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Abstract. In this brief study, the stress is averaged over a two-dimensional rigid particle (disk) that is in contact with other
objects via localized (point) contacts. In contrast to previous studies, the rotation dynamics of the particles is alsotaken into
account here The stress contains four terms, (i) the static stress due to forces, (ii) the dynamic stress due to translational
velocity fluctuations, (iii) the dynamic stress due to rotational velocity fluctuations, and (iv) the stress due to changes of
angular velocities due to torques.

Keywords: dynamic stress, rotations, averaging, fluctuations, non-equilibrium
PACS: 45.70, 47.50+d, 51.10.+y

INTRODUCTION

One of todays great challenges in material science and physics is the macroscopic description of the material behavior
of granular media which are inhomogeneous, nonlinear, and disordered on a “microscopic” scale [1, 2, 3, 4]. This is
due to the intrinsically inhomogeneous stress distribution in granular assemblies and the corresponding stress-networks
involving large fluctuations of contact forces. Furthermore, the material is nonlinear due to the nature of the contact
forces: If a contact opens, the interaction force vanishes or, with other words, no tensile but only compressive forces
are possible in the absence of cohesion. This nonlinearity allows for a reorganization of the contact-network due to
deformation.

While there is quite broad consensus on how stress should be averaged [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20], the averaging of strain is still a subject of discussion, see Ref. [21] and references therein. In many
traditional studies the stress is averaged under the assumption of static equilibrium [8, 9, 22, 11, 13, 23]. However,
in this study we allow for a dynamic stress, where the particles are not in equilibrium and thus moving and rotating.
The stress is first averaged over single particles, for whichseveral simplifications can be applied. Finally, the resulting
stress tensor is interpreted term by term.

STRESS AVERAGING

In a first step, the usual volume average of stress is replacedby a sum over particle averaged internal stresses

σ̄ =
1
V

∫

V
σdV ′ =

1
V ∑

p
V pσ̄ p :=

1
V ∑

p

∫

Vp

σdV ′ , (1)

wherep denotes the particle with volumeV p and the sum runs over all particles within the volumeV . 1 The integral
on the right hand side is carried out only over a single particle (where the stress in the free volume between particles is
assumed to vanish and thus neglected). This operation will allow us to deal with particle averaged stressesσ p instead
of volume averages. For the sake of simplicity we skip the stress-superscriptp in the following.

1 Note that the weight factorV p in the sum cancels the prefactor 1/V p in the implicit definition of the particle stress, where the particle stress is
averaged over points strictly inside the particle only. This is matter of choice andV p could be replaced byV p

c at all instances, which would define
the particle stress in its Voronoi cell, with∑p V p

c = V . We do not apply this latter definition – which would not change the averaged stress anyway
– since the volumesV p

c are a-priori unknown and in general different per particle in a disordered packing.
Assume a single particlep, with V p = πa2, and constant stressσ0 in its inside. When it occupies, e.g., a square cell with volumeV = 4a2, the
averaged internal particle stress isσ p = σ0, while the average stress over the volume isσ̄ = νσ0, with volume fractionν = V p/V



In order to proceed, we first introduce the identity for the transposed2 stress

σT = (grad~x) ·σT = div(~x⊗σ)−~x⊗divσ , (2)

where grad and div are the usual vector operator derivativeswith respect to~x, grad~x is the unit tensor, and⊗ is the
dyadic product of vectos or tensors. Combinig Eqs. (1) and (2) yields

σ̄T = (σ̄ p)T =
1

V p

∫

V p
σT dV ′ =

1
V p

∫

V p
[div(~x⊗σ)−~x⊗divσ ]dV ′ , (3)

The law of momentum balance in Eulerian reference frame, forthe volume occupied by particlep at timet, reads

ρ~̈x + ρ~v ·grad~v = divσ + ρ~b , (4)

where the double-dots are partial derivatives with respectto time and~b is an external acceleration, e.g. gravity. Inserting
Eq. (4) in Eq. (3) (and restricting to one particle) leads to

σ̄T = 1
V p





∫

∂V p
~x⊗σ ·d~A

︸ ︷︷ ︸

−

∫

V p
~x⊗ρ(~̈x−~b)dV ′

︸ ︷︷ ︸

−

∫

V p
~x⊗ρ(~v ·grad~v)dV ′

︸ ︷︷ ︸



 ,

σ̄T
s

−σ̄T
v

−σ̄T
d

(5)

where the first term comes from Gauss’ theorem that allows to translate a volume integral into a surface integral.
The term that involves the constant acceleration is merged into the second term. The three stress contributions will be
addressed seperately below.

The surface integral of Eq. (5)

Using the Cauchy theorem~t = σ ·~n and the definitiond~A =~ndA, with the normal~n to the boundary∂V p of particle
p, allows to transform the first part of Eq. (5) into a sum [23]:

σ̄T
s

=
1

V p

∫

∂V p

(
~x⊗~t

)
dA =

1
V p ∑

c
~xc

⊗~f c , (6)

after replacing the surface stresses active at the contactsby the corresponding forces~f c. Note that here very small
contact areas are assumed, so that the integral can be transformed into the sum in Eq. (6), which represents the
transition from the Eulerian (continuum) to the Lagrangian(discrete) picture, respectively.

Introducing the branch vector~lpc by the vector addition~xc =~xp +~lpc, as shown in Fig. 1, leads to

σ̄T
s

=
1

V p

[

~xp
⊗∑

c

~f c +∑
c

~lpc
⊗~f c

]

. (7)

With Newtons law for the motion of particlep with massm,

m~̈xp = ∑
c

~f c + m~b , (8)

one finally gets

σ̄T
s

=
1

V p

[

m~xp
⊗ (~̈xp

−~b)+∑
c

~lpc
⊗ ~f c

]

(9)

for the first integral in Eq. (5).

2 The transposed stress is introduced on the left hand side of Eq. (2) just to keep theT -symbol out of the integrals for convenience. The stress
in Eq. (1) is then just the transposed of the transposed stress. For symmetric stresses, theT could be dropped completely, however, our result is
non-symmetric in general, dynamic situations.
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FIGURE 1. Schematic plot of two particlesp andq with their common contactc.

The volume integral of Eq. (5)

The volume integral

σ̄T
v

= −
1

V p

∫

V p

(

~x⊗ρ~̈x−~x⊗ρ~b
)

dV ′ (10)

contains those terms acting on all material points of particle p. Therefore, one has to introduce a vector~l which points
from the center of mass of the particle to the material pointsinside so that~x =~xp +~l, see Fig. 2.
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FIGURE 2. Schematic plot of a particlep and its material point~x.

This leads to

σ̄T
v

= −
1

V p

∫

V p
(~xp +~l)⊗ρ

(

~̈xp +~̈l−~b
)

dV ′ , (11)

where the vectors~xp and~b are constant, so that one can draw them out of the integral. The integral
∫

V p ρdV ′ is the
massm of the particle as implied in the following. In separate terms the stress reads

σ̄T
v

= − (1/V p)[ +m~xp
⊗~̈xp (12)

+~xp
⊗

∫

V p
ρ~̈ldV ′ (13)

−m~xp
⊗~b (14)

+

(∫

V p
ρ~ldV ′

)

⊗~̈xp (15)

+

∫

V p
ρ~l⊗~̈ldV ′ (16)

−

(∫

V p
ρ~ldV ′

)

⊗~b ] (17)



The fourth term, Eq. (15), and the sixth term, Eq. (17), vanish due to the fact that
∫

V p ρ~ldV ′ is the definition of the
center of mass and~l is defined relative to the center of mass. For the rotational motion of a rigid body with angular
velocityω around its center of mass one has

~̇l = ~ω ×~l , and
~̈l = ~̇ω ×~l +~ω ×~̇l

= ~̇ω ×~l +~ω × (~ω ×~l)

(18)

so that also the second term, Eq. (13), equals zero because both ~ω and ~̇ω are constant over the rigid particle and
thus can be drawn out of the integral. Finally, using~ω × (~ω ×~l) = ~ω(~ω ·~l)−~l(ω2) = −~l(ω2), since~ω and~l are
perpendicular in 2D disks rotating around their axis of rotational symmetry, one gets

−
1

V p

[

m~xp
⊗ (~̈xp

−~b)+

∫

V p
ρ~l ⊗ (~̇ω ×~l−ω2~l)dV ′

]

. (19)

Using the identity~l ⊗ (~̇ω ×~l) = −(~l ⊗~l)× ~̇ω and drawing the constants out of the integrals, yields

σ̄T
v

= −
1

V p

[

m~xp
⊗ (~̈xp

−~b)+ θ × ~̇ω + ω2θ
]

, (20)

after introducing the symmetric tensorθ := −
∫

V p ρ~l ⊗~l.

The dynamic stress in Eq. (5)

The integral

σ̄T
d

= −
1

V p

∫

V p
(~x⊗ρ~v ·grad~v)dV ′ (21)

can be simplified by transforming the components of the term

−xαvγ vβ ,γ = −(xαvγ vβ ),γ + xα ,γvγ vβ + xαvγ,γ vβ , (22)

where the,γ replaces the gradient. The last term on the r.h.s. vanishes due to the incompressibility of the particles

vγ,γ = 0. The first term leads to a surface integral using the Cauchy theorem, however, it vanishes since~n ·~̇l = 0, and
the surface integral over terms~vp

·~n also vanishes due to the symmetric particle shape. The second integral survives
and, after replacing grad~x by the unit tensor, has to be treated in a way similar to the volume integral in the previous

subsection. Therefore, we replace the vector~v by~̇x = ~̇xp +~̇l, so that

σ̄T
d

=
1

V p

∫

V p

(

ρ(~̇xp +~̇l)⊗ (~̇xp +~̇l)
)

dV ′ . (23)

Since the mixed terms contaiṅ~xp
⊗~̇l and thus vanish due to the definition of~l. The dyadic velocity tensorρ~̇xp

⊗~̇xp

can be easily integrated so that the remaining integral contains

~̇l ⊗~̇l = (~ω ×~l)⊗ (~ω ×~l) = ω2(l2I −~l⊗~l) . (24)

The integral over the first term leads toma2ω2I/2, with the particle radiusa, and the second term is againθ , so that
the dynamic stress is

σ̄T
d

= ρ
[

~vp
⊗~vp +

1
2

a2ω2I

]

+
1

V p ω2θ . (25)



The combined particle stress

Inserting Eqs. (9), (20), and (25) in Eq. (5), finally leads to

(σ̄ p)T = σ̄T =
1

V p

[

∑
c

~lpc
⊗ ~f c + m~vp

⊗~vp
−θ × ~̇ω + θ

0
ω2

]

, (26)

with the moment of inertia tensor for rotation around the disk centerθ
0
= (m/2)a2I.

The many-particle macroscopic stress

Inserting the internal averaged particle stress from Eq. (26) into Eq. (1) finally leads to the macroscopic averaged
many particle stress:

σ̄ =
1
V ∑

p
V pσ̄ p =

1
V ∑

c∈V

~f c
⊗~lpc +

1
V ∑

p

[

m~up
⊗~up

− ~̇ω p
×θ + θ

0
(ω p)2

]

, (27)

where~vp = ~vcm +~up in Eq. (26) contained still both the average center of mass (cm) velocity and the fluctuation
velocitiesu. The constant, moving reference frame “stress”σ̄

cm
= M

V ~vcm ⊗~vcm is divergence-free in Eq. (4) and
therefore can be disregarded in order to gain objectivity and frame independence of the stress.

DISCUSSION

The first stress term in Eq. (26) is the well-known, static contribution to the stress tensor and the second term is
the dynamic (kinetic) contribution due to the fluctuating particle motion with respect to the Eulerian reference frame
(→ for details see the kinetic theory of gases), i.e. a kinetic energy density. The third, asymmetric term is related
to the change of angular velocity and, thus, couples the non-equilibrium translational degrees of freedom to the
non-equilibrium rotational motion. Finally, the last termis the rotational energy density, paralleling the dynamic,
translational contribution to the stress tensor. Note thatour formulation is not identical with the improved stress
formulation as recently proposed by Goldhirsch [20], whichin principle allows for non-symmetric stress also in the
case of static equilibrium.

Comparison of the different analytical stress predictionsamong each other, with particle simulation results and with
experiments is the next step to be done in order to gain improved insight about the effects of dynamics on the stress in
granular media.

OUTLOOK

After having performed the above calculations with variousassumptions (rigid disk in a two dimensional system) one
might wish to compute the stress tensor for the more general case of three-dimensional, possibly non-spherical, objects
with internal degrees of freedom like vibrational modes.

While the generalization to 3D spheres sees straightforward, the consequences of a non-sperical geometry and some
non-rigidity might complicate the integrals too much to allow a comparatively straight approach.
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