herein, the coupling between DEM and FEM is generally achieved through a direct mapping between discrete
articles and finite elements (also referred to as homogenization), via FEM basis functions or volume averaging.
onventionally, discrete data, such as particle displacements and contact forces, is coupled to the continuum-scale
overning equations as point sources. In this work, we take a two-step approach that consists of (1) a discrete-
o-continuum mapping using “coarse-graining” (CG) [37,38] and (2) a continuum-to-continuum coupling based on
CG-enriched homogenization” (CGH). CG is here not referring to coarser, bigger particles, but is a micro–macro
ransition technique that extracts (locally varying) continuum quantities from discrete particle data by applying a
patial smoothing length scale [37], the so-called CG width.

For surface coupling, we define a smooth traction field, and for volume coupling, a continuous particle velocity
eld, using CG. The “coarse-grained” traction over interacting surfaces is passed to the FEM mesh as an updated
oundary condition, whereas the “coarse-grained” particle velocity is constrained to the FEM velocity over an
verlapping volume. Using CG, the coupling terms are derived in a more generalized form, containing an internal
ength scale parameter, i.e., the coarse-graining width. In the limiting case of a zero CG width, the CG-enriched
ormulations reduce to the most commonly used ones in [26,39].

To the authors’ knowledge, this is the first work that uses coarse-graining as the basis to formulate multi-scale
oupling problems. The benefits of coarse-graining to surface coupling are demonstrated through a simple numerical
xample, that is a pair of particles sliding over an elastic cantilever. Through another numerical example, namely,
ave propagation between discrete and continuum descriptions of an idealized granular material, we demonstrate

he benefits of coarse-graining to volume coupling. For each application, an optimal length scale can be found that
s large enough to minimize discretization errors and small enough to preserve the physical gradients of the resulting
elds [38].

The paper is organized as follows: Sections 2 and 3 summarize the key theoretical aspects of the particle and
ontinuum models using variables defined at the respective scales. We provide a brief overview of coarse-graining
n Section 4 and show how to use it as a versatile tool to reformulate the surface and volume coupling problems in
ections 5.1 and 5.2. The algorithmic details can be found in Section 5.3. The numerical examples for verification
tudy are introduced in Sections 6.1 and 6.2. Section 7 summarizes the concluding remarks and outlook. In the
ollowing, we use boldface letters for vectors and matrices. Greek subscripts α, β, and γ are used to denote

particle-scale variables; lowercase letters i , j and k are used for the finite element discretization of the continuum
escription.

. The microscopic particle model

The Discrete Element Method models granular materials as assemblies of rigid particles that interact via binary
nterparticle contact forces and torques. Simplified, rigid geometric objects (walls) can be added that also interact
ith the particles via binary contact forces and torques. External forces and torques can be applied to the particles

s well. The macroscopic behavior of the particle assembly is then obtained by resolving the translational motion of
ndividual particles according to Newton’s second law and the rigid-body rotation via Euler’s equations (rotational
igid body dynamics [40]). Consider particle α that has N and Nw existing contacts from the neighboring particles
nd walls,1 for given initial and boundary conditions, the time evolution of the velocity vα , position xα , angular

1 Only in this section, boldface variable names are used to denote vector and tensorial quantities, instead of using index notation. For
example, the subscript of the inertia tensor I refers to the particle index α to which the inertia tensor belongs.
α

3



H. Cheng, A.R. Thornton, S. Luding et al. Computer Methods in Applied Mechanics and Engineering 403 (2023) 115651

w
h
a
c
f
l
a
d
u
a
c

a
d
D

3

t
f
o
g

3

fi
p
a
m

b
a
t

w
c

velocity ωα , and orientation qα of a particle Pα is given by

dvα
dt
=

1
mα

( N∑
β=1

fαβ +
Nw∑
γ=1

fw
αγ + fb

α

)
  

:=fα

,
dxα
dt
= vα, (1)

dωα

dt
= I−1

α

( N∑
β=1

lαβ × fαβ +
Nw∑
γ=1

lαγ × fw
αγ

)
  

:=τα

,
dqα
dt
= C(qα)ωα. (2)

here mα and Iα are particle’s mass and inertia tensor, C(qα) is the transformation matrix that allows an efficient
andling of its orientation qα as quaternion, fb

α are the body forces, and fα and τ α are the total forces and torques
cting at the particle position xα . Eqs. (1) and (2) are closed using so-called contact laws that define interparticle
ontact forces fαβ between a pair of interacting particles Pα and Pβ . Another contact law, similar to, or different
rom the interparticle contact law, can be used to compute particle–wall interaction forces fw

αγ . The branch vector
αβ = xc

αβ−xα connects the particle center xα with the contact point xc
αβ , and the cross product lαβ× fαβ contributes

torque that affects the particle rotation and angular velocity [41]. In its simplest form, a linear-elastic force–
isplacement law relates the contact force in the direction normal to the contact area and the interparticle overlap
n (resembling deformation) by a linear spring constant, namely, ∥ f n

αβ∥ = knun. Similar force–displacement laws
re often taken in the tangential direction with an added Coulomb yield criterion, ∥fs

αβ∥ ≤ µ∥fn
αβ∥, in order to

apture irrecoverable plastic deformation, using a friction coefficient µ. For more details on all forces see [41].
The above differential equations are solved numerically using the Velocity-Verlet algorithm. Using a higher-order

ccurate time integration scheme would not increase accuracy, because most contact laws used in the DEM have
iscontinuous derivatives. The open-source DEM code MercuryDPM [42] is used for the particle side of our new
EM-FEM coupled code.

. The macroscopic continuum model

We will now introduce the FEM model used for modeling deformable bodies. We restrict ourselves to describing
he deformation of an elastic body; however, this can be changed without impacting the coupling methods. We solve
or the motion of this body using a continuum approach for given initial and boundary values. oomph-lib – an
pen-source Object-Oriented Multi-Physics Finite-Element Library [43] – is used for the macroscopic modeling. The
overning equations are briefly introduced below, for the sake of completeness.

.1. Governing equations

We assume that the deformable body behaves as a three-dimensional elastic solid and describe its behavior using
nite strain theory. A finite-strain framework is essential to correctly handle the impact of granular materials, in
articular for deformable structures that have large displacements and/or geometrical nonlinearity. The vectors ξ

nd X, attached to the body, are used to define the material’s undeformed and deformed configurations. A strain
easure, the Green strain tensor, is defined as ε = 1

2 (FT
· F − 1), where F = 1 + ∇u is the deformation gradient

w.r.t. ξ , u = X− ξ the displacement field, 1 the identity matrix, and (·)T the transpose.
Let us consider a solid body subjected to a surface traction t on a subset Γt of the body’s boundary ∂ΩFE, a

ody force density b acting on the domain ΩFE, and a displacement boundary condition, prescribed by X(BC) on
nother subset of the boundary ΓX. Using the stress and strain measures σ and ε, the deformation is governed by
he principle of virtual displacements [44]∫

ΩFE

{
σ : δε −

(
b− ρ

∂2X
∂t2

)
· δX

}
dV −

∫
Γt

t · δX dA = 0, (3)

here ρ is the density of the undeformed body, δ(·) represents the variation of (·), and “:” denotes a double
ontraction between two rank-two tensors. Eq. (3) must be closed with a constitutive law that relates the stress
4
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and strain tensors. This closure relation can be the elasticity tensor C, via dσ = C : dε.2 The symmetric second
Piola–Kirchhoff stress tensor σ is a measure of force per unit undeformed area and is the work conjugate to ε [45].
In this work, we consider only elastic material behavior, using Hooke’s constitutive law (see Appendix A for details).

3.2. Finite element discretization

oomph-lib uses the total Lagrangian formulation for solid mechanics problems, based on the large-displacement,
finite strain theory. In this formulation, all variables in Eq. (3) are defined as functions of the initial, undeformed
configuration. For isoparametric finite elements, the local position vector X = (X1, X2, X3) is interpolated using
he element’s basis functions ψi (i = 1, . . . , N ), via

X p =

N∑
i

X piψi , (4)

here X pi is the pth coordinate of the position vector at nodal point i , ψi is the corresponding interpolation or
asis function, and N is the number of nodes per finite element.

The discretization of Eq. (3) can be expressed by the local residual for an element e,3

Re
pi =

∫
Ωe

3∑
q=1

3∑
r=1

σqr
∂X p

∂ξq

∂ψi

∂ξr
− (bp − ρ Ẍ p)ψi dV −

∫
Γt

tpψi dA. (5)

ssembling the local equations in an element-by-element fashion yields a system of global residuals, R(U), where
is the vector of all unknowns X pi . The exact solution U then satisfies R(U) = 0.
This system of equations is discretized in time and solved at each time step. Let Uk be the solution vector at time

k . Since the system Eq. (5) is nonlinear, the solution Uk+1 at time tk+1 is found using Newton’s method: Starting
ith an initial guess Uk+1

= Uk , we evaluate the residual R and the Jacobian J = ∂R
∂U at Uk+1 and solve the linear

system

J δU = −R. (6)

Then we update our guess,

Uk+1
← Uk+1

+ δU. (7)

e repeat this iteration until ∥R∥ is sufficiently small.
Note, in Eq. (5) we assumed that Ük+1 is known. In the time-discretized scheme, we use the Newmark-beta

ethod [46] to interpolate Ük+1 from the values of U in the previous time steps. Details about the construction of
he Jacobian matrix and residual vector and the time integration scheme can be found in [43].

. Coarse graining

The key issue in the coupling between particle and continuum models is to have an accurate homogenization
hat maps microscopic quantities (e.g., density, momentum, and stress) onto the macroscopic scale, while obeying
he fundamental laws of physics, such as mass and momentum conservation, to ensure minimum information loss.
n what follows, the theoretical basis of CG will be briefly reviewed.

The aim of coarse-graining is to define continuum fields (ρ, v, and σ ) that locally satisfy mass and momentum
onservation. By applying a spatial smoothing kernel W(x) to the statistical-mechanics definition of point density
m(x) =

∑N
α=1 mαδ(x− xα), the coarse-grained density is obtained as

ρ(x) = ρm ◦W =
N∑
α=1

mαW(x− xα), (8)

2 Choosing the position vector in the deformed configuration as the unknown variable allows the variation of deformation δε to be
expressed as δε = 1

2

(
∂X
∂ξp
· δ ∂X

∂ξq
+

∂X
∂ξq
· δ ∂X

∂ξp

)
.

3 Here, we took advantage of the fact that the 2nd Piola–Kirchhoff stress tensor is symmetric.
5
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with ◦ denoting a convolution and δ(·) the Dirac delta function. We require that the volume integral over density
is equal to the mass of all particles, ρ(x) is non-negative, and for efficiency reasons, only particles within a small
nough distance of xα from x (c in Eqs. (9)–(10)) contribute to the density ρ(x). Therefore, the CG function W in
n-dimensional space:

• is normalized:
∫ n
R W(x) dx = 1,

• is non-negative: W(x) ≥ 0 for all x ∈ Rn ,
• has compact support: ∃c ∈ R: W(x) = 0 for all |x| > c.

Two typical CG functions are the cut-off Gaussian and the Lucy polynomial [42]:

WG(x) =

{
CG exp

(
−
|x|2

2(c/3)2

)
if |x| < c,

0 else,
(9)

WL(x) =

{
CL(−3(|x|/c)4

+ 8(|x|/c)3
− 6(|x|/c)2

+ 1) if |x| < c,
0 else,

(10)

where CG and CL are the appropriate prefactors for normalization. Note, for spherical particles, W is isotropic in
space and c is the only parameter that controls the support of a CG field [47].

Extending the coarse-grained definition of density to velocity and stress [48] allows us to define the continuum
fields v and σ from particle-scale quantities, using any CG function W . For example, to satisfy the mass and
momentum conservation laws, velocity and momentum density are defined as

v =
j
ρ
, j(x) =

N∑
α=1

mαvαW(x− xα). (11)

This coarse-grained velocity field will be constrained to the continuous velocity field interpolated from the finite
elements to derive the FEM-DEM volume coupling formulation.

To account for the particles’ interactions with external boundaries, Weinhart et al. [48] proposed to add an
additional term to the momentum balance, the boundary force density,

bBC(x) =
N∑
α=1

N w
α∑

γ=1

−fw
αγW(x− xc

αγ ). (12)

where xc
αγ is the γ th contact point and fw

αγ the interaction force between particle α and the rigid wall. Note that
bBC is only non-zero in the vicinity of the boundary ΓC. For coarse-graining functions that vanish in the direction
perpendicular to the boundary ΓC, bBC is equivalent to a surface traction defined on ΓC,

tBC(x) =
N∑
α=1

Nw
α∑

γ=1

−fw
αγWΓC (x− xc

αγ ), x ∈ ΓC. (13)

where WΓC is a CG function evaluated on the boundary ΓC and normalized to satisfy
∫
ΓC WΓC (x−xc

αγ ) dA = 1. We
will use this coarse-grained surface traction to couple the DE and FE formulations for surface coupling problems.

5. CG-enriched formulation for concurrent multi-scale modeling

Within the concurrent multi-scale modeling framework, the computational domain Ω is divided into multiple
subdomains; in each subdomain the material behavior is described by a different sub-model. In this work, DEM
and FEM are the two methods used to model the material behavior arising from a particulate or continuum nature,
thus Ω = ΩFE

∪ ΩDE. This multi-scale model is set up “concurrently”, with its sub-models synchronized in time
nd coupled either on an interacting surface ΓC

= ∂ΩFE
∩ ∂ΩDE (surface coupling) or in an overlapping volume

ΩC
= ΩFE

∩ ΩDE (volume coupling). Differently from conventional approaches in which the finite element basis
functions are used for micro–macro projection, we formulate the multi-scale problems with coarse-graining (CG),
which is used to map conservative variables (i.e., mass, momentum, energy) between microscopic and macroscopic

scales. In the following, we will present the CG-enriched formulations for multi-scale surface and volume coupling

6
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Fig. 2. (a) 2D illustration of the discrete particle and finite element domains ΩDE and ΩFE, coupled on the surface ΓC
= ∂ΩFE, and

projection of the surface coupling force onto the finite element using (b) the conventional and (c) CG-enriched approaches. Note, in (a) the
boundary ∂ΩFE (in red) of the triangulated mesh (in gray) approximates the outline of the smooth object (in black) and it is on ∂ΩFE that
particle–wall interactions are defined. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

problems. Note, the superscripts “DE” and “FE” will be used throughout the subsections to clarify the microscopic
and macroscopic nature of the computational domains, and the subscripts {α, β, γ, . . .} (particles) and {i, j, k, . . .}
(nodes) to distinguish variables of the microscopic and macroscopic models.

5.1. CG-enriched formulation for FEM-DEM surface coupling

In the current implementation of surface coupling (see Fig. 2(a)), ΩDE
= R3

\ΩFE, thus particles can move
anywhere in space outside the deformable object and hit at any part of the boundary ∂ΩFE. The DEM and
FEM formulations introduced in Sections 2 and 3 are used to solve the governing equations in their respective
subdomains. The exchange of forces and velocities on the coupling surface is done with or without a CG-enrichment
for the micro–macro transition. As shown in Figs. 2(b) and 2(c), a surface coupling force fw

αγ can be coarse-grained
into a continuous surface traction field tSC

e (r). The triangulation approach as in [42] allows for detecting particle-
finite element interactions. However, an extension of the existing algorithm is needed to handle particle interactions
with arbitrary concave/convex surfaces.

5.1.1. Contact detection for particles–triangulated-wall interactions
The coupling surface ΓC is meshed (see Fig. 3a), and the meshed surface ∂ΩFE is replicated in DEM by a set

f triangle walls {T DE
γ }

Nw
γ=1. Note that there is a choice of how to represent the meshed surface by triangle walls

e.g., we represent each rectangular surface element by four triangles). Ideally, this should not affect the calculation
f the contact forces; i.e., the contact force computed between a particle and the set of triangle walls should be the
ame as if the meshed coupling surface was represented by a single, non-triangulated wall.

For a flat surface, this implies that the contact force between particle α and the discretized surface should be the
ame irrespective of whether the contact area contains a triangle edge, vertex, or face. In a naive implementation,
owever, if the contact area contains a triangle edge (or vertex), then contact forces would be computed with two

or more) triangle walls; thus the particle experiences a force bump when sliding over a triangle edge (or vertex).

7
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Fig. 3. Left: Sketch of contact forces (blue arrows) between a particle and two triangle walls sharing a flat (a) and a concave (c) edge.
Right: Total force due to particle–wall interactions for particles at different positions along the cross-section through the flat, double-sided
walls at points A, B and C. Blue and red arrows indicate the forces computed with and without the modification discussed in Section 5.1.1,
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In order to remove this effect we have implemented two modifications to the contact force calculation:

1. First, naively compute all contact forces between particle α and triangles T DE
γ . As each triangle is convex,

at most one contact force fw
αγ is computed per triangle. See [42] for the calculation of contact forces at the

triangle’s face, edges, and vertices, respectively.
2. Modification 1: If any two of these contact forces have an overlapping contact area (i.e., both contact areas

contain a common triangle edge), and if the common edge is convex or flat, then eliminate the smaller of
the two forces.

3. Modification 2: If there are still multiple contact forces between α and the coupling surface, then we
assume that these contacts share a concave edge or a vertex. Thus, we multiply each force fw

αγ by a weight
wαγ = |fw

αγ |/
∑

γ |fw
αγ |. Note that these weights add up to 1, thus, the total contact force between α and the

coupling surface will be a weighted average of the individual contact forces.

he modified contact detection algorithm is shown in Algorithm 1. The resulting forces are illustrated in Fig. 3.
Modification 1 ensures that a particle feels no bump when crossing a flat edge. Modification 2 was added to

nsure that the force is not sensitive to small changes in the edge angle, i.e. there is no sudden jump in force
f the convexity of an edge changes due to deformations in the solid. Note that the current implementation also
llows hysteretic forces to be kept between triangles, which is essential for simulating history-dependent microscopic
ehavior (e.g., interparticle sliding friction).

Furthermore, the potentially large number of triangles {T DE
γ }

Nw
γ=1 in the coupling region ΓC requires an efficient

reatment of the detection of particle–wall contacts. The detection of particle–particle contacts is done efficiently
n MercuryDPM via the hierarchical-grid algorithm [49,50]: Particles are sorted into a set of L spatial grids with
ifferent cell sizes s1 < s2 < · · · < sL . Each particle P is mapped into a specific cell Cln containing all particles
f diameter d ∈ [sl−1, sl] (with s0 = 0) and position x j ∈ [(n j −

1
2 )sl , (n j +

1
2 )sl], j = 1, 2, 3. A particle P ∈ Cln

can only have contact with particles in the same or neighboring grid cells of the same level l, or with nearby grid
8
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Algorithm 1: Contact force calculation, with modifications 1 and 2 highlighted in blue and orange

for all walls W do
for all particles P close to wall W do

if particle P and wall W overlap then
add (P,W ) to the list of interactions I
for all walls V in the same group of walls as W do

if (P, V ) ∈ I and the contact areas of (P, V ) and (P,W ) overlap then
if the angle between V and W is flat or concave then

if the overlap of (P, V ) is larger than the overlap of (P,W ) then
remove (P, V ) from the list of interactions I

else
remove (P,W ) from the list of interactions I

end
end

end
end

end
end

nd
or all interactions (P,W ) ∈ I do

compute overlap δ, interaction force f, torque t, store it in the interaction (P,W )
end
for all particles P do

compute the sum of all forces F =
∑

v |f(P,V )| of all interactions (P, V ) ∈ I
for all (P, V ) ∈ I do

multiply the force f and torque t by w = |f(P,V )|/F
end

end

cells on a different level. Thus, the grid can be used to efficiently compute all interparticle contacts. The algorithm’s
complexity has been proved to be O(N ) for realistic wide size distributions [51].

However, many wall types in MercuryDPM (semi-infinite planes, infinitely long cylinders, etc.) are unbounded,
nd thus cannot be placed in such cells. Thus, this efficient method of contact detection is not used for wall–particle
nteractions. Detecting particle–wall contacts, therefore, requires checking the overlaps of all particles and all walls.
he cost of this computation is O(Nw ·N ), making simulations with many walls inefficient. Triangle walls, however,
ave a finite size, and thus can make use of the hierarchical grid, as shown in Algorithm 2: First, we compute a
ounding box, the range of x , y, and z values in which the triangle resides, then we look for overlaps with particles
n all grid cells nearby the bounding box. Thus, the complexity or wall–particle contact detection is reduced to

(Nw). This has been implemented in MercuryDPM for the purpose of this paper and can be used for any wall type
or which a bounding box can be defined.

.1.2. The surface coupling forces
We denote all finite elements {Ωe}

Ne
e=1 part of whose boundary is on the meshed coupling surface ∂ΩFE as surface

oupling (SCoupling) elements. The contact surface Γe = ∂Ωe ∩ ∂Ω
FE, belonging to a SCoupling element Ωe is

iscretized in the DEM sub-model by a set of interconnected triangle walls {T DE
γ }

Nw
e

γ=1, with N w
e the total number

f triangle walls per SCoupling element. The positions and velocities of the triangle vertices are computed by
nterpolating values from the SCoupling elements. At every time step, a list of particles Pα (α = 1, . . . , N p

γ ) are
ound to be in contact with a given discrete triangle T DE

γ . For each particle–wall pair, the interaction force fw
αγ at

contact point xc
αγ is computed from the overlap via a contact law. To map the interaction forces onto the finite
lement formulation, we coarse-grain all particle–wall contact forces with a given CG width. Thus, according to

9
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Algorithm 2: Contact detection walls

for all walls W do
if wall W has a bounding box [xmin

i , xmax
i ], i = 1, 2, 3 then

for all cells Cln with n j sl ∈ [xmin
i − sl , xmax

i + sl] do
for all particles p ∈ Cln do

if overlap between P and W is positive then
Add (P,W ) to interaction list

end
end

end
else

for all particles P do
if overlap between P and W is positive then

Add (P,W ) to interaction list
end

end
end

end

Eq. (13), the resulting traction on the coupling surface ∂ΩFE is

tSC(x) =
Ne∑

e=1

Nw
e∑

γ=1

N p
γ∑

α=1

−fw
αγW∂ΩFE (x− xc

αγ ). (14)

here W∂ΩFE is a CG function evaluated on ∂ΩFE and normalized to satisfy
∫
∂ΩFE W∂ΩFE (x − xc

αγ ) dA = 1 (in
ractice, it will be the quadrature formula that is normalized). The CG width c is the only user-defined parameter.
e will show later that there is a systematic way to choose c that minimizes the error (in comparison with a given

nalytical solution) and any other numerical artifacts that violate the fundamental laws of physics.
To compute the nodal contribution to each element’s residual, the coarse-grained field tSC(x) is multiplied by the

nite element basis functions and integrated, that is

fSC
ei =

∫
Γe

tSC(x)ψi (x) dA. (15)

t is worth noting that the limit of fSC
ei as c approaches 0 is

lim
c→0

fSC
ei =

N w
e∑

γ=1

Np
γ∑

α=1

−fw
αγψi (xc

αγ ). (16)

his means that, in the limit of c→ 0, Eq. (14) becomes the point-source formulation of the surface coupling force
idely used in literature [30,39,52,53].
The integral in Eq. (15) can be computed numerically, using the standard Gauss quadrature rule. In this case, the

G function is evaluated at the integration points and then normalized. Eq. (16), however, is an analytical expression
btained directly using the integration property of the Dirac delta function,

∫ b
a f (x)δ(x− y) dx = f (y), ∀y ∈ [a, b].

Note, in Eq. (16), the summation over all SCoupling element is gone. This is because with the Dirac delta (c = 0)
the contact forces only contribute to the SCoupling elements that they are in contact with.

With coarse-graining, the discrete particle data is mapped to continuum fields, such that the conservation of mass
and momentum are obeyed. This is exactly what is needed in surface coupling, where the discrete contact forces
have to be mapped to a continuous surface traction field — discretized at the FEM mesh/integration points. The
difference with the conventional approach is that it provides a smooth, mechanically meaningful definition of the

traction field from a collection of discrete particle–wall contacts, even for very few contacts. Both formulations

10



H. Cheng, A.R. Thornton, S. Luding et al. Computer Methods in Applied Mechanics and Engineering 403 (2023) 115651

a

o
m

5

a
t
l
A
s
i
c

F

w
c
f
fi
ψ

Fig. 4. (a) 2D illustration of volume coupling between discrete particle and finite element domains ΩFE and ΩDE, in the overlapping volume
ΩC
= ΩFE

∩ΩDE
=

⋃Ne
e=1 Ω

C
e , and (b) mapping of particle velocity vα onto FEM nodes.

re implemented in the coupled MercuryDPM–oomph-lib code, as detailed in Section 5.3. The influence of CG
functions (including the Dirac delta) on the surface coupling will be investigated in Section 6.1.

5.2. CG-enriched formulation for FEM-DEM volume coupling

5.2.1. The Arlequin framework
The volume coupling method, also known as the Arlequin framework for multi-model coupling [31], uses a

Lagrange multiplier or penalty-based approach to enforce kinematic constraints in an overlapping domain ΩC.
Within ΩC, it is required that the virtual work amounts to the weighted sum of the work respectively done by
the sub-models, that is δW = δW FE

+ δW DE. The virtual work done in the DEM model δW DE is weighted by a
smooth and continuous function w(x) of particle position x ∈ ΩC, which monotonically increases from zero on
∂ΩDE

∩ ΩC to one on ∂ΩFE
∩ ΩC , as shown in Fig. 4(a) and later in Fig. 18(b). The virtual work done in the

FEM model δW FE is weighted by the function 1−w(X) of the FEM position vector, such that the coupling weights
n the FEM and DEM sides sum to unity at any given location. The coupled governing equations also need to be
odified using the respective coupling weights, as demonstrated in Section 5.2.3.

.2.2. CG-enriched homogenization
Before applying kinematic constraints on particle- or continuum-scale variables (e.g., displacement or velocity),

computational homogenization is needed to bring them onto the same scale, as illustrated in Fig. 4(b). The fact
hat DEM and FEM give solutions at the particle and continuum scales makes their volume coupling non-trivial: the
ength scale (either microscopic or macroscopic) on which the variables should be constrained is not well defined.

novel approach we take here is CG-enriched homogenization (CGH), using smooth kernel functions whose length
cale can be chosen independent of particle and finite element sizes. In the following, we will demonstrate how CG
s used to enrich a computational homogenization and in which limit this CG-enriched formulation reduces to the
onventional one.

Let us now consider Np particles that reside within a finite element in the coupling domain ΩC
e , as illustrated in

ig. 5. Using coarse-graining, we can define a homogenized velocity field vCG(x) at any position x

vCG(x) =
∑Np

α=1 mαvαW(x− xα)∑Np
α=1 mαW(x− xα)

, (17)

here mα is the mass, vα the velocity and xα the position of particle α, and W a coarse-graining function of width
. The definition of W can be found in [37,38]. Note, due to the limited effective range of the coarse-graining
unction, only particles near the evaluation point x have to be considered to compute the sum. We assume the
nite element basis functions ψi (i = 1, . . . , N ) to be orthogonal and, by convolving the velocity field vCG with
i (i = 1, . . . , N ), obtain the particle velocity at the nodal position xi as,

vDE
i =

∑Np
α=1

∫
Ωe

mαvαW(x− xα)ψi (x) dx∑Np ∫ . (18)

α=1 Ωe

mαW(x− xα)ψi (x) dx
11
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Fig. 5. Coarse-grained density field of 43 particles coupled with the cubic finite element e, using different CG widths. Note that particles
not overlapping with e can also be coupled because the CG function has a finite width c that expands each element’s coupling domain.

This allows defining a continuous velocity field vDE(x) in the FEM solution space, vDE(x) =
∑N

i=1 vDE
i ψi (x), for x ∈

C. Note the similarity between Eq. (18) and the CG-enriched surface coupling force in Eq. (15).
Similar to the surface coupling force, with a vanishing coarse-graining width (limc→0 W = δ), we recover the

onventional form of the local “micro–macro projection”,

lim
c→0

vDE
i =

∑N C
p

α=1 mαvαψi (xα)∑NC
p

α=1 mαψi (xα)
, (19)

hich is derived from a minimization of the constraint conditions [26], where each basis function ψi is evaluated at
he positions of the coupled particles xα; here, α = 1, . . . , N C

p denotes the particles whose positions reside strictly
ithin the coupling region ΩC.
The major properties of the generalized formulation are:

1. The homogenization rule in Eq. (18) is derived from and compatible with momentum conservation; even the
sub-particle scale fluctuations of particle motions can be coarse-grained using the CG formalism.

2. Particles not positioned inside a finite element can still contribute to the coupling for a nonzero CG width,
that is to say, CGH is non-local.

3. We do not need to evaluate the FEM basis function at non-quadrature points which would require an expensive
mapping between global and local coordinates.

oth homogenization approaches, Eqs. (18) and (19), are implemented in the coupled MercuryDPM–oomph-lib
ode, as detailed in Section 5.3. The benefits of using CG for volume coupling will be investigated and discussed
n Section 6.2.

Note that the same procedure can be utilized to homogenize other macroscopic variables, such as the stress and
train fields. However, formulating the constraints on these higher-order terms is beyond the scope of the current
ork.

.2.3. Coupled governing equations
The governing equations4 for the continuum and particle models are:∫

ΩFE

{
σ : δε −

(
b− ρ

∂2X
∂t2

)
· δX

}
dV −

∫
Γt

t · δX dA = 0, (20)

4 We do not add the rotational energy to the total virtual work because they contribute to the non-collective motion of granular materials
(e.g., local fluctuations apart from the coarse-grained velocity), which may require higher-order continuum models (e.g., Cosserat [34,54]).
12
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mα

dvα
dt
− fb

α −

Nα∑
β=1

fαβ = 0, (21)

here fb
α is the body force acting at the particle position xα and fαβ are the contact forces acting at the contact point

c
αβ , for β = 1, . . . , Nα , denoting the contact partners of particle α = 1, . . . , Np. For frictional particle contacts,
otational degrees of freedom have to be considered as well. For the continuum description in Eq. (20), ρ is the
ensity of the undeformed body, b is a body force density acting on the domain Ω , and t denotes a surface traction
cting on a subset of the body’s boundary, Γt ⊂ ∂ΩFE. σ and ε are a work conjugate pair of stress and strain
ensors, and δX and δε are virtual variations of the position vector and strain tensor [44].

We define the coupling weight function w(x) as a monotonic function of the position vector x in the DEM
ubdomain, and subsequently 1− w(X) in the FEM subdomain, with

w(x) = 1 ∀x ∈ ΩDE
\ΩC, (22)

w(x) = 0 ∀x ∈ ΩFE
\ΩC, (23)

w(x) ∈ [0, 1] ∀x ∈ ΩC. (24)

ultiplying the governing equations above with their respective coupling weights 1−w and w for δW FE and δW DE

ives the weighted sum of the total virtual work δW = δW FE
+ δW DE, with

δW FE
=

Ne∑
e=1

∫
ΩFE

e

(1− w)
{
σ : δε −

(
b− ρ

∂2X
∂t2

)
· δX

}
dV +

Nr∑
r=1

∫
ΓFE

r

t · δX dA, (25)

δW DE
=

Np∑
α=1

[
wα

(
mα

d2xα
dt2 − fb

α

)
−

Nα∑
β=1

wαβfαβ
]
· δxα, (26)

here Ne and Nr are the total numbers of volume and surface elements in Ω and Γt, respectively, and Np is the
otal number of discrete particles. We use the short-hand notation wα = w(xα) and wαβ = w(xc

αβ) for the weights
t the particle positions and contact points. δxα is a variation of the position of particle α.

Following [26], we require the difference between the FEM and DEM displacements in the last time step,
FE
= X|t − X|t− dt and uDE

= vDE dt , to be vanishingly small5 at the macroscopic scale. To this end, we make use
f the same coarse-graining approach as applied to the particle velocity: Note that both Eqs. (18) and (19) can be
ritten in terms of a homogenization operator,

vDE
i =

Np∑
α=1

Πiαvα, where

⎧⎪⎨⎪⎩
Πiα =

mαψi (xα )∑Np
α=1 mαψi (xα )

for c = 0,

Πiα =

∫
Ωe mαW(x−xα )ψi (x) dx∑Np

α=1
∫
Ωe mαW(x−xα )ψi (x) dx

for c > 0.
(27)

e will now apply the same homogenization to the virtual particle displacements, δxα , to define a virtual particle
isplacement field,

δx =
N∑

i=1

δxiψi (x) with δxi =

Np∑
α=1

Πiαδxα. (28)

To enforce the kinematic constraint on ΩC, we penalize the velocity difference at the macroscopic scale. This
gives rise to an additional term in the virtual work equation, δW = δW FE

+ δW DE
+ δC , with

δC = ϵ
∫
ΩC

(uDE
− uFE) · (δx− δX) dV, (29)

where ϵ is the penalty parameter. The volume coupling terms can now be derived from the virtual work equation;
interested readers are referred to Appendix B for the details. Thus, the principle of virtual work for the coupled

5 Here, we use the same time step dt for the FEM and the DEM sub-model, although it can be much larger for the FEM model than
for the DEM model.
13
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Fig. 6. The inheritance structure of a coupled MercuryDPM–oomph-lib problem.

ystem results from Eq. (29) as

δW =
∫
ΩFE

(1− w)
{
σ : δε −

(
b+

1
1− w

bC
− ρ

∂2X
∂t2

)
· δX

}
dV +

∫
Γt

t · δX dA (30a)

+

Np∑
α=1

[
wα

(
mα

d2xα
dt2 − fb

α −
1
wα

fC
α

)
· δxα −

Nα∑
β

wαβfαβ · δxα
]
, (30b)

ith the FEM coupling force density bC and the DEM coupling force fC
α defined as

bC
= ϵ(uDE

− uFE), (31)

fC
α = −ϵ

N∑
i=1

N∑
j=1

Πiα

∫
ΩC
ψiψ j dV (uDE

j − uFE
j ). (32)

Finally, time integration is realized using the respective time steppers best suited for the particle and continuum
odels, namely, the Velocity-Verlet [42] for the former and the Newmark-beta [46] for the latter. At a given time t ,

he nodal displacements and the particle velocities and positions are solved explicitly for the synchronously updated
oundary conditions and coupling forces. In this work, the penalty parameter ϵ is chosen to be sufficiently large
e.g., ϵd2

= 4× 108 Pa) such that the constraint condition is approached as much as possible.

.3. Implementation of concurrent multi-scale methods in the coupled MercuryDPM –oomph-lib code

The generalized surface and volume coupling methods are implemented in the MercuryDPM branch https:
/svn.mercurydpm.org/SourceCode/Branches/OomphlibCouplingExplicit. We plan to make a future version of this
ode a feature of the main MercuryDPM repository.

Our implementation produces a single executable that couples together the two open-source software packages,
ercuryDPM and oomph-lib. Mainly written in C++, both codes use object-oriented programming techniques,
ncluding multiple inheritance, template classes, and function overloading. The flexibility of both codes allows
mplementing flexible wrappers around the existing finite element and discrete particle classes, with the additional

ember data and functions for a particular type of FEM-DEM coupling. The data necessary for both surface and
olume coupling problems are handled from the lowest levels of both methods, namely, between the finite elements
nd their interacting particles. As illustrated in Fig. 6, the implementation requires three levels of inheritance:

• the definitions of a MercuryDPM and an oomph-lib problem where the particle model and the continuum
model are implemented, respectively,
• the interface class that provides access and helper functions to the particle or continuum model,
• and the definition of a coupled problem where the actual surface or volume coupling algorithm is implemented.

.3.1. The surface-coupling element and algorithm
For the surface coupling, the standard finite element is wrapped into a surface-coupling element (see Fig. 7),

dding data and functions to store and compute the residual contribution from surface-coupling. Fig. 7 shows the
ember data and functions of the SCoupling element derived from a template finite element class ELEMENT. In

ddition, the SCoupling element overrides the functions that add the elemental contributions to the local residual
ector. A detailed description of the surface coupling algorithm is given below and summarized in Fig. 8.
14

https://svn.mercurydpm.org/SourceCode/Branches/OomphlibCouplingExplicit
https://svn.mercurydpm.org/SourceCode/Branches/OomphlibCouplingExplicit
https://svn.mercurydpm.org/SourceCode/Branches/OomphlibCouplingExplicit
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Fig. 7. The SCoupling element class for the surface coupling.

1. After detecting the surface elements that can potentially interact with the particles, a list of SCoupling

elements are stored and updated dynamically at every time step.
2. The discrete, rigid DEM triangle walls, as detailed in Section 5.1, are created or updated from the boundary

nodes of the SCoupling elements, carrying the positions and rigid-body velocities interpolated from the
FEM mesh.

3. In the time integration, the surface coupling forces are computed using either Eq. (15) or Eq. (16) before the
solve routines6 of MercuryDPM and oomph-lib are called.

4. The new deformation of the continuum body and the new displacement of the particles are solved in the
MercuryDPM and oomph-lib problems, given the updated wall kinematics and coupling forces.

5. The simulation repeats steps 1 to 4 as long as t ≤ tmax is true.

ote, in detecting a particle’s interaction with a list of triangles connected at vertices and edges (a triangulated wall),
nly a single contact point is allowed between the particle and the triangulated wall. Moreover, the history of this
ontact point has to be kept intact when the particle moves from one connected triangle to another. This is ensured
ith the modifications made to the standard particle–triangle interaction calculation algorithm of MercuryDPM (see
etails in Section 5.1.1).

.3.2. The volume-coupling element and algorithm
For the volume coupling, it can be seen from Eq. (29) that the governing equations need to be weighted in the

ynamically adapted coupling zone. Therefore, both the finite element and discrete particle classes are extended with
ember functions to evaluate the local coupling weights at the integration points, particle positions, and contact

oints. The weighting function is assumed to be in the FEM solution space (and thus moves if the elastic body
eforms); thus we first set its nodal values and then interpolate for a given location, using the FEM basis functions
(X) =

∑N
i=1wiψi (X). Fig. 9 shows the member data and functions of the VCoupling element derived from a

emplate finite element class ELEMENT.
The VCoupling element overrides the functions that add the elemental coupling forces to the residual vector. A

escription of the volume coupling algorithm is given below and summarized in Fig. 10:

1. At every time step, the extended bounding box7 of each finite element is updated. To detect whether a given
(extended) bounding box overlap with discrete particles, the same contact detection algorithm, namely the
hierarchical grid of MercuryDPM, is used.

6 A solve() routine is a function where the time integration of the governing equation for the particle or continuum model is achieved.
7 When CG is used for volume coupling, the bounding box of each finite element needs to be extended in order to detect contribution

from the particles that reside outside of the finite element.
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s
a

Fig. 8. Implementation of FEM-DEM surface coupling in the coupled MercuryDPM-oomph-lib code. Because the FEM and DEM time
teps can be very different, a multiple time-step scheme is typically used However, in the current version, the FEM and DEM time steps
re kept the same in order to verify the coupled code with minimal numerical error.

Fig. 9. The VCoupling element class for the volume coupling.

2. When homogenizing a continuum velocity field from discrete particles to finite element nodes using Eq. (19),
one needs to obtain the local coordinates of the particle positions in the coupled element. With CGH (see
Eq. (18)), this global-to-local coordinate transformation is avoided. However, evaluating the CG function at
16
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Fig. 10. Implementation of FEM-DEM volume coupling in the coupled MercuryDPM–oomph-lib code.

the integration points still requires a local-to-global coordinate transformation which can be easily achieved
with the FEM basis functions.

3. From the difference between the coarse-grained particle velocity and nodal velocity fields at the previous time
step t− dt , the coupling forces at the microscopic and macroscopic scales are computed using Eqs. (32) and
(31).

4. The last modification to the governing equations is with the coupling weights: they are computed and assigned
to the coupled elements and particles, depending on the distances from the locations where they are evaluated
(e.g., integration points, particle centers, and contact points) to the boundaries of the coupling zone.

5. With the updated boundary conditions and coupling forces, the velocity and position vectors in the particle
and continuum subdomains are updated by MercuryDPM and oomph-lib, respectively.

6. The simulation repeats steps 1 to 5 as long as t ≤ tmax is true.

. Numerical examples

.1. Surface coupling: particle–cantilever interaction

In this section, the performance of the conventional and CG-enriched formulations are compared for surface
oupling. The benefits of coarse-graining are exemplified by a simple verification case, namely, a pair of frictionless
articles sliding over an elastic cantilever. This numerical example is also well suited to investigate the smoothness
f the contact detection algorithm for particle–wall interactions. The material parameters of the FEM and DEM sub-
odels are listed in Table 1. In order to compare with simple analytical solutions, both sub-models are undamped,

urely elastic, without any dissipative terms (e.g., viscous and plastic) in the governing equations. It should be noted
hat the coupling framework works for any DEM contact law, e.g., for elastic, plastic, cohesive, non-cohesive, wet
nd dry materials, because it is only the resulting forces/tractions that are mapped to the FEM mesh. Here, we use
he same time step dt for the FEM and the DEM sub-model, although it can be much larger for the FEM model
han for the DEM model.

The simplest test case that exploits the full capability of surface coupling is a particle sliding over an elastic
antilever. During this dynamic process, both the smoothness of particle–convex/concave wall interactions and the
17
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Table 1
Constant material parameters of the finite element and discrete particles.

Description Symbol Unit Value

FEM
Young’s modulus E MPa 100
Poisson’s ratio ν [–] 0
Material density ρ µg/mm3 1309
Damping coefficient η [–] 0
Element size ∆X mm 400

DEM
Particle diameter d mm 0.5∆X
Normal stiffness kn µN/mm E · d
Tangential stiffness kt µN/mm 0
Friction coefficient µ [–] 0
Density ρg µg/mm3 2× 104

Gravity g mm/ms2 9.81× 103

Time step dt ms 0.01tc

Fig. 11. Frictionless particles released with an initial velocity vy (indicated by the arrows) on the left end element of the cantilever, at time
= 0 s.

Table 2
Coarse-graining widths for surface coupling.

Classical Optimal Other cases

CG0d CG10d CG15d CG6d CG4d CG2d

CG width (c) 0d 10d 15d 6d 4d 2d

surface coupling algorithm can be verified. Therefore, an elastic cantilever is implemented, using a 2×2×30 mesh
of eight-node linear cubic elements, with an element size ∆X = ∆Y = ∆Z = 0.4 m. The left end of the cantilever
is fixed, while the other boundaries are free to move and interact with the particles. To test whether the triangulation
and the coupling scheme cause any asymmetry, two particles of diameter d = 0.5∆X = 0.2 m are positioned on
he upper surface of the cantilever, at the center of the two leftmost elements (in the y direction) of the cantilever,
s shown in Fig. 11.

A linear-elastic contact model without friction is applied. The particles are subjected to gravitational forces while
he elastic cantilever is not. The initial particle–beam overlap is chosen such that the particle–wall interaction force

fwαγ cancels the gravitational body force fb
α . At time t = 0 s, the two particles are released with an initial velocity

f vy = 0.1 m/s. As time proceeds, the particles move along the cantilever in the longitudinal (y) direction while
ending it in the negative perpendicular (z) direction.

Table 2 gives the CG widths selected for comparing the simulation results obtained using the conventional and
G-enriched formulations. In the limit of c = 0, Eq. (16) is used; for c > 0, we use Eq. (15), with the Lucy
olynomial function Eq. (10) as the coarse-graining kernel. The CG width c is varied from 0–15 times the particle
iameter d, or 0–7.5 times the finite element size ∆X , in order to identify the characteristic length scale that leads
o a converged, reasonable macroscopic solution.

.1.1. Role of coarse-graining in surface coupling
The benefit of a CG-enriched formulation for FEM-DEM surface coupling is illustrated by comparing the
rajectories of the particles when they slide on and bend the elastic cantilever. A coarse-graining (CG) width of
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Fig. 12. Trajectories of the particles P1 and P2 sliding over the elastic cantilever under gravity for c = 0d (black) and c = 10d (red), as
ell as the analytical solution (gray). (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

= 10d is chosen for this first comparison. Figs. 12(a) and 12(b), respectively, show the trajectories of the two
articles in the x–y and y–z plane. The analytical solution for the particle trajectory in the y–z plane is obtained

by assuming a point load equal to the weight of the particles, exerted at various locations on the elastic cantilever,
in static equilibrium. As the cantilever reacts to the load exerted by the particles with a certain amount of inertia,
the mismatch between the analytical and numerical solutions increases, as shown in Fig. 12(a). Although both
surface coupling formulations give numerical solutions in good agreement with the analytical solution, without CG
enrichment (c = 0d), the particles oscillate quite significantly while bending the elastic cantilever. This numerical
rtifact is greatly reduced with CG and a CG width of c = 10d for the current example where the FEM mesh
esolution is not high in comparison with the particle size.

Theoretically, both particles should only move along the longitudinal (y) axis with zero displacements along the
ateral (x) axis. However, a point force contribution that is coupled only locally to one finite element may cause
nexpected oscillations if there are jumps in the particle–wall interaction force, for example, when the particles
ove across the joint edges/vertices of the interface triangles. Fig. 12(a) shows the erroneous particle trajectories

or c = 0. Because of the nonzero lateral velocity, the particles start to deviate from x = 0.2 and −0.2 m as soon
s the cantilever starts to bend. The non-smooth particle velocity (e.g., in the x direction) eventually causes the
articles to collide at y = 5.4 m. With a CG width c = 10d , not only is the symmetry of the particle trajectories
n the x–y plane recovered, but also the oscillation in both particle trajectories in the z direction becomes much
maller, as shown in Fig. 12(b).

.1.2. Dependence on the coarse-graining width
From the previous subsection, it is evident that with coarse-graining the surface coupling forces are mapped

ore accurately to the finite elements, and the particles’ paths are more smooth as they slide along the surface
f the cantilever. Here, the effects of varying the coarse-graining width are investigated. Fig. 13 shows the particle
rajectories obtained with various CG widths c, including the c = 0d and c = 10d cases shown in Fig. 12. Note that

the difference between the numerical and analytical solutions for the particle trajectories in the y–z plane z − zref

is plotted against y in Fig. 13(b), in order to better visualize the effect of CG width on the oscillatory behavior
caused by the surface coupling forces.

Fig. 13(a) shows that the asymmetry of the particle trajectories and the deviation from a constant x-component
is reduced even for small CG widths (c = 4d). Furthermore, the oscillatory behavior of the particle trajectory in
the z-direction is reduced, though not removed completely, as shown in Fig. 13(b). As c increases, both the lateral
motion of the particles and the oscillatory behavior in the z direction decrease dramatically. It can be seen from
Fig. 13(b) that, as the CG width increases, not only is the oscillation caused by the coupling reduced, but also the
19
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Fig. 13. Trajectories of the particles P1 and P2 sliding over the elastic cantilever and the discrepancy from the analytical solution. The
oupling forces are projected from the particle–triangle interactions using a range of coarse-graining widths.

umerical result closer to the analytical solution. However, the discrepancy becomes larger as the particles accelerate
ue to gravity, and the cantilever gains inertia which violates the assumption for the analytical solution.

To obtain an objective measure of the numerical errors caused by the coupling methods, we compute the L2

error norm, err (t) = ∥xsim(t) − xref(t)∥2, between the numerical and analytical solutions for the positions of the
two particles. From the particle trajectories in Fig. 13, the evolution of the L2 error while the particles slide on
the cantilever can be calculated. The error evolution over time (data not shown here) is then averaged over time,
i.e., err =

∫ T
0 err (t) dt/T , until the time T where the particles fall off the beam. The time-averaged error err is

plotted for different coarse-graining widths in Fig. 15. The result clearly shows that the L2 error is significantly
reduced with an increasing coarse-graining width, from 0.12 m at c = 0d to less than 0.01 m at c = 10d . Increasing
the CG width from c = 10d to c = 15d does not reduce the error anymore, and for even higher CG widths the
FEM solver does not converge.

The decrease of the total error is almost quadratic and remains constant after c = 10d . This suggests that a
CG width of around c = 10d is optimal, i.e., for this particular problem c = 10d is large enough to minimize
discretization errors and small enough to preserve the physical gradients of the resulting fields. The suboptimal
choice of c = 15d in comparison with c = 10d can be seen in Fig. 14, where the evolution of the L2 error norm
over the y coordinate of the particles is plotted. The two curves deviate when the particles move to y = 10 m away
from the fixed end of the cantilever, resulting in slightly larger err for c = 15d, as shown in Fig. 15.

6.1.3. On the energy conservation properties of CG-enriched surface coupling
The previous results show that the particle motion oscillates around a trend that is close to the analytical solution,

and the oscillations and numerical errors decrease with an increasing CG width. In order to investigate on the
mechanisms that cause this numerical artifact, the motion of the elastic cantilever is analyzed. Here, we focus on
the energetic aspects, including the kinetic, potential, and total energies of the cantilever and their differences that
vary as a function of the CG width, and compare them to those of the particles/contacts.

Fig. 16 shows the evolution of the kinetic energies E DE
k and E F E

k in the particle and continuum sub-models
over time, for CG widths of c = 0d, 2d , 4d, 6d , and 10d . As seen above in Fig. 13(b), the oscillation is gradually
educed with an increasing CG width. From Fig. 16(a), it is clear that excessive kinetic energy is stored in the FEM
ub-model and the amount of energy induced decreases with the CG width.

Finally, the time evolution of the total energy Et in the sub-models and their sum are plotted in Fig. 17. The
otential energies of the particles and cantilever are chosen to be zero at the initial time step. Note that only the
train energy is used to calculate the potential energy, because gravity is not applied to the cantilever.

We observe that a large amount of induced energy remains mostly in the FEM sub-model and this effect becomes
ore significant as the CG width decreases (see Fig. 17(a)). The total energy in the DEM sub-model is almost
20
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Fig. 14. Evolution of the L2 error norm while the particles slide on the elastic cantilever.

Fig. 15. Variation of the time-averaged L2 error norm err with respect to the coarse-graining width c.

Fig. 16. Evolution of the kinetic energies in the particle and continuum sub-models over time for a range of coarse-graining widths.
21



H. Cheng, A.R. Thornton, S. Luding et al. Computer Methods in Applied Mechanics and Engineering 403 (2023) 115651

a

u
t
o

i
o
n

t
o
d
m
s
p
m

Fig. 17. Evolution of the total energies in the (a) particle and (b) continuum sub-models and their summation over time. The coupling forces
re projected from the particle–triangle interactions using a range of coarse-graining widths.

naffected by coarse-graining, as shown in Fig. 17(b), except that the oscillations are significantly reduced. The
otal energy in each sub-model is conserved after the sub-models are uncoupled at t > 35 s, when the particles fall
ff the cantilever and keep accelerating under gravity.

Because both sub-models are purely elastic, the total energy of the coupled system should be strictly conserved
rrespective of the coupling method. This is evidently not the case, as shown in Fig. 17(c), where the total energy
f the coupled system in logarithmic scale is plotted over time. The initial total energy at t = 0 s arises from the
onzero particle–wall contact forces that maintain the force equilibrium in the z direction. Without coarse-graining,

Et increases sharply only two seconds after the particles start to slide. As the CG width increases from 2d to 10d,
he induced energy is decreased by several orders of magnitude. With c = 10d, the total energy is kept at the same
rder of magnitude between 0.9 and 2 J while the sub-models remain actively coupled, although there is a slight
rop in Et after the sub-models uncouple at t ≈ 35 s. Even with c = 6d , the highest total energy that the coupled
odel has is less than 40 J, which is 125 times lower than the total energy obtained without coarse-graining. It

eems that the optimal CG width is between 6d and 10d . However, the optimal CG width is not known before
erforming the coupled simulations and investigating on the energy conservation, and could also be problem- and

aterial-dependent.
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Fig. 18. (a) A regular granular square lattice with one third of its volume overlapping with a FEM mesh, and (b) injection of a compressional
-wave from the left end of the granular system at time t = 0 s. The color indicates the coupling weight w on the continuum body, varying
rom approximately 1.0 on the leftmost boundary to 0.0 on the rightmost boundary of the coupling zone. Note, one discrete particle per
nite element is shown here only for illustrative purpose; more particles per element are used for the simulations in Section 6.2.4. The

nitial velocity of the particles is indicated by the arrows in Fig. 18(b). (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

.2. Volume coupling: wave propagation between discrete and continuum domains

In this section, the performance of the conventional and CG-enriched formulations for FEM-DEM volume
oupling are compared against a full DEM reference case. The benefits of coarse-graining are exemplified by a
imple numerical example, that is the propagation of elastic waves through a granular medium. This numerical
xample not only serves as a basis for verification (by comparing wave speeds in the granular material and the elastic
edium), but also allows for a systematic investigation of the conservation properties of the coupling formulations.
Let us consider a beam of 20 m in length made from granular material. We model the first 12 m of the beam

ith DEM, and the last 12 m with FEM; thus, there is a 4 m long overlapping volume, as shown in Fig. 18(a). The
oal is to propagate elastic waves between the discrete to the continuum domain, and investigate the influence of
G on propagation and conservation behavior. Data from a full DEM model with the same particle configuration
nd initial and boundary conditions are used to verify the volume coupling schemes with/without CG enrichment.

The FEM domain is discretized by a 2× 2× 30 mesh, using eight-node linear cubic elements with an element
ize ∆X = ∆Y = ∆Z = 0.4 m. The DEM particles are positioned in a cubic packing with zero overlaps and
hereby zero initial interaction forces. The diameter of the particles is an integer fraction of the finite element size,
= ∆X/n, thus the number of particles per finite element is n3, with n = 1, 2, 3, or 4. Each pair of particles is

inked with a linear spring kn , in both compression and tension directions, perpendicular to the contact plane. Both
he DEM contact model and the FEM constitutive equations are linearly elastic, i.e. conserve energy. To match the
macroscopic) density and wave speed of the two submodels, the parameters of the micro-model are related to the
acro-model parameters via ρg = 6ρ/π , kn = E · d and ν = 0, due to the cubic structure (see [55]). The material

arameters used for the sub-models are listed in Table 3.
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Table 3
Constant material parameters of the finite element and discrete particles.

Description Symbol Unit Value

FEM
Young’s modulus E MPa 100
Poisson’s ratio ν [–] 0
Material density ρ µg/mm3 1309
Damping coefficient η [–] 0
Element size ∆X mm 400

DEM
Number of particles n3 [–] 13, 23, 33, 43

Normal stiffness kn µN/mm E · d
Tangential stiffness kt µN/mm 0
Friction coefficient µ [–] 0
Restitution coefficient e [–] 1.0
Density ρg µg/mm3 2500

Time step dt ms 0.01tc

Table 4
Initial conditions for the simulations in each subsection.

Sec. Waveform Frequencies ω (kHz) Amplitude v0 (m/s) Number cycles Mc

Section 6.2.2 vy (t) = −v0 for t = t0 – 0.1 –
Section 6.2.3 vy (t) = v0(cos(ωt)− 1) for t ≤ t0 = 2π/ω 1.95, 0.98, 0.49 0.05 –
Section 6.2.4 vy (t) = v0(cos(ωt)− 1) for t ≤ t0 = 2πMc/ω 1.95 0.05 1, 3, 5

All discrete particles and finite elements are free to move, except for those at the left and right boundaries.
he right boundary is fixed, whereas the particles in the leftmost layer (perpendicular to the y axis) are given an

initial prescribed velocity (0, vy, 0). The wave motions used in Sections 6.2.2–6.2.4 are summarized in Table 4.
For t > t0, the boundary particles are either free to move (Section 6.2.2) or fixed in space (Sections 6.2.3–6.2.4)
with zero velocity vy = 0. The highest frequency ( f = 1.95 kHz) was chosen such that a single wavefront contains
approximately eight finite elements. For t > t0, the pulse wave propagates from the particles into the elastic beam
until it is reflected from the fixed right end of the FEM domain.

The coupling domain ΩC between the DEM and the FEM sub-model is updated dynamically. As shown in
Fig. 18(b), at a given time step, the coupling weight w applied to the DEM sub-model monotonically decreases
from 1.0 on the left to 0.0 on the right, and the corresponding weights on the FEM side 1 − w are assigned to
the FEM nodes. The profile of w in the coupling region follows a half-cycle cosine in the y direction and remains
uniform in the x − z plane.

6.2.1. Setup of the test cases
In Sections 6.2.2 and 6.2.3, the CG-enriched volume coupling scheme is first verified by comparing the simulation

results obtained using the two formulations described by Eqs. (18) and (19), with the full DEM case as reference.
Details about the test cases for a range of CG widths, namely 0∆X–2.5∆X , are given in Table 5. The verification
is done with the simplest configuration for the overlapping domain, that is n3 particles per finite element in a
lattice structure, see the case for n = 1 in Fig. 18. For Section 6.2.4, we increase the number of particles per
finite element in order to investigate how CG-enriched volume coupling performs in “normal” conditions where the
particles are smaller than the finite elements. Relevant parameters for the three configurations 2P, 3P, and 4P, are
given in Table 6. The material parameters for the simulations reported in this section are summarized in Table 3.
The penalty parameter ϵ, see Eq. (29), is chosen to be sufficiently large in order to satisfy the kinematic constraint
as much as possible.

6.2.2. Role of coarse-graining in volume coupling
To verify the volume coupling formulation, we consider the simplest particle–element configuration, that is one
particle per element in the coupling zone (see Fig. 18(b)). A sharp increase of the particle velocity, as defined by
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Table 5
Coarse-graining widths considered for FEM-DEM volume coupling.

Formulation Classical Coarse-grained

CG width (c) 0∆X 0.5∆X 1.0∆X 1.5∆X 2.0∆X 2.5∆X

Table 6
Penalty parameter for different finite particle–element configurations for volume coupling.

Test cases

1P 2P 3P 4P

Num. of particles per element n3 1 23 33 43

Particle diameter d (mm) 400 200 133.3̄ 100
Penalty parameter ϵ (Pa/mm2) 1× 104 4× 104 9× 104 16× 104

Penalty parameter ϵd2 (Pa) 4× 108

Fig. 19. Wave propagation from the granular sub-model to the continuum sub-model, using CG-enriched (c = 0.0∆X–2.5∆X ) and non
G-enriched coupling. Note, the coupling zone takes one third of each computational domain and is located in the middle from 6.67 to
3.33 m (see Fig. 18). The results from a full DEM model with the same geometry and initial and boundary conditions are added for
erification.

he first row of Table 4, is given to the particles within the leftmost layer. From t > t0, the particles in the leftmost
ayer are not fixed in space. In this way, mass, momentum, and energy are strictly conserved; only momentum
hanges when the wave is reflected from the fixed boundary on the right. The data from a full DEM model with
he same particle configuration and initial and boundary conditions are presented to verify the coupled FEM-DEM

odel. To understand the influence of CG on the conservation properties of the coupling scheme, the CG width c
s increased from 0.5 to 2.5 times the finite element size ∆X, denoted as 0.5∆X–2.5∆X in Table 5.

Figs. 19(a) and (b) show two snapshots of an elastic wave propagating through the coupling zone. The agreement
etween the full DEM and FEM-DEM data shows that volume coupling formulations, without and with CGH, have
een correctly implemented and can effectively propagate an elastic wave between the particle and continuum
odels. Nevertheless, a slight deviation from the DEM waveform can be seen, after the wave passes through the

oupling domain. The velocity profile given by the DEM sub-model shows an excellent agreement with that of the
ull model, irrespective of the CG widths chosen. This can be clearly seen in Fig. 19(a) as all markers for a given
osition overlap. However, as the wave enters the coupling zone, the waveform in the FEM domain starts to deviate
rom the DEM waveform, with a decreasing amplitude and a widening pulse width. This is likely due to numerical
issipation that occurs when the two systems are actively coupled and the fact that the elements have a larger length
cale than the particles. However, with a CG width c = 1.5∆X the discrepancy between the waveforms in the FEM
nd the DEM domain is minimized. As the CG width increases beyond 1.5∆X , the decrease of the amplitude inside
he coupling zone becomes larger. This is to be expected because of the spatial smoothing effect of CG. For this
articular problem, it seems that the optimal CG width is 1.5∆X . After the wave travels through the coupling zone,
he decay in amplitude seems to be slightly weaker for all CG-enriched cases.
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Fig. 20. Evolution of (a) mass, (b–c) momentum, and (d) kinetic, (e) potential and (f) total energies in the coupled FEM-DEM model, using
the conventional and CG-enriched formulations (with various coarse-graining widths).

To further understand the effect of coarse-graining on the performance of the coupled model, the time evolution
of mass, momentum, and energy in the respective sub-model and the totals as the weighted sums (see Eqs. (25) and
(26)) are plotted in Fig. 20. From Fig. 20(a), for both formulations, irrespective of the CG width, the total mass
is strictly conserved for all cases. As the wave enters the coupling zone (indicated by the deviation from the full
DEM reference solution at t ≈ 0.03s), the y component of the linear momenta in the DEM sub-model starts to
decrease while the counterpart in the FEM sub-model starts to increase, as shown in Fig. 20(b). Nevertheless, the
total momentum remains nearly constant, as shown in Fig. 20(c).

The influence of CG and CG width is also visible in the time evolution of the total energy. An improvement
on the energy conservation, compared to the non-CG case, when the elastic wave travels within the coupling zone
can be seen in Fig. 20(d), although numerical dissipation is not avoided completely. Fig. 21 shows how the ratio
of the dissipated to the total energy varies with the CG width. Compared with the non coarse-grained formulation,
the dissipation is reduced from approximately 33.5% for c = 0∆X to 29.5% for c = 1.5∆X . A further increase

f the CG width (e.g., c = 2.0∆X and 2.5∆X ) does not lead to a further decrease of the numerical dissipation. In
act, increasing c beyond 2.5∆X leads to numerical instability and a converged solution cannot be obtained. This
s because when the particle velocity is homogenized over too many finite elements, the difference between uDE

nd uFE is excessively large, especially for those elements which do not overlap with the particles. As a result,
DE FE
he coupling terms that arise by penalizing u − u lead to non-converging iterations in finding the solution to
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Fig. 21. Variation of the numerical dissipation due to volume coupling with respect to the CG width.

pproach uDE
= uFE. As shown in Fig. 21, for a sharp signal, the CG width should not be larger than twice the

lement size.

.2.3. From a sharp impulse to continuous waveforms
Although the previously considered boundary condition for the DEM model (i.e., free end on the left in

ig. 18(b)) ensures exact mass, momentum, and energy conservation, it is not convenient for prescribing arbitrary
aveforms for the wave excitation. Differently from the previous section, the particles within the leftmost layer are
xed in space. These particles are given a time-varying velocity for t ≤ t0 as defined by the waveforms described in
able 4. Note, this boundary condition has been widely used for the DEM modeling of wave propagation in dry and
aturated granular media [56–58]. In the following, various waveforms will be utilized in the coupled FEM-DEM
imulations, with the same particle–element configuration as in the previous section. For the sake of brevity, only
he time evolution of the total linear momenta and total energies will be shown and discussed.

As shown in Figs. 22(a)–22(c), the benefit of CG can be observed at a higher input frequency (e.g., ω = 1.95
Hz). With CGH, the energy is better conserved as the CG width increases, similar to the trend shown in Fig. 20(d).
evertheless, the optimal CG width seems to be between 1.5∆X and 2.0∆X; a further increase of the CG width

e.g., c = 2.5∆X ) leads to a slightly larger ratio of energy dissipation, compared with the ratio for c = 2.0∆X .
t can seen from Fig. 22(d) that the numerical dissipation decreases with a lower input frequency (from 34% at
= 1.95 kHz to 31% at ω = 0.49 kHz). Nevertheless, a decreasing numerical dissipation can still be observed as

he CG width increases to 1.5∆X . One of the reasons for a decreasing energy dissipation ratio is the increasing
avelength that suppresses the particle-scale response, as ω decreases from 1.95 to 0.49 kHz. In the following

ections, an input frequency of ω = 1.95 kHz is chosen because the decrease of numerical dissipation is more
ignificant compared with other input frequencies, although the absolute values of ∆Et/Et are relatively large.

ith these input frequencies, the sub-continuum scale responses are ensured to be sufficiently large, i.e., at the
ength scales smaller than the finite element size.

.2.4. Many particles in each volume-coupled finite element
In this section, we consider a more general situation for FEM-DEM volume coupling where multiple particles

re coupled to each finite element. In such a case, the smallest wavelengths that can be propagated in the particle
odel are much smaller than those in the continuum model. This raises the question: can the sub-continuum scale

esponses, coming from the particles, be up-scaled into the continuum medium, and if so how much information is
ost due to the coupling? In this section, we further investigate the performance of CG-enriched volume coupling
y varying both the number of particles coupled to each finite element and the CG width. Four particle–element
onfigurations are considered by reducing the particle diameter d such that each finite element in the coupling zone

3 3 3
ontains 1, 2 , 3 , or 4 discrete particles, respectively.
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Fig. 22. Time evolution of total energy in the coupled FEM-DEM model, subjected to a single cycle of wave excitation at the frequencies
f (a) 1.95, (b) 0.98, and (c) 0.49 kHz. The subplot (d) shows the variation of the dissipated energy ratio with an increasing CG width for
ifferent input frequencies.

nergy conservation under a single cycle of wave excitation. First, waveforms consist of a single pulse are
considered. Here, we select and show only the simulation data obtained with an input frequency of ω = 1.95

Hz. Details on the waveforms can be found in Table 4. For the sake of brevity, only the weighted sum of the total
nergies in the sub-models are shown in Fig. 23. At ω = 1.95 kHz, a decreasing trend of energy dissipation with
espect to the CG width is observed for each configuration, as shown in Fig. 23(b). The curves closely match with
hose in Figs. 21 and 22(d), although a minimum dissipation cannot be found at c = 1.5∆X for these waveforms.

oreover, it appears that the number of particles per finite element also plays an important role in determining the
nergy dissipation. In the case of 4P (see Table 6), the percentage of dissipated energy is as high as 55%. With
oarse-graining, the ratios ∆Et/Et can be reduced to 50%, 43%, and 35% for the particle–element configurations 4P,
P, and 2P, respectively. One of the reasons for ∆Et/Et to increase is that with an increasing number of particles
he non-affine motion becomes more considerable, and the non-affine motion that contributes to the fluctuating
nergy in the particle system is not incorporated into the kinematic constraint, without using CG.

nergy conservation under multiple cycles of wave excitation. Elastic waves generally contain many cycles and
have more complex waveforms than a single-cycle cosine, and a wide range of frequency contents are usually
present in the wave signals. Here, the waveforms are further generalized to include multiple cycles, as summarized
in Table 4. The waveform utilized here remains the same as in Section 6.2.4 but three and five complete cycles are
28
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o

n

Fig. 23. Time evolution of total energy in the coupled FEM-DEM model, subjected to a single cycle of wave excitation at an input frequency
f (a) 1.95 kHz. The subplot (b) shows the variation of the dissipated energy ratio with an increasing CG width.

Fig. 24. Time evolution of total energy in the coupled FEM-DEM model, subjected to three cycles of wave excitation at an input frequency
of (a) 1.95 kHz. The subplot (b) shows the variation of the dissipated energy ratio with an increasing CG width.

considered, with an input frequency of ω = 1.95 kHz. The particle–element configurations are also kept the same
as before, namely, each finite element is coupled with 23, 33, and 43 discrete particles, with the same boundary
conditions.

Again, only the weighted sum of the total energies will be discussed here. Figs. 24(a) and 25(a) show respectively
the time evolution of the total energy in the coupled system under three and five cycles of wave excitation. As can be
seen in both figures, the total energy in all cases monotonically decreases as the waves travel through the coupling
zone. In the case of five-cycle wave excitation, the duration of wave propagation in the coupling domain is longer.
An interesting observation from Figs. 24(a) and 25(a) is that the rate of numerical dissipation is lower when the
wave travels in the coupling domain, resulting in decreased energy dissipation, as the number of repeated cycles
increases. By comparing the curves in Figs. 24(b) and 25(b), one can see that the amount of energy dissipated under
the three-cycle wave excitation exceeds that under the five-cycle wave excitation by 3%–8%, depending on the input
frequency. The avoided numerical dissipation is largest for the case of 4P considering a five-cycle wave excitation,

amely from 36% at c = 1.5∆X to 26% at c = 2.5∆X . By comparing the variation of numerical dissipation with
29
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Fig. 25. Time evolution of total energy in the coupled FEM-DEM model, subjected to five cycles of wave excitation at an input frequency
f (a) 1.95 kHz. The subplot (b) shows the variation of the dissipated energy ratio with an increasing CG width.

G width ∆X in Figs. 22(d), 23(a), 24(a), and 25(a), one can conclude that an optimal CG width depends both on
he configuration of the discrete–continuum system and the characteristics of the external mechanical loads.

Although the numerical dissipation is not removed via coarse-graining, a key message that can be interpreted from
he previous results is that the effect of coarse-graining on FEM-DEM volume coupling is most significant when
1) many particles are present in each coupled finite element and (2) the mechanical load contains many cycles and
arge spatial and temporal gradients in the stress field (related to the high frequencies and small wavenumbers from
he dynamic load). These two circumstances are usually met in the practical applications of FEM-DEM volume
oupling, such as pile installation [26] and selective laser sintering [59] where non-homogeneous, dynamically
arying strain fields are present.

. Conclusion and outlooks

Based on a micro–macro transition from particles to continuum, known as “coarse-graining” [38], we have refor-
ulated and generalized the surface coupling and volume coupling methods for the concurrent multi-scale modeling

f granular materials. From momentum conservation, we derive micro–macro projection or homogenization rules
hat are shown to be the generalized forms of those reported in literature. For surface coupling, coarse-graining
CG) smoothly distributes the particle–element point interaction forces to several close-by integration points from
heir contact points. As a result, the surface coupling forces can be projected beyond the finite element on which
he interaction is physically exerted. For volume coupling, we use CG to obtain a continuous velocity field from
he discrete particles, then couple this field to the continuum FEM model, instead of coupling the particle velocities
irectly to the FEM displacement field These generalized coupling terms contain only one user-defined parameter,
he coarse-graining smoothing width, setting a length scale w for the micromechanics-based macroscopic fields. To
he authors’ knowledge, this is the first work that utilizes CG to formulate diverse multi-scale (two-way) coupling

ethods, rather than simply using it to post-process particle-scale data (one-way). The limiting case, w = 0, yields
he classical coupling formulations for both surface and volume coupling. A nonzero coarse-graining width allows
he discrete particles and finite elements that do not overlap in space to be coupled dynamically.

In addition to the theoretical derivation of the coupling terms for surface and volume coupling, we discuss their
mplementation in the coupled MercuryDPM–oomph-lib code. Mainly written in C++, both codes use object-
riented programming techniques, including multiple inheritances, template classes, and function overloading. The
exibility of both codes allows implementing versatile wrappers around the existing finite element and discrete
article classes in oomph-lib and MercuryDPM. Therefore, the code framework is very general and offers the
ossibility to mix surface- and volume-coupling in one unified monolithic coupling framework. The surface and
olume coupling methods are implemented in the MercuryDPM branch https://svn.mercurydpm.org/SourceCode/
30
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Branches/OomphlibCouplingExplicit; see https://www.mercurydpm.org for installation instructions. We will make
a future version of this code a feature of the main MercuryDPM repository in the near future.

7.1. CG-enriched surface coupling

The benefits of coarse-graining for the surface-coupling scheme are exemplified by modeling particle–cantilever
interactions. The dynamic process of particles sliding over an elastic cantilever is simulated via surface coupling.
Compared with the conventional approach that uses the Dirac delta function to map contact forces, the new,
non-local, CG-enriched SCoupling formulation:

(i) removes the nonphysical oscillations in the particle motion when the particles slide across and bend the
elastic cantilever,

(ii) recovers the symmetry of particle trajectories in the horizontal plane when two particles are released from
both sides of the line of symmetry with an equal offset,

(iii) gives a smaller deviation from the analytical solution and removes the excess energy, at an optimal CG width,
that is 10d for the current numerical example.

Furthermore, in modeling the interactions between discrete particles and elastic bodies, the particle–convex/concave
wall detection algorithm ensures that the interaction is smooth not only in magnitude but also in the contact normal
direction, i.e., one unique contact force is defined.

7.2. CG-enriched volume coupling

The benefits of coarse-graining for the volume-coupling scheme are demonstrated by modeling an elastic wave
propagating from discrete particles to a FEM-discretized continuum medium. In this example, an elastic beam is
considered, with a coupling domain (as big as one-third of its volume) overlapping with the discrete particle domain.
The particle-scale parameters are calibrated such that the homogenized macroscopic properties of the granular
assembly match those of the elastic beam. A continuous field of coupling weight that monotonically increases
from 0 to 1 is used for the FEM sub-model (1 to 0 for the DEM sub-model) within the coupling zone. Compared
with the conventional approach that uses FEM basis functions to obtain a homogenized field, the new, non-local,
CG-enriched VCoupling formulation

(i) helps better satisfy the kinematic constraints in the coupling zone, which results in a somewhat better
agreement between the coupled and the full DEM solutions,

(ii) avoids computationally expensive global-to-local coordinate transformation, and
(iii) improves energy conservation when waves propagate through the coupling zone, particularly in the case of

complex waveforms with high-frequency/small-wavelength contents.

A huge benefit of the CG-enriched formulation is that nonphysical phenomena caused by the volume coupling, such
as numerical reflection and dissipation, can be kept at a minimum. The new formulation also has the advantage
to separate the sub-continuum scale response from the particles while enforcing the continuum-scale solutions to
match with the coarse-grained fields.

7.3. Outlooks

The main contribution of this work is the generalization of FEM-DEM surface and volume coupling methods
using coarse-graining, and the improved accuracy and reduced numerical energy loss/gain at optimal CG widths,
in simple yet effective test cases. Through coarse-graining, continuum fields at various length scales (e.g., particle,
mesostructure, continuum) can be obtained, and the resulting solution of the coupled model can be different from
one and another. However, within a certain range of CG widths [37], the solution remains unique (see Fig. 15),
indicating a characteristic length scale. It is only within this range that the information loss, e.g., due to the micro–
macro mapping or coupling, is kept at minimum. One could also think of the CG width as a numerical parameter
that has to be optimized with respect to some constraint, such as an error tolerance, or conservation properties.

One could also think of the CG width as a numerical parameter that has to be optimized with respect to some
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constraints, such as some error measures and conservation properties. The identification of suitable length scale
(CG widths) has a practical relevance and is by itself an interesting topic, especially for general granular systems
with strong polydispersity and strain localization. The interplay between particle sizes, the CG width, and the FEM
discretization length scale in coupled particle–continuum systems should be better understood.

Another advantage of coarse-graining is the possibility to define higher-order terms such as stress and strain tensor
elds. It would be interesting to investigate whether a surface/volume coupling formulation based on stress/strain
elds would improve further the accuracy and performance of the multi-scale model. Therefore, ongoing work
ocuses on identifying appropriate coarse-graining parameters for various deformable materials or structures coupled
ith many particles.
One limitation of the current surface coupling implementation is that the finite element surfaces are discretized

ith rigid and flat triangles in DEM. This introduces certain roughness to the deformable bodies’ surface and can
e avoided by using mathematically well-defined geometric objects (e.g., curved walls [42]), mapped from the finite
lement. Other shape representations, including signed distance functions [60], level set methods [42,61,62], and
inkowski sums [63] could also be used. Secondly, currently, only the traction due to particle–wall interaction forces

re mapped onto the finite elements; the kinetic traction due to velocity fluctuations is not explicitly considered.
e speculate that the contribution of the kinetic traction might become important when the interaction becomes

ynamic
Another important extension of the presented coupling framework is to incorporate elasto-plasticity into the

aterial’s constitutive description of the continuum sub-model. For surface coupling, this would allow describing
he strong impact of granular materials on structures, causing irrecoverable deformation in the structures. For
olume coupling, implementing a continuum-level elasto-plastic constitutive law would effectively reduce the
oupling domain size, leaving most inelastic material behavior (up to moderate particle-scale discontinuities) to
he continuum sub-model and the rest to DEM. Examples of relevant physical processes include the sintering of
olymer powders [59], the fragmentation of rocks and concretes [64], etc.

Currently, only fast, small-amplitude, transient loads are considered, such as wave propagation and particles
olling/sliding on a cantilever. Further work is needed to investigate the performance of the proposed coupling
ramework under steady-state mechanical loads, large deformation, and the phase transition of granular material,
.g., between solid and solid.
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ppendix A. The generalized Hooke’s constitutive law

Hooke’s law assumes linear relations between the deviatoric and volumetric parts of the stress and strain tensors
or isotropic, homogeneous elastic materials. In index notation, the isotropic constitutive tensor reads( )
Ci jkl = λδi jδkl + µ δikδ jl + δilδ jk , (33)
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where λ = Eν
(1+ν)(1−2ν) and µ = E

2(1+ν) are the bulk and shear moduli, with E and ν the Young’s modulus
and Poisson’s ratio of the material. In oomph-lib, Hooke’s law is generalized for finite strains, that is the 2nd
Piola–Kirchhoff stress σi j is linearly related to the Green’s strain tensor γi j = 1/2 (G i j − gi j ) via

σi j =
E

2(1+ ν)

(
G ik G jl + G il G jk +

2ν
1− 2ν

G i j Gkl

)
  

:=Ci jkl

γkl . (34)

Here gi j and G i j are the metric tensors associated with the undeformed and deformed configurations; gi j = δi j

hen there is no growth of the element (e.g., due to thermal expansion); G i j = X il
∂ψl
∂ξ j

is the derivative of global
position with respect to Lagrangian coordinates ξ j where X il is the i th coordinate of the nodal position at node l.

his constitutive law reduces to the classical version of Hooke’s law for infinitesimal strains when G i j → gi j .

ppendix B. Derivation of volume coupling terms on the particle and the continuum sub-model

The additional virtual work δC done by the kinematic constraint in the volume coupling domain ΩC is given by

δC = ϵ
∫
ΩC

(uDE
− uFE) · (δx− δX) dV (35)

= ϵ

∫
ΩC

(uDE
− uFE) · δx dV  
:=δCDE

+ ϵ

∫
ΩC

(uFE
− uDE) · δX dV  
:=δCFE

, (36)

where uDE and uFE are the displacement fields coarse-grained from the particles and interpolated via the finite
element basis functions ψi (i = 1, . . . , N ), respectively, δx and δX denote the variation of position vector at the

icroscopic and macroscopic scales, and ε is the penalty parameter.
Substituting uFE

=
∑N

j=1 uFE
j ψ j , uDE

=
∑N

j=1 uDE
j ψ j , δX =

∑N
i=1 δXiψi , and δx =

∑N
i=1 δxiψi , the discretized

forms of δC become:

δCFE
=

∫
ΩC
ϵ(uFE

− uDE)  
:=−bC

·δX dV (37)

=

N∑
i=1

ϵ

N∑
j=1

∫
ΩC
ψiψ j dV (uFE

j − uDE
j )  

:=−fC
i

·δXi (38)

δCDE
= ϵ

∫
ΩC

(uDE
− uFE) · δx dV

= ϵ

N∑
i=1

N∑
j=1

∫
ΩC
ψiψ j dV (uDE

j − uFE
j ) · δxi

=

N∑
i=1

fC
i · δxi

=

Np∑
α=1

N∑
i=1

ΠiαfC
i  

:=−fC
α

·δxα. (39)

where the homogenization operator Π (see Eq. (27)) is used to relate the virtual displacements from the finite
elements to the particles via δx =

∑Np

i α=1 Πiαδxα .
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Substituting Eqs. (37) and (39) into the virtual work equation8 yields

δW = δW FE
+ δCFE

+ δW DE
+ δCDE

=

∫
ΩFE

(1− w)
{
σ : δε −

(
b+

1
1− w

bC
− ρ

∂2X
∂t2

)
· δX

}
dV +

∫
Γt

t · δX dA

+

Np∑
α=1

[
wα

(
mα

d2xα
dt2 − fb

α −
1
wα

fC
α

)
· δxα −

Nα∑
β

wαβfαβ · δxα
]
, (40)

here the macroscopic and the microscopic variables are defined for the governing equations of FEM and DEM in
qs. (25) and (26), and the coupling weights by Eqs. (22)–(24). Note that the additional coupling terms due to the
inematic constraint closely resemble that of a body force (density). Further, since the homogenization operators
nvolve a normalization

∑Np
α=1 Πiα = 1, the coupling forces applied to the FEM nodes is equal and opposite to the

oupling forces applied to the particles,

−

Np∑
α=1

fC
α =

Np∑
α=1

N∑
i=1

ΠiαfC
i =

N∑
i=1

fC
i . (41)

ppendix C. Supplementary materials

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cma.2022.115651.
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