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ABSTRACT

Many important natural processes involving flowotlgh
porous media are characterized by large filtratighocity.
Therefore, it is important to know when the traiositfrom
viscous to the inertial flow regime actually occimsorder to
obtain accurate models for these processes. Inpéyier, a
detailed computational study of laminar and ingrtia
incompressible, Newtonian fluid flow across an warraf
cylinders is presented. Due to the non-linear doution of
inertia to the transport of momentum at the poralescwe
observe a typical departure from Darcy’s law afisightly high
Reynolds number (Re). Our numerical results shoat the
weak inertia correction to Darcy’s law is not a @ior a cubic
term in velocity, as it is in the Forchheimer edguat Best fitted
functions for the macroscopic properties of porowsdia in
terms of microstructure and porosity are derivedd an
comparisons are made to the Ergun and Forchheiefetions
to examine their relevance in the given porositgt & range.
The results from this study can be used for vexiftm and
validation of more advanced models for particle idflu
interaction and for the coupling of the discretensént method
(DEM) with finite element method (FEM).

1. INTRODUCTION

The flow of an incompressible fluid through antispic
porous medium is a physical phenomenon which coriymon
occurs in ground-water flows and oil reservoirs. stiporous
media are granular, but some are composed of veng |
particles/cylinders and therefore may be describgdibrous
media. Common examples of fibrous media includeustial

filters, biological tissues and certain polymer rbeames. In
contrast to these static particle/fiber matrix eyst, detailed
calculations of heavily loaded, fluid with mobilangicle flows
are also of interest. Solution methods are maialeld on two-
fluids (TF) or discrete particle method (DPM) [1, Blowever,
these methods require the knowledge of constitutiosure
laws which describe the momentum exchange betwesefiid
and the particles. Such a correlation is dependenimany
parameters of the system, such as the Reynolds ewurtiite
solids volume fraction or porosity and the microsture of the
pore domain.

For the case of creeping flow i.e., at near zeeyriglds
number (Re<<1), the pressure gradient and the f&dgvhave a
linear relation, known as Darcy’s law:

_H
-Op=£u
k (1)

wherelp, u,U andk are pressure gradient, viscosity, superficial

velocity and permeability of the porous media, extively. On
the contrary, at small but nonzero Reynolds numiRees=1),

the pressure gradient is a nonlinear function efftbw rate as
experimentation shown by Forchheimer [3]. He intiidathat
there exists a quadratic term of flow rate when Reynolds
number is sufficiently high and corrected the Daeguation
into the Forchheimer equation:

~Op=£u + g
k @)
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wherep is the density of the fluid and the constanis referred
to as the non-Darcy coefficient and, like the pexhildy, is an
empirical
microstructure of the porous medium.

The inertial effect in periodic and random arrags been
the focus of a large number of studies. Koch andidLa
simulated moderate Reynolds number flows throughogie
and random arrays of aligned cylinders [4] and sghé5] in
two and three dimensions. Their study showed thatiniertial
term made the transition from linear to quadratithie random
arrays. The inertial effect became smaller when \tbleime
fraction approached close packing.

Direct numerical simulation appeared recently as
practical alternative to examine the transition flofv from
linear to nonlinear behavior. For example, by sujvithe
Navier—Stokes (NS) equations for a two-dimensiaisdrdered
structure with high porosity, Andrade et al. [6]ntanstrated
that the incipient departure from the Darcy law bambserved
in the laminar regime of fluid flow without inclualj turbulence
effects. To date, mainly empirical relations hawsei used,
such as the Ergun [7] and its components, the Gakaaeny
(Blake-Kozeny) and Burke-Plummet equations, (Bitdag,
[8]). Liu et al [9] devised a semi-empirical forraufor the
pressure gradient which incorporates the tortupsitye
curvature ratio and the variation of the pore cisEsional

area. Jackson and James [10] conducted a compiehens

review of the literature on a variety of theoreltioaodels and
presented a large collection of experimental data doth
natural and synthetic fibrous media. Several agttabso tried
to derive these empirical laws by averaging thee mmale flow
equations either using the homogenization technjijleor the
volume averaging method [12]. Many of these senyienal
relations are only valid for a certain range ofgsities and Re
numbers. This has motivated the
development of relationships
parameters, such as permeability and the DarcyhRenmer
term i.e. inertia term, for different kinds of pasomedia and
flow regimes [13-14].

The objective of this paper is to present a mapegal
form of the inertial term based on a detailed érétement (FE)
simulation of a unidirectional steady fluid flow rass a
periodic array of two-dimensional cylinders at elifint
porosity. Non-Darcy behavior is expected to playiraportant
role due to the combination of high porosity anghhpressure
gradient. Comparisons are made to the Ergun anchReimer
relations to examine their validity in this porgsiand Re
regime.

2. MODEL DEVELOPMENT

Previous studies of fluid flow in suspensi@amd fixed beds
have been based on methods in which the veloodld fis

value that depends on the porosity ané th

research towards th
to describe macroscopi

expressed in terms of multipole expansions [4].sEhmethods
are suitable for Stokes flow [15] or inviscid floW6]. To
simulate the incompressible Navier-Stokes (NS) tguos at
finite values of the Reynolds number, we will use finite
element method (FEM). Both hexagonal and squarysrof
parallel cylinders perpendicular to the flow diient are
considered in this section as shown in Figure &cigitization is
done, using unstructured triangular elements Witgrid points
in the range of 12000 M < 45000.
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Fig. 1: The geometry of the unit cells used fordgdare and (b)

hexagonal configurations, where the red arrow igis the
flow direction.

The basis of this model is the assumption thatpibwus
media can be divided into representative volumemetds
(RVE) or unit cells. The particle friction factors ithen
determined by modelling the flow through these, enor less,
idealized cells. At the left and right pressured an the top and
bottom periodic-boundary conditions are applied.-dNp
boundary condition, i.e., zero velocity is appliea the surface
of the particles/fibers. The average/superficidbeity within
the porous media in the unit cell is then defined a

u =V1V_[udv: &(u) ©)

wheree, u, <u>, V andV; are porosity, the local microscopic
velocity of the fluid, corresponding intrinsic pleasveraged
velocity, total volume of the unit cell and voluroé the fluid,
respectively. The superficial velocity is then cédded from the
results of our FEM simulations. Knowing the vis¢psti, the
pressure droplp over the length of the unit cdll, and using
Eq. (1), the permeability is obtained. Simulating, only the unit
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cell/representative volume element (RVE) allowslging many
different configurations and geometries. Nevertbglesome
studies with larger systems were performed and sHothat
flow behaviour is independent of the system size tite
periodic structures. This was confirmed not onlyléav Re, but
also for Re=1.

3. NUMERICAL RESULTS

In this section some of the main results obtaitredugh
many high resolution FEM simulations are presentiedrigure
2, the surface plot of the horizontal velocity diedt constant
pressure gradienAp/L=30 [Pa/m] is shown for the square
configuration and different porosities. We defite tparticle
Reynolds number Reas the ratio of quadratic inertia term to
the Darcy viscous drag term:

pud,
R = "
- e)u @

whered, is the diameter of the particle/cylinder. The ass@d
particle Reynolds number, Réor each porosity is also shown
in Figure 2. In our simulations, the Ris varying between
1<Rg<100
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Fig. 2: Surface plot of the horizontal velocitylfiet constant
pressure gradienhp/L=30 [Pa/m])at different porosities (a)
e =0.8, (b)e = 0.7, (c)e = 0.6, (d)e = 0.5 for the square
configuration.

It can be seen that at low porosities (Darcy'smey we
have the same velocity profile at inlet and outlétis simply
happens, because of mass balance, the symmetnhiof t
geometry and no non-linearity in the flow. Howevdry
increasing the porosity, the flow regime changesifiDarcy to
inertia (non-linear) and becomes non-symmetric wéigpect to
the vertical axis.

We generalize Eg. (2) and assume that the predsopeis
related to the superficial velocity through the ®aterm, i.e.,
wU/k, plus an inertia term, which is a function of tfieid
properties, porosity, particle diameter and supiifivelocity
d(e, p, 1, t, U). Therefore we have:

_%:%U +g(£,p,#1dp1u) (5)

In analogy to the definition of the Reynolds numbee.
ratio of the nonlinear to the linear term in Eq), (e define a
generalized Reynolds number Rs:

gle.o,p.d, V)
HI Tk (6)

Re =

and similarly a generalized/modified friction factb, as the
ratio of total drag to the inertial drag:

Ap/L

f=-
g(g,p,,u,dp,u ) @

Rewriting Eq. (5) in terms of the modified/gen&rad
Reynolds number and friction factor we get:

Re (8)

In Figure 3 the variation of the modified frictidactor
versus modified Reynolds number is shown at differe
porosities for square configurations. The resulltapse on the
universal power law, i.e. Eq. (8).

Assuming thaf’=10 (the inertial drag became 10% of the
total drag) is the limit of the non-Darcy effectZ[1the critical
Re is obtained as Re 0.1 at which the modified friction factor
starts to deviate from a straight line (see Fig@)e At
sufficiently low Re, the 1/Re term is dominant and all data
collapse on the laminar regime (straight line). iduer, at
Re > Re, the second term becomes important and we can not
neglect the inertia. Therefore, the data fits to @9 In order to
be able to compare our results with previous resuét define
the particle friction factof, as:
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_ Opd,
p pLJ 2 (9)

f

The comparison of our square configuration FEMultes
with previous data at different porosities is shawrigure 4.
For completeness, the closed form relations ofiptesvtheories
are listed in Table 1.
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Fig. 3: Variation of the modified friction factof,, versus
modified Reynolds number, Re’, at different poriesifor
square configurations. Transition to inertial regiotcurs at
Re’ = 0.1

It is seen that at low porosities and high,Reur results
approach results of Kurten et al. [19] but at logy,Rhe results
of Benyahia et al. [18] are closer. It should beedothat
previous results, namely, Benyahia et al. [18] Kudten et al.
[19] were the modified Forchheimer equations foargdar
packed beds, i.e. 3D random spherical particle ipgck
However, our results are for regular two-dimensicsguare
configurations. To our best of knowledge, theresdoat exist a
2-D relation in this range of Rand it is just an attempt to see
if the 3-D relations could be also relevant for Zylinders.

The relation between the proposed modified Reyold
number, Re and the particle Reynolds number,Re shown in
Figure 5. As we see, this relation also dependghenpore
structure, namely square or hexagonal configuratiad on the
porosity.

Tablel: Available modifications of Ergun’s equati@i,
namely, Benyahia et al. [18] and Kurten et al. [18}erms of
particle friction factoff,, and particle Reynolds numberRe

Range of
Ref. fo validity
1-£Y 150
[7] [83)[% + 175} £<08
p
18q1_f) +9F3(1—$) <06,
Re ¢
[18] P . | Re,> 2F,
F, =0.0673+02141-£)+0.0232 F.(l-¢)
F, = 011+ 0.0005%"°"*)
[19] (% (- 5)2)(21Re;1+ 6Re;+028) | 0.1<Rg<4000

10
Ergun [7]

Benyahia et al. [18]
Kurten et al. [19]
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Fig. 4: Variation of particle friction factdy versus particle
Reynolds number, Rat different porosities for square
configuration

At the same modified Reynolds number ,Re hexagonal
configuration has a higher Reompared to a square geometry.
This geometry effect can be neglected at creepiogy f
(sufficiently low Re).
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Fig. 5: Variation of the modified Reynolds numhiRe, versus
particle Reynolds number, Rdor different porosities and
configurations

The inertial drag terng in Eq. (5) can be directly obtained
from our numerical simulationg & - Ap/L - pU/K). In Figure 6
we plotg as a function of average velocity. It is observieat t
for all range of porosities studied here, the nardy (inertia)
flow scales badly with a quadratic law, for bothuae and
hexagonal configurations (hexagonal results are shmwn).
However, at low porosities, the power approachedbree, i.e.,
a cubic law. An even better fit can be obtained mtte inertia
term is expressed as:

ole.pud,U)=CU (10)

where the constant€;, and C, depend on the porosity,
diameter of particles/cylinderd;, and the fluid properties i.@.
and p. The values ofC; and C, are listed in Table 2. By
applying a simple dimensional analysis, the nonedisional
form of Eq. (10) is written as:

2 C,
g(f,p,u,dp,U)=%Ci(%]
p

(11)

with U*=,u/(pdp), where C,,C, are now dimensionless
functions of porosity. Basically, the values@f are the same
asC,, and the values af;’ are listed in Table 2. As we see, the
power,C,', is not exactly 2 or 3 but, depending on the pityos
varies between these two values. These numerisaltseshow
that the prefactoiC,’, is sensitive to the pore structure, but also
the powerC,’ has some dependence.
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Fig. 6: Variation of non-Darcy drag tergp,as a function of
superficial/average velocity at different porostfer the square
configuration

Table 2: The porosity dependent paramet@rsC, andC,, of
the inertial termg, for different porosities and configurations

Square configuration
Porosity () C C=C, (o}
0.9 0.27875 2.57306 0.0479§
0.85 0.36178 2.70182 0.05616
0.8 0.45309 2.75827 0.067
0.75 0.54514 2.81237 0.07542
0.7 0.68878 2.8157 0.09635
0.65 0.87913 2.87533 0.11139
0.6 1.08037 2.93689 0.1223
0.55 1.40838 2.95679 0.15371
0.5 1.68504 3.03325 0.16389
0.45 2.59037 3.02521 0.24553
0.4 3.69622 3.04657 0.33413
Hexagonal configuration

0.9 0.222299 2.6113 0.03546
0.85 0.255741 2.5963 0.045081
0.8 0.293749 2.6265 0.052344
0.75 0.343661 2.6142 0.065173
0.7 0.385963 2.6525 0.070941
0.65 0.460649 2.663 0.085267
0.6 0.542535 2.6785 0.099765
0.55 0.671844 2.6919 0.12261
0.5 0.830711 2.7073 0.149445
0.45 1.086687 2.7283 0.189903
0.4 1.445991 2.7343 0.252344
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4. CONCLUDING REMARKS

Based on FEM simulations, we analyzed the trassver
flow through unidirectional, regular, two dimensibrfibrous
media in both laminar and inertial regimes. Byré@asing the
pressure gradient, we observed a typical depafitome Darcy’s
law (creeping flow) at sufficiently high Reynoldeambers, Re.
Some conclusions can be drawn as follows:

* The correlation between particle friction factdy, and
particle Reynolds number, Reobtained from our numerical
simulations, are compared with available theorépecadictions
like the Ergun equation. It is observed that theige friction
factor is not only a function of porosity and Réut also
depends on the pore structure (see Figure 4).

» All relations are just valid in a certain porgsind Reg
range and also pore structure in 2-D, i.e. squareegagonal
configurations.

* Both quadratic and cubic laws, which are ofteedusis
extensions of the Darcy law for inertial flows thgh porous
media, are reformulated in a more general non-déineal
power law form (Eqg. (11)). The numerical resultewtthat the
power law model can fit the numerical results bettgan
integer power 2 or 3 in the rangeldftudied here.

+ By defining the modified Reynolds number, Rand
friction factor, f’, a universal relation between these two key
parameters is introduced. It is valid for squard Aexagonal
configurations in a broad range of porosities (E)). The
transition (based on 10% inertia) from creepingnttial flow
occurs at Re~ 0.1 which is equivalent to Re 25.

Future work will investigate random arrangemenfs o
cylinders and the effects of boundary conditiond size of the
RVE on the permeability. These results could bézat for
verification and validation of advanced modelsgarticle fluid
interaction and for the coupling of the discreteneént method
(DEM) with FEM or CFD in a multiscale coarse grigsh.
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