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Abstract:  
This brief article is a review of our recent results on the flow-behavior and rheology of dry 
and wet cohesive particles. For weak and moderate strength of attractive forces, a new set 
of rheological laws was derived from particle simulations. This local granular rheology is 
based on the µ(I) and f(I) rheology, generalized by multiplicative correction terms that de-
pend on the inertial number I and on other dimensionless variables (like confining stress 
P*, or the cohesive strength, as quantified by the local Bond number Bo) that characterize 
the local situation, the state the particles are in. Each correction relates to one (or more) 
mechanisms that are active in the powder – and the correction terms fall back to unity, i.e., 
become inactive, when a mechanism is not important, not relevant. Only if attractive forces 
are strong enough, when the local Bond number Bo>1, agglomeration kicks in and the rhe-
ology that is based on homogeneous flow situations becomes questionable. 

1 Introduction 

The behavior of particulate systems or granular matter – for example sand, powders, suspended 
particles as colloids or macro-molecules – is of interest for a wide range of industries and re-
search disciplines. These materials are intrinsically disordered, come with a wide distribution 
of particle sizes and materials/mixtures and can behave both solid- or fluid-like, dependent on 
the balance between energy input (external parameters: agitation, driving) and energy dissipa-
tion (e.g., due to material properties: contact deformation, friction, viscosity). The micro-me-
chanical processes in particle systems are active at multiple scales (from nanometers to meters) 
and understanding them better is an essential challenge for both science and application, i.e., 
finding the reasons for natural/industrial disasters like avalanches or silo-collapse. 
 To understand the fundamental micro-mechanics one can use particle simulation meth-
ods. However, large-scale applications (due to their enormous particle numbers) must be ad-
dressed by upscaled coarse grains or by continuum theory. To bridge the gap between the dis-
crete and continuum scales, so-called micro-macro transition methods translate particle posi-
tions, velocities, and forces into density-, stress-, and strain-fields. These macroscopic quanti-
ties must be compatible with the conservation equations for mass, momentum, and energy of 
continuum theory. Possibly, non-classical fields are needed to describe the micro-structure or 
the statistical fluctuations, e.g. the kinetic stress, before one can solve real application problems.  



2 Granular state space 

The particles are in different states: in different applications, in different systems, they are lo-
cally experiencing different situations. State variables are the shear or deformation rate, as 
quantified by the inertial number I (as relating the pressure- to the rate-time-scale) or the con-
fining stress, as quantified by the dimensionless pressure P* (as relating the contact-stiffness- 
to the pressure-time-scale, both squared). State variables can be interdependent, e.g., the inertial 
number depends inversely on the square-root of pressure. 
On the other hand, the cohesive strength, strictly speaking, is a material parameter, as quantified 
by the gravity Bond number Bog that relates the cohesive forces to the gravity force on a single 
particle. However, the more relevant comparison is between the cohesive force and the local 
confining forces fµPd2, as quantified by the local Bond number Bo, which also renders it a state 
variable. See publications by Shi et al. (2020) and Roy et al. (2017) for the detailed definitions 
and rheology results from simulations, and Fig.1 for the state space spanned by I and P*. 

 

Figure 1: Schematic diagram of granular states in the plane of confining stress (to the right), tension (to 
the left) and dimensionless shear or deformation rate (vertical down); the left panel shows the state 
variables at their respective relevant location in state-space, while the right panel also indicates a selec-
tion of experiments that can be used at that states. [The experimental abbreviations are: Ajax Tensile 
Tester, PFT=particle flow tester, RST=ring shear tester, DST=direct shear tester, Triax=triaxial geotech-
nical tester, and the Granu* abbreviates GRANUTOOLS devices like heap-test or rotating drum.] 

Evidently, most experiments can operate only in a limited domain in parameter space. There-
fore, the tensile regime was combined with results from the RST device by Garcia-Trinanes et 
al. (2019) and the drum was connected to heap and RST situations by Shi et al. (2020b). The 
role of cohesion at various states/situations was studied by Roy et al. (2017); Shi et al. (2020) 
numerically, and by Jarray et al. (2019) experimentally – see also references therein. 

2.1 Bridging between compression and tension 

Powders with cohesive forces allow to range from compressive shear to tensile testing (Garcia-
Trinanes et al. 2019). Measurement and prediction of cohesive powder behaviour related to 
aspects/phenomena such as flowability, flooding or arching in silos is challenging. Previous 
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attempts in comparing different testers did not yield reliable data (showing considerable scatter 
and uncertainty in key quantities). Studies to build a reliable experimental database using ref-
erence materials are needed to evaluate the repeatability and effectiveness of shear testers and 
the adopted procedures. 
Shi et al. (2018) studied the effect of particle size on the yield locus for different grades of 
limestone (calcium carbonate). We use the non-linear Warren Spring relation for shear stress: 
t(s)/C=(s/T+1)1/n, with confining stress s, to obtain the values of cohesion C, tensile strength 
T, and the shear index n. We recover linear (n = 1) yield loci for large, free flowing particles, 
with respectively small C and T, with consistent, finite macroscopic friction C/T = 0.7. For par-
ticle size decreasing below 70 μm the response becomes more and more cohesive (larger C and 
T) and non-linear (1<n<2) – see Garcia-Trinanes et al. 2019; the latter n>1 implies that a linear 
fit (n=1) to the yield locus of a cohesive powder is not making much sense. 
Then Garcia-Trinanes et al. (2019) compare the values of the parameters C, T and n obtained 
from two different shear testers (Schulze and Brookfield PFT). Both testers run at positive con-
fining stresses (slightly different ranges and principles) and give identical results for large frac-
tions (weakly cohesive). For strongly cohesive samples, the PFT results are very similar to the 
ring shear tester, with slightly smaller values for C, T, and n.  
Finally, the (non-linearly extrapolated) values of T were compared with a direct, transverse 
measurement running at negative stresses, using the Ajax tensile tester, and very good agree-
ment was found – validating the Warren Spring equation for negative stresses (Garcia-Trinanes 
et al. 2019). Further experiments with a variety of cohesive powders are needed to confirm the 
connection between moderate compression and tension, and also to confirm (or rebut) this sys-
tematic, consistent differences between shear testers for, so far, only one cohesive powder. 

2.2 Bridging between low and high stress, slow and fast deformations 

Because the flow behavior of powders depends on both their flow/deformation rate and confin-
ing stresses, as well as on their cohesive strength, it is difficult to measure/quantify powders 
with only one experiment. Commonly used characterization tests, which cover a wide range of 
states, were compared by Lumay et al. (2019): including (static, free surface) angle of repose, 
(quasi-static, confined) ring shear steady state angle of internal friction, and (dynamic, free 
surface) rotating drum flow angle/slope, using free flowing, moderately and strongly cohesive 
limestone powders. 
Free flowing powder gives good agreement of the measured angles (slopes or shear resistance) 
among all different situations (devices), while the cohesive powders are more interesting. Start-
ing from the flow angle in a rotating drum and going slower, one can extrapolate to the limit of 
zero rotation rate. However, the angle of repose measured from the static heap is considerably 
larger, possibly due to its special history. When the ring shear tester explores its lowest confin-
ing stress limit, the steady state angle of internal friction of the cohesive powder becomes com-
parable with the flow angle (at the free surface) in the zero-rotation rate limit of the rotating 
drum test, but only when defining an appropriate effective stress for the flow zone. Finally, 
when stretching the confining stress to extremely large values (GPa) by using a tableting tester, 
the qualitative behavior (increase of shear resistance, macroscopic friction with decrease in 
particle size) is confirmed, but the almost linear behavior in the low stress range (kPa to MPa) 
turns to an increasingly non-linear growth – details see Lumay et al. (2019) and Shi et al. (2018). 



Also here, further experiments with a variety of cohesive powders are needed to confirm the 
connection between moderate to large compression/confining stress, and tension, and also to 
confirm the systematic, consistent qualitative trends, so far reported for one cohesive powder. 

3 Granular rheology 

Here, a short summary of recent results on formulating a general local granular rheology is 
presented, based on an earlier review by Luding et al. (2016). When formulating a granular 
rheology, the starting point is the successful, simple, and elegant so-called μ(I)-rheology (Shi 
et al. 2020), which relates the so-called macroscopic (bulk) friction, i.e., the shear-stress to 
pressure ratio μ  = τ / p (in a sheared particulate system in steady state) to the inertial number, 
i.e., the dimensionless strain-rate: 

   
 
with (for example) local shear rate , diameter d0 = 0.0022 m, mass-density ρ= 2000 kg/m3, 
and pressure p’. The relation that describes well a wide variety of flows of hard, cohesionless 
particles, at various strain rates is: 

      (1) 
 
with  matching our simulation data (Roy et al. 2017), where 
μ0  and μ¥ represent the zero and infinite strain rate limits, respectively, and the characteristic 
dimensionless strain-rate is I0, above which inertia effects considerably kick in. Since our older 
simulations (Roy et al. 2017) concern particle simulations with a very small coefficient of par-
ticle contact friction, μp = 0.01, the dependence of the coefficients in Eq. (1) on friction is not 
considered, however, Shi et al. (2020) extended and generalized the rheology for a wide range 
of coefficients of friction. 
The first correction to the μ(I)-rheology is relevant for soft particles, as based on early results; 
it was originally given as linear additive term to the above rheology for small strain-rates, how-
ever, it can nicely be re-phrased as multiplicative correction factor: 

  fµ(Bo)     (2) 

 
with the dimensionless pressure p = p’ d0 / k, the characteristic pressure at which this correction 
becomes considerable, p0 = 0.9, and the stiffness k = 100 N/m. This correction accounts for a 
range of particle stiffness (or softness), but also for different magnitudes of gravity, as one 
would find in a centrifuge or on the moon. Describing granular flows using such a local ap-
proach, in opposition to non-local models, saves the beautiful simplicity of locality and never-
theless extends the basic model by including neglected features. Additional corrections fµ(Bo) 
for cohesive particles involve non-linear functions of the Bond-number (see Roy et al. 2017; 
Shi et al. 2020; and references therein), but are omitted in the following.  
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Figure 4: Stress-anisotropy, or objective macroscopic friction, sD = ⇥D/p, plotted against
pressure p, with different symbols for different strain-rates, as given in the inset.

with the mean particle diameter d0, and the bulk density, ⌅, as proposed in Ref. (?), neither leads
to a better trend nor a better data collapse for either of the two possibilities.

The µ(I,p)-rheology

The macroscopic friction and the objective macroscopic friction both follow the so-called µ(I)-
rheology:

µ(I) = µ0 + (µ⇥ � µ0)
1

1 + I0/I
, (6)

with a certain analytical relation, as given by (?). The parameters that describe our data are
µ0 = 0.15, µ⇥ = 0.42, and I0 = 0.06, similar to those given by (?). The parameters provide the
quasi-static and rapid-shear limits, as well as the transition in terms of the inertial number I .

However, this law needs a generalization that includes the pressure dependence
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as proposed by (?), with p�0/µ(I)
2 = 40, denoting the dimensionless pressure, p� = p⌅d⇧/k, at

which the effect of softness of the particles becomes dominant. For small I , using µ(I ⇤ 0) = µ0,
this translates to p�0 = 0.9 ⇥ 1 as dimensionless transition pressure, at which the correction factor
in Eq. (7) becomes unphysical; however, such large pressures correspond to enormous overlaps
of 100% and are not considered in most DEM simulations anyway. Note that the correction term
represents the square of the ratio of the strain- and the softness time-scales, so that the power
1/2 makes the correction linear in the ratio of time-scales, for more details see (?).

Furthermore, due to pressure and rapid shear, the density

⇤(I,p) = ⇤c +
p

p�
� I
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respectively increases or decreases, with p� = 0.48, I� = 1.2, and the critical volume frac-
tion ⇤c = 0.65, see Refs. (?; ?). This constitutive relation can be also rephrased in terms of
multiplicative correction factors

⇤(I,p) = ⇤c
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with pc� = p�⇤c = 0.31 and Ic� = I�⇤c = 0.78, which is almost identical to the previous form,
except for very large p and I , which is outside the range of considered parameters.

The dependence of ⇤, and especially ⇤c on contact parameters like the particle friction or
cohesion, and on the granular temperature, is not considered here, for the sake of brevity.
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Both dimensionless state variables can be expressed as a ratios of time-scales, namely  

and  , where the subscripts denote strain-rate-, pressure- and contact-stiffness-time-
scales, respectively. To complete the rheology for soft, compressible particles, a relation for the 
density as function of pressure and shear rate is missing: 

  
gf(Bo)    (3) 

 
with the critical or steady state density under shear, in the limit of vanishing pressure and inertial 
number fc = 0.648, the strain rate for which dilation would turn to fluidization Icf = 0.85, and 
the typical pressure level for which softness leads to huge densities  pcf = 0.33 (Luding et al. 
2016). Both correction terms could be more complex functions, but are presented in their first 
order linear term only, valid only for sufficiently small arguments: Too large inertial numbers 
would fully fluidize the system so that the rheology should be that of a granular fluid, for which 
kinetic theory applies, while too large pressure would lead to enormous overlaps, for which the 
contact model and the particle simulation become questionable. The considered inertial num-
bers are I < 0.1, while the pressures are p < 0.01. Additional corrections gµ(Bo) for cohesive 
particles (Shi et al. 2020) are omitted in the following.  
  
 
 
 
 
 
 
 
 
 

 

 

Figure 2: Density for rapid (left) and moderate (right) rotation frequency, plotted against the radial dis-
tance r, with data from particle simulations (from Luding et al. 2016), using the external rotation fre-
quency f , given above the panels, filtered at three different (approx.) pressure levels, p, as given in the 
inset (i.e. red, green and blue correspond to: close to the surface, in the middle, and closer to the bottom). 
The lines correspond to Eq. (3), with all parameter values given in the main text; the horizontal lines 
give the low stress and strain-rate limit fc that, notably, is not the asymptotic limit. 

From a rapid and moderate external rotation frequency, f, of the split-bottom ring shear cell, 
with split at Rs = 0.085 m, representative data from Roy et al. (2017), are plotted in Fig. 2 
against the radial position. Higher confining stress corresponds to a higher density, deeper be-
low the free surface, while the density is reduced in the shear band, proportional to the local 
shear-rate, due to dilatancy. Overall, the simulation data agree very well with the corrected 
density prediction from the analytical Eq. (3), where only local information enters, besides some 
scatter and more systematic deviations in the tails of the shear band, away from the split, with 
very small local strain rates (the statistics is poor, and the system is not yet in steady state). 
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Figure 4: Stress-anisotropy, or objective macroscopic friction, sD = ⇥D/p, plotted against
pressure p, with different symbols for different strain-rates, as given in the inset.
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The macroscopic friction, i.e., the shear stress ratio µ, is plotted in Fig. 3, against the radial 
position for the same data-sets, in comparison with the classical rheology of Eq. (1) and the 
pressure-dependent rheology, Eq. (2). The pressure dependence is improved when using the 
latter, especially in the tails, for the slower rotation rate, where the classical rheology has no 
pressure dependence. Nevertheless, in the tails the stress ratio does not agree well with theory, 
indicating missing additional correction terms that account for a combination of very low strain-
rate and finite granular temperature effects, playing a role in those regimes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Shear stress ratio μ, for the same simulations as in Fig. 2 (from Luding et al. 2016). Lines 
correspond to Eq. (1), classical rheology (thin lines), or Eq. (2), corrected soft rheology (thick lines); 
parameters are given in main text. The horizontal dotted lines give the constant low strain-rate limit, μ0. 

4 Conclusion and Outlook 

In conclusion, particle simulations can complement experiments, and the micro-macro 
transition can guide the development of new rheological particle-flow or continuum scale rhe-
ology models for density and shear stress ratio. The presented rheology includes and combines 
various mechanisms, as quantified by characteristic dimensionless numbers – for various dif-
ferent material properties including contact friction and attractive forces (Shi et al. 2020). The 
original, simple, scalar µ(I) and f(I) rheology for flowing rigid, cohesionless particles was 
generalized to take into account the effects of large confining stress and/or softness 
(compressibility) of the particles, as well as attractive contact forces (Roy et al. 2017; Shi et al. 
2020). Both the local density and shear stress to pressure ratio are well predicted by an 
improved, pressure dependent local rheology model, especially in the centre of the shear band 
– not so much in the tails, where the mechanism of creep becomes relevant for the shear re-
sistance and needs to be included, as proposed by Roy et al. (2017). The deviations that still 
occur in the tails can be due to several reasons: (i) the statistics is much worse in areas where 
the strain rate is small, (ii) the system has not yet reached the true steady state – as reported 
previously (see Roy et al. 2017 and references therein), (iii) there can be non-local effects as 
encompassed, e.g., by a “fluidity” or granular temperature variable, (iv) there can be a missing 
parameter that encompasses the micro-structure, or further additional local corrections are 
needed, not considered so far. Ongoing research is aiming at finding such further corrections 
for very small strain rates, but also for cohesive particles. As next step the implementation of 
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novel multi-purpose, generalized flow/rheology models into continuum solvers is needed. A 
further goal is the development of fully tensorial flow models, to account for all the non-
Newtonian aspects of particulate and granular matter, for both static and dynamic situations and 
transients as well.  
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