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Abstract— Continuum models are efficient mathematical 

tools used by scientists and practitioners for simulating 

granular materials under diverse loading conditions. 

However, material behaviour is determined by constitutive 

models that typically capture either fluid-like behaviour or 

solid-like behaviour only, often within limited pressure and 

strain rate ranges. In this study, three constitutive models, 

modified Cam-Clay, weakly compressible μ(I)-rheology, and 

a Newtonian fluid are implemented in the Material Point 

Method (MPM). Their differences are compared in a non-

homogeneous, static-dynamic boundary value problem, 

namely two-dimensional flat and inclined column collapse. 

The results show that the extreme case of Newtonian fluid 

cannot support the slope, as expected, while modified Cam-

Clay and μ(I)-rheology form qualitatively similar heaps, 

suggesting that unification is a viable option. Modified Cam-

Clay captures larger density ranges, but has limited 

applicability in dynamic flows, while μ(I)-rheology 

persistently flows when expected to stop. 
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1. Introduction 

Grains and powders are fascinating materials that display 

both solid-like and fluid-like behaviour [1, 2]. Their mechanical 

behaviour at slow strain rates relies on well-established models. 

Frameworks such as Critical State Soil Mechanics (CSSM) and 

Jenike flow theory form an integral part in the design processes 

of engineering systems (e.g., foundations or silos) [3, 4]. 

However, at low consolidation stresses and high shear rates, 

knowledge on the onset and development of flow is limited, 

especially during the transition from a solid-like to a fluid-like 

regime. 

When considering computational cost, numerical 

descriptions that reproduce granular materials as continua, 

triumph over high fidelity particle-level solvers for large 

systems. However, continuum models are usually regime 

specific, and hamper the efforts of modelers to capture the full 

dynamics, states, and transitions, across solid-like and fluid-like 

regimes. 

In this study, we explore the dynamics of three constitutive 

models: (a) modified Cam-Clay, a solid-like rate-independent 

model based on the CSSM framework [4], usually adopted to 

simulate soil; (b) weakly compressible μ(I)-rheology, a fluid-

like steady-state, rate-dependent model, that captures the steady-

state flow behaviour of granular materials; (c) and Newtonian 

fluid, as simple reference model. These models are implemented 

into a Material Point Method (MPM) solver to capture the large 

deformation and material response in boundary value problems, 

i.e., a column collapse under flat and inclined configurations. 

2. Models 

2.1. Modified Cam-Clay 

The modified Cam-Clay is a precursor to many elastoplastic 

CSSM models [3]. The yield surface is an ellipse: 

𝐹 ≡
𝑞2

𝑀2
− 𝑝(𝑝𝑐 − 𝑝) = 0, (1) 

where 𝑀 is the slope of the critical state line (CSL) in the 𝑞 − 𝑝 

space, with 𝑝 = − (
1

dim
) trace(𝛔), 𝑞 = √(3/2)𝒔: 𝒔𝑇, 𝛔 is the 

stress tensor and 𝒔 = 𝛔 + 𝑝𝑰 its deviatoric part. The pre-

consolidation pressure 𝑝𝑐 determines the size of the yield 

surface, and its evolution describes the plastic hardening until 

critical (steady) state is reached, corresponding to failure. The 

flow rule is associated, i.e., the yield surface is taken as the 

plastic potential, therefore the plastic strain increment tensor is 

defined by:  

𝑑𝜺𝑝 =
𝜕F

𝜕𝛔
= 𝑑𝛬 [ 

3

𝑀2
𝒔 + (2𝑝 − 𝑝𝑐)𝑰] , (2) 

where 𝑑𝛬 > 0 is the plastic multiplier, and I is the identity 

tensor. In the CSSM framework, all virgin material states start 

from the isotropic compression line (ICL) and fail on the CSL. 

Those are assumed to be parallel in the ln 𝑣 − ln 𝑝 space [5], 

leading to the hardening rule: 

𝑑𝑝𝑐 = (𝜆 − 𝜅)−1𝑝𝑐𝑑𝜀𝑣
𝑝

, (3) 

and the elastic law: 
𝑑𝑝 = 𝜅−1𝑝𝑑𝜀𝑣

𝑒 . (4) 

where 𝑑𝜀𝑣
𝑒 and 𝑑𝜀𝑣

𝑝
 are the elastic and plastic volumetric strain 

increments, respectively. The parameters 𝜅 and 𝜆 are the slopes 

of the ICL and CSL, respectively. 

2.2 Newtonian fluid 

The total stress tensor for fluid-like models is chosen as 

𝛔 = −𝑝𝑰 + 𝜂𝜺̇𝑑 , (5) 

where 𝜂 is a scalar viscosity, 𝜺̇𝑑  is the deviatoric strain rate 

tensors and relates to the scalar shear strain 𝛾̇ = √(1/2)𝜺̇𝑑: 𝜺̇𝑑
𝑇
. 

Fluid pressure for weakly compressible materials makes use of 

an equation of state (EOS):  

𝑝 = 𝐾 [(
𝜌

𝜌0

)
𝛼

− 1] , (6) 

where 𝛼 is a compressibility parameter (for water  𝛼 = 7), 𝐾 is 

the bulk modulus, 𝜌 and 𝜌0 are the initial and current bulk 

densities. 

2.3 Weakly compressible μ(I)-rheology 

In the case of granular flows, 𝜂 can no longer be assumed to 

be constant, but rather dependent on the stress state and strain 

rate applied. The well-known μ(I)-rheology [1, 6] is a model for 

uniform steady granular shear flows of perfectly rigid, 

frictionless particles. The dimensionless inertial number relates 

the pressure state of the flow, and shear strain rate, as 

𝐼 =
𝛾̇𝑑0

√𝑝/𝜌𝑝

, (7) 

where 𝑑0 and 𝜌𝑝 are the particle diameter and density, 

respectively. The bulk friction in 𝑞 − 𝑝 space is the ratio 𝜇 =

𝑞/√3𝑝. The relation between bulk friction and inertial number 

is:   

𝜇(𝐼) = 𝜇0 + 
𝜇𝑑 − 𝜇0

𝐼0

𝐼
+ 1

, (8)
 

where  𝐼0 is a characteristic dimensionless inertial constant, 𝜇0 

and 𝜇𝑑 represents the zero and infinite strain rate limits, 



  

respectively. A method of determining the viscosity in (7), is by 

assuming the alignment condition (i.e., shear strain rate and 

deviatoric stress are co-axial and their eigenvalues carry equal 

ratios) and a partial regularization [6,7]: 

𝜂(𝐼, 𝑝) =
𝜇0𝑝

√𝛾̇2 + 𝑟2
+ 

𝜇𝑑 − 𝜇0

𝐼0

𝐼
+ 1

𝑝

 𝛾̇
, 𝛾̇ > 0 (9)

 

where 𝑟 = 0.0001 is a parameter used to regularize the small 𝛾̇ 

and 𝐼 divergences. We solve pressure using (6) with 𝛼=1 (See 

Ref [8] for details). 

3. Method 

An Affine Particle in Cell (APIC) explicit MPM using cubic 

splines is employed. A frozen pre-release version of the 

(developing) code is openly made available to the public [9]. 

Two setups are studied. In the first case study, a granular column 

at a low stress state is allowed to collapse under gravity with the 

acceleration 𝑔 = 9.8 m. s−2. Next, an identical setup, but the 

frame tilted to an 35° angle enforces more dynamic flows. In 

both cases, we assume plane strain conditions. 

The initial column height and width are 0.4 and 0.2 m, 

respectively. A constant time step  𝑑𝑡 = 3 × 10−6 s and a cell 

size of ℎ = 0.00625 m with 4 material points per cell are used. 

The domain height and width are 0.56 and 1.2 m, respectively. 

The floor is set to no slip and walls to perfect slip boundary 

condition. The material is assigned a uniform initial density of  

1300 kg. m−3. The parameters of the three models in Section 2 

are chosen arbitrarily for demonstration purposes as (a) 

modified Cam-Clay: 𝑀 = 0.6614,  𝜆 = 0.0186,  𝜅 = 0.0010, 

and 𝜈 = 0.3; (b) weakly compressible 𝜇(𝐼)-rheology: 𝜇0 =
0.3819, 𝜇𝑑 = 0.5718, 𝐼0 = 0.279,  𝐾 = 26000 N. m−2, 𝑑 =
0.0053 m and 𝜌𝑝 = 2000 kg. m−3; (c) Newtonian fluid with 

K=26000 N. m−2 and η=0.002 Pa.s.  

4. Results 

Fig. 1 shows a snapshot of the subsequent heaps after the 

collapse with the three models in Section 2. The modified Cam-

Clay and μ(I)-rheology are similar, with the latter showing a 

slightly longer runout distance, whereas the Newtonian model 

shows fluid-like behaviour, not supporting a finite slope. The 

μ(I)-rheology predicts a smaller shear stress within the bulk, 

compared to the modified Cam-Clay. The simulation was 

stopped at 1.2 s. Modified Cam-Clay showed a (decreasing) 

kinetic energy of 5.8 × 10−5 J, while μ(I)-rheology continue to 

flow slowly, with a kinetic energy of 2.2 × 10−4 J. 

 

Figure 1.  Flat column collapse of three models (a) modified Cam-Clay, (b) 

weakly compressible μ(I)-rheology and (c) Newton fluid. Colour bar represents 
von-Mises shear stress. Green and yellow lines are rulers. Note, domain boxes 

are clipped for visibility purposes.  

The simulations in Fig. 2 reveal that the modified Cam-Clay, 

predicts larger density peaks than the 𝜇(𝐼)-rheology. However, 

the modified Cam-Clay (designed for finite confining stresses) 

suffers from instabilities as the bulk density decreases and the 

pressure approaches zero, as indicated by some missing material 

points in Fig. 2 (a), that take undefined values. On the contrary, 

the 𝜇(𝐼)-rheology flows and reaches the boundary. The 

Newtonian fluid flows much faster and further than the granular 

flow and reached the wall much earlier due to overall lower 

viscosity. The details and origins for these differences will be 

discussed in more details elsewhere [10].  

 

Figure 2.  Inclined column collapse of three models (a) modified Cam-Clay, 

(b) weakly compressible μ(I)-rheology and (c) Newton fluid. Domain boxes 

are clipped for visibility. The viewpoint is rotated at a 35° angle. 

5. Conclusion 

Overall, this study strengthens the idea that the modified 

Cam-Clay model and weakly compressible μ(I)-rheology are 

suitable to reproduce granular flows, though in different 

pressure and strain regimes. Either model has problems in one 

or the other extreme case. Therefore, a multi-regime model 

could unify both models, capturing compressible, quasi-static 

deformations as well as high/low strain rate dynamics and 

low/large pressures. Interesting features observed from DEM 

simulations of granular flows with soft particles [2] could 

potentially be captured by a unified model.  
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