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Abstract. In this brief study, the stress is averaged over a two-dimeasrigid particle (disk) that is in contact with other
objects via localized (point) contacts. In contrast to fes studies, the rotation dynamics of the particles is t&ken into
account here The stress contains four terms, (i) the staisssdue to forces, (ii) the dynamic stress due to traosiati
velocity fluctuations, (iii) the dynamic stress due to rimtadl velocity fluctuations, and (iv) the stress due to clesngf
angular velocities due to torques.
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INTRODUCTION

One of todays great challenges in material science and gahigsihe macroscopic description of the material behavior
of granular media which are inhomogeneous, nonlinear, &atdkred on a “microscopic” scale [1, 2, 3, 4]. This is
due to the intrinsically inhomogeneous stress distrilutiqyranular assemblies and the corresponding stresarietw
involving large fluctuations of contact forces. Furthermydhe material is nonlinear due to the nature of the contact
forces: If a contact opens, the interaction force vanishewith other words, no tensile but only compressive forces
are possible in the absence of cohesion. This nonlinedtitys for a reorganization of the contact-network due to
deformation.

While there is quite broad consensus on how stress shoulsdraged [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20], the averaging of strain is still a subjectistdssion, see Ref. [21] and references therein. In many
traditional studies the stress is averaged under the asgumyd static equilibrium [8, 9, 22, 11, 13, 23]. However,
in this study we allow for a dynamic stress, where the pasiare not in equilibrium and thus moving and rotating.
The stress is first averaged over single particles, for whéskeral simplifications can be applied. Finally, the résglt
stress tensor is interpreted term by term.

STRESS AVERAGING

In a first step, the usual volume average of stress is replacadsum over particle averaged internal stresses
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wherep denotes the particle with volumé&® and the sum runs over all particles within the voluvhé The integral

on the right hand side is carried out only over a single plar{ighere the stress in the free volume between particles is
assumed to vanish and thus neglected). This operationleil ais to deal with particle averaged stresggsinstead

of volume averages. For the sake of simplicity we skip thesstisuperscrigi in the following. -

1 Note that the weight factdv P in the sum cancels the prefactofMIP in the implicit definition of the particle stress, where thatjzle stress is
averaged over points strictly inside the particle only.sTikimatter of choice andP could be replaced by at all instances, which would define
the particle stress in its Voronoi cell, Wi@pr =V. We do not apply this latter definition — which would not charlge averaged stress anyway
— since the volume¥_ are a-priori unknown and in general different per partiola disordered packing.

Assume a single particlp, with VP = a2, and constant stress, in its inside. When it occupies, e.g., a square cell with Rl = 4a2, the
averaged internal particle stressii8 = gy, while the average stress over the volumeis vdy, with volume fractionv =VP/V
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In order to proceed, we first introduce the identity for ttensposed stress
g’ = —x@dvg,
where grad and div are the usual vector operator derivatwtbsrespect tX, gradX is the unit tensor, ang is the
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dyadic product of vectos or tensors. Combinig Eqgs. (1) ahgi€dds
g / TV = i/ div(x® o) — X diva]dV’
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The law of momentum balance in Eulerian reference frameahirolume occupied by particfeat timet, reads

(4)
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pX+ pv-gradi = diva + pb
where the double-dots are partial derivatives with resfpethe andb is an external acceleration, e.g. gravity. Inserting

Eq. (4) in Eqg. (3) (and restricting to one particle) leads to
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where the first term comes from Gauss’ theorem that allowsatostate a volume integral into a surface integral
The term that involves the constant acceleration is meng@edie second term. The three stress contributions will be

addressed seperately below
Thesurfaceintegral of Eq. (5)

Using the Cauchy theorefi= o - fi and the definitiomlA = AdA, with the normai to the boundargV P of particle
(6)

p, allows to transform the first p:art of Eg. (5) into a sum [23]
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after replacing the surface stresses active at the cortigdtse corresponding forcef€. Note that here very small
contact areas are assumed, so that the integral can beowmaesf into the sum in Eq. (6), which represents the

transition from the Eulerian (continuum) to the Lagrandidiscrete) picture, respectively
Introducing the branch vectd® by the vector additioR® = XP + 1P¢, as shown in Fig. 1, leads to
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With Newtons law for the motion of particle with massm
mP =Y fC+mb,
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one finally gets
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for the first integral in Eq. (5)

2 The transposed stress is introduced on the left hand sidej.of2 just to keep th& -symbol out of the integrals for convenience. The stress
in Eq. (1) is then just the transposed of the transposedsstfes symmetric stresses, tfiecould be dropped completely, however, our result is

non-symmetric in general, dynamic situations



FIGURE 1. Schematic plot of two particleg andq with their common contaat.

The volumeintegral of EqQ. (5)

The volume integral
G- Lt / (%@ p%— %2 pb) oV’ (10)
Jvp

contains those terms acting on all material points of plarpicTherefore, one has to introduce a vedtathich points
from the center of mass of the particle to the material pairgile so thak = xP + I, see Fig. 2.

FIGURE 2. Schematic plot of a particlp and its material poing.
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where the vectorgP andb are constant, so that one can draw them out of the integralifitegral f,p pdV’ is the
massm of the particle as implied in the following. In separate terfme stress reads
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The fourth term, Eq. (15), and the sixth term, Eq. (17), anige to the fact thaﬁ,pprdv’ is the definition of the

center of mass anldis defined relative to the center of mass. For the rotatiorwion of a rigid body with angular
velocity w around its center of mass one has
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so that also the second term, Eq. (13), equals zero becatis€oband @ are constant over the rigid particle and
thus can be drawn out of the integral. Finally, ustdg (& x 1) = @(&-1) — [(w?) = —I(w?), since® andl are
perpendicular in 2D disks rotating around their axis of tiotaal symmetry, one gets
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Using the identity @ ((i) x)=—-(®l)x @and drawing the constants out of the integrals, yields
g _——[mxp (X -B)+ 0 x D+ 0] | (20)

after introducing the symmetric tensr= — |, pr®r.

Thedynamic stressin Eg. (5)

The integral
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can be simplified by transforming the components of the term
—XaVyVg,y = —(XaVyVg ).y + Xa WyVg +XaVyyVp , (22)

where the, y replaces the gradient. The last term on the r.h.s. vanishesalthe incompressibility of the particles

vy,y = 0. The first term leads to a surface integral using the Cauuotgrem, however, it vanishes sintd = 0, and
the surface integral over termi8 - fi also vanishes due to the symmetric particle shape. The deéctayral survives
and, after replacing gratby the unit tensor, has to be treated in a way similar to thamelintegral in the previous

subsection. Therefore, we replace the vegtoy X = X + I, so that
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Since the mixed terms contaif @ I and thus vanish due to the definitioniofThe dyadic velocity tensquxP @ xP
can be easily integrated so that the remaining integrabdost
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The integral over the first term Ieadsmazwzlz/z, with the particle radius, and the second term is ag@nso that
the dynamic stress is

— 1
T _ P s P
gdp{v VP4 - awl} VP g (25)



The combined particle stress

Inserting Egs. (9), (20), and (25) in Eq. (5), finally leads to
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with the moment of inertia tensor for rotation around th&disnterf , = (m/2)a2I:.

The many-particle macroscopic stress

Inserting the internal averaged particle stress from Eg) i{&o Eq. (1) finally leads to the macroscopic averaged
many particle stress:
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whereVP = Vi, + GP in Eq. (26) contained still both the average center of masy (@locity and the fluctuation
velocitiesu. The constant, moving reference frame * stress = vcm®vcm is divergence-free in Eq. (4) and
therefore can be disregarded in order to gain objectlwtyfme mdependence of the stress.

DISCUSSION

The first stress term in Eq. (26) is the well-known, statictdbntion to the stress tensor and the second term is
the dynamic (kinetic) contribution due to the fluctuatingtjwde motion with respect to the Eulerian reference frame
(— for details see the kinetic theory of gases), i.e. a kinatiergy density. The third, asymmetric term is related
to the change of angular velocity and, thus, couples theemuilibrium translational degrees of freedom to the
non-equilibrium rotational motion. Finally, the last teliethe rotational energy density, paralleling the dynamic,
translational contribution to the stress tensor. Note thatformulation is not identical with the improved stress
formulation as recently proposed by Goldhirsch [20], whitlprinciple allows for non-symmetric stress also in the
case of static equilibrium.

Comparison of the different analytical stress predictimm®ng each other, with particle simulation results and with
experiments is the next step to be done in order to gain ingorowight about the effects of dynamics on the stress in
granular media.

OUTLOOK

After having performed the above calculations with variassumptions (rigid disk in a two dimensional system) one
might wish to compute the stress tensor for the more genasal af three-dimensional, possibly non-spherical, object
with internal degrees of freedom like vibrational modes.

While the generalization to 3D spheres sees straightfatyae consequences of a non-sperical geometry and some
non-rigidity might complicate the integrals too much taalla comparatively straight approach.
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