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Abstract. One of the essential questions of material sciences is how to bridge the
gap between microscopic quantities, like contact forces and deformations, in a granular
assembly, and macroscopic quantities like stress, strain or the velocity-gradient. A two-
dimensional shear-cell is examined by means of discrete element simulations. Applying
a volume averaging formalism, one obtains volume fractions, coordination numbers, and
fabric properties. Furthermore, the stress tensor and the “elastic” (reversible) mean dis-
placement gradient can be derived. From these macroscopic quantities, some material
properties can be computed by different combinations of the tensorial invariants.

Because an essential ingredient of both simulations and experiments are rotations
of the independent grains, we apply a Cosserat type description. Therefore we compute
quantities like the couple stress and the curvature tensor as well as a combination of
them, the “torque-resistance”.

1.1 Introduction

Macroscopic continuum equations for the description of the behavior of granular
media rely on constitutive equations for stress, strain, and other physical quanti-
ties describing the state of the system. One possible way to obtain an observable
like, for example, the stress is to perform discrete particle simulations [1-3] and to
average over the “microscopic” quantities in the simulation, in order to obtain
the averaged macroscopic quantity. Besides the trivial definitions for averages
over scalar and vectorial quantities like density, velocity, and particle-spin, one
can find slightly different definitions for stress and strain averaging procedures
in the literature [3-12] (see also the contributions by Cambou, Goddard, Kruyt
and Lanier in this book).

The aim of this paper is to review recent results for tensorial, averaged con-
tinuum quantities, and to present new results connected to the rotational degrees
of freedom. In section 1.2 the setup of the system is described and the simulation
method is discussed. In section 1.3 our averaging method is introduced and in
section 1.4 applied to some scalar quantities. Section 1.5 contains the definitions
and averaging strategies for fabric, stress, and elastic deformation gradient and,
in addition, some material properties are extracted from their combinations. The
rotations of our particles are taken into account in section 1.6 and averages are
presented for the corresponding macroscopic quantities.
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1.2 Model System and Simulation

1.2.1 The Couette Shear-cell Setup

In the simulations presented in this study, a two-dimensional Couette shear-
cell is used, as sketched in Fig. 1.1. N particles are confined between an outer
ring and an inner ring with radius R, and R;, respectively. The particles are of
slightly different size in order to reduce ordering effects. The boundary conditions
are based on an experimental realization [13-15]. For more details on other
simulations, see [3,15-18].

In the steady state shear situation where averages are taken, the outer wall
is fixed and the inner wall rotates and thus introduces a slow shear deformation
in the system. The simulations are started in a dilute state with an extended
outer ring while the inner ring already rotates counter-clockwise with constant
angular frequency 2 = 27 /T; = 0.1s~! and period T; = 62.83s. The radius of
the outer ring is reduced within about two seconds to reach its desired value
R, and thereafter it is kept fixed. If not explicitly mentioned, averages are per-
formed after about three rotations at ¢ = 180s (to get rid of the arbitrary initial
configuration), and during about one rotation, until ¢ = 239s.

R,
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R; b) walls

Fig. 1.1. A schematic plot of the model system

In the simulations different global volume fractions 7 = ﬁ Zivzl VP of the
shear-cell are examined. The sum runs over all particles p with height h, diameter
d, and thus volume V? = wh(d,/2)? in the cell with V;o; = wh(R2 — R?). In
this study three different 7 are examined. In the following the simulations will
be referred to as A, B and C with 7 = 0.8084, 0.8149 and 0.8194, respectively.
For the different simulations the number of large and small particles is varied
like Nyman: 2511, 2545, 2555 and Niarge: 400, 394, 399. For the calculation of the
global volume fraction, the small particles glued to the wall are counted with
half their volume only, and thus contribute with Dy, = 0.0047 to © [3]. The
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Table 1.1. Microscopic material parameters of the model

| property I values |
diameter dsmai, Mass Mgman ||7.42 mm, 0.275 g
diameter diarge, Mass Miarge |[8.99 mm, 0.490 g
reference diameter d 8.00 mm
wall-particle diameter dyai, 2.50 mm
system/disk-height h 6 mm
normal spring constant k, 352.1 N/m
normal viscous coefficient v, 0.19 kg/s
Coulomb friction coefficient p 0.44
tangential spring constant ki 267.1 N/m
bottom friction coefficient s 2x107°
material density go 1060 kgm™*

properties of the particles, i.e. the parameters used for the force laws described
in detail in the next subsection, are summarized in table 1.1.

1.2.2 The Discrete Element Model

The elementary units of granular materials are mesoscopic grains. In our sim-
ulations [3] the grains are treated as rigid particles but deform locally at their
contact points. We relate the interaction forces to the virtual overlap § and to the
tangential displacement of two particles during contact. The force laws used are
material dependent and have to be validated by comparison with experimental
measurements [19-21].

When the force f; acting on particle 4 is known (contributions to f; stem
either from other particles, from boundaries or from external forces), the prob-
lem is reduced to the integration of Newton’s equations of motion. Since we
are performing two dimensional (2D) simulations, we have three equations for
each particle, two for the linear and one for the rotational degree of freedom [3].
Particle-particle interactions are short range and active on contact only; attrac-
tive forces and the presence of other phases are neglected, i.e. we focus on “dry
granular media”. In the following the force laws accounting for excluded volume,
dissipation, and friction are introduced.

Two particles ¢ and j, with diameter d; and d;, respectively, interact only
when they are in contact so that their overlap § = 1(d; + d;) — (ri — 7;) - n
is positive, with the position vector r; of particle i and the unit vector n =
(r; —r;)/|r; — r;| that points from j to i. The symbol ‘-’ denotes the scalar
product of vectors. The force f{ acting on particle 4 at its contact ¢ with particle
J is decomposed as f{ = fn.e1 + fn,diss + ft. The first contribution to the force
— accounting for the excluded volume of each particle — is an repulsive elastic
force

fne =kpdn (1.1)
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where k,, is proportional to the material’s modulus of elasticity. Since we are
interested in disks rather than spheres, we use a linear spring that follows Hooke’s
law, whereas in the case of elastic spheres, the Hertz contact law would be more
appropriate.
The second contribution, a viscous dissipation, is given by the damping force
in the normal direction )
fn,diss = 'Ynfsn 5 (12)

where -, is a phenomenological, viscous dissipation coefficient and 6= —v;n =
—(v; —vj;) - n is the relative velocity in the normal direction. The two normal
components are simply added to fn, = fn.et + fn,diss-

The third contribution to the contact force — accounting for tangential friction
— can be chosen in the simplest case, according to Coulomb, as fic < —u|falt,
where y is the friction coefficient and ¢ = v}, /|v};| is the tangential unit-vector
parallel to the tangential component of the relative velocity 'uﬁj = v;; — (v -
n)n. Since fy . is non-smooth and undetermined at 'ufj =0, we also introduced
a tangential spring as a necessary ingredient to obtain a positive tangential
restitution found from collision experiments with various materials [19]. When
two particles get into contact at time %y, one assumes a “virtual” spring between

their contact points, where
t
n= (/ v%(t’)dt’) -t (1.3)
to

is the total tangential displacement of this spring at time ¢, build up during
contact duration t —to. Note that due to its definition 7 can either be positive or
negative so that n = nt can be anti-parallel to t. The restoring (static) frictional
force, fi,s = —km, with the stiffness of the tangential spring k;, can thus be
oriented parallel or anti-parallel to ¢.

The two forces fis and f¢ . are combined by taking the minimum value

fo = —min(ke, 1l fal ) - (1.4)
All contact force components and a bottom friction fy, = —upmgv;/|v;| sum

up to the total force
fi= Z(fn,el+fn,diss+ft)+fb . (1.5)

c

1.3 From the Micro- to a Macro-Description

In the previous section, the model system was introduced from the microscopic
point of view. In this framework, the knowledge of the forces acting on each
particle is sufficient to model the dynamics and the statics of the system. Ten-
sorial quantities like the stress or the deformation gradient are not necessary
for a discrete modelling. However, subject of current research is to establish a
correspondence to continuum theories by computing tensorial quantities like the
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stress o, the strain €, as well as scalar material properties like, e.g., the bulk and
shear moduli [6, 8,9] (see also the chapters of Cambou, Goddard, Kruyt, Lanier
and Radjai in this book). In the course of this process, we first discuss averaging
strategies, before presenting some results.

1.3.1 Averaging Strategy

Most of the measurable quantities in granular materials vary strongly both in
time and on short distances. Thus, during the computation of the averages pre-
sented later on, we have to average over or to reduce the fluctuations. In order
to suppress the fluctuations, we perform averages in both time and space. This
is possible due to the chosen boundary condition. The system can run for a long
time in a quasi-steady state and, due to the cylindrical symmetry, all points at
a certain distance from the origin are equivalent to each other. Therefore, av-
erages are taken over many snapshots in time with time steps At and on rings
of material at a center-distance r with width Ar so that the averaging volume
of one ring is V,. = 2whr Ar. For the sake of simplicity (and since the procedure
is not restricted to cylindrical symmetry), the averaging volume is denoted by
V =V, in the following. The averaging over many snapshots is somehow equiv-
alent to an ensemble average. However, we remark that different snapshots are
not necessarily independent of each other as discussed in [3] and the duration of
the simulation might be too short to explore a representative part of the phase
space.

Finally, we should remark that the most drastic assumption used for our
averaging procedure is the fact, that all quantities are smeared out over one
particle. Since it is not our goal to solve for the stress field inside one particle,
we assume that a measured quantity is constant inside the particle. This is almost
true for the density, but not, e.g., for the stress. However, since we average over
all positions with similar distance from the origin, i.e. averages are performed
over particles with different positions relative to a ring, details of the position
dependency inside the particles will be smeared out anyway.

1.3.2 Averaging Formalism

The mean value of some quantity @ is defined as

Q= % > whvrQr (1.6)

peEV

with the particle volume V2, the particle quantity Qf = ZS; Q°, and the quan-
tity Q° attributed to contact ¢ of particle p which has C? contacts. The weight
wh, accounts for the particle’s contribution to the average, and corresponds to
the fraction of the particle volume that is covered by the averaging volume. Since
an exact calculation of the area of a circular particle that lies in an arbitrary ring
is rather complicated, we assume that the boundaries of V' are locally straight,
i.e. we cut the particle in slices, see [3] for details.
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1.4 Results on Macroscopic Scalar Quantities

In the following we apply the averaging formalism to obtain various macroscopic
quantities. In table 1.2 the computed quantities as well as the pre-averaged
particle quantities are shown. In this study ® denotes the dyadic product and
*-" is used for the order-reduction by one for each of the two tensors at left and
right. In the data plots, a rescaled, dimensionless radius 7 = (r — R;)/d is used,
which gives the distance from the inner wall in units of typical diameters.

Table 1.2. Quantities computed by using the averaging formalism see [3,17,18] for
details and a derivation

|quantity | Q* | Q |
I
volume fraction v 1 v Z wh V?
) PEV
mass flux density vv v? v Z wh VPP
pEV
cP 1 cP
fabric tensor F Z n’ ®n’ v Z wi VP z n° ®n°
c=1 peEV c=1
(contact number density)
cp ) cP
1 c pC D c pC
stress tensor o sz 1 VZwVZf ®1
c=1 peEV c=1
h — h &
. . ™ pC pC T P pc pc | |
deformation gradient € Ve Z A1 - A % (Z wy, Z A" ®1 A
c=1 pEV c=1
with A = F~1

1.4.1 Volume Fraction

As a first example for an averaged scalar quantity, the local volume fraction
v, see Tab. 1.2, is computed. The volume fraction (related to the local density
o(r) =~ oPv with the material density ¢P) is shown in Fig. 1.2 rescaled in units of
2R;. Starting from a nearly uniform volume fraction over the whole cell, after
three rotations, a dilated zone forms near to the inner wheel as a consequence of
the applied shear. This effect is less pronounced for higher initial global densities.
In the outer region of the shear cell (F > 10), the structure of the packing
remains frozen, i.e. not much reorganization takes place within the duration of
the simulation.

1.4.2 Mass Flux Density

As a second scalar quantity, the tangential component of the mass flux density
vy is investigated. Dividing the mass flux density by the volume fraction, one
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Fig. 1.2. Volume fraction v, plotted against the dimensionless distance from the origin
7, for different initial global densities ¥

gets the tangential velocity vy shown in Fig. 1.3. The simulation data are fitted

by vy (r) = v exp(—F/s) with v,: 0.670, 0.756, 0.788 and s: 1.662, 1.584, 1.191,

thus showing an exponential profile corresponding to the shear band (forced close

to the inner ring by our boundary conditions). The shear band, has a width of

a few (~ 8) particle diameters, before the velocity v, reaches the noise level.
Given the velocity field, it is possible to compute the velocity gradient Vv

by means of numerical differentiation. From Vv one can derive the deformation

1 | Bvg Vg

rate D,y = & [W - T] and the continuum rotation rate Wy = + ['?BL:’ + ”7"],

see [17] for details and [22] for a similar approach.

1.5 Macroscopic tensorial quantities

In this section, the averaged, macroscopic tensorial quantities in our model sys-
tem are presented. The fabric tensor describes the contact network, the stress
tensor describes the stress distribution due to the contact forces, and the elas-
tic deformation gradient is a measure for the corresponding elastic, reversible
deformations.

1.5.1 Fabric Tensor

In assemblies of grains, the forces are transmitted from one particle to the
next only at the contacts of the particles. Therefore the local geometry and
direction of each contact is important [3,23]. The fabric tensor in table 1.2 is
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Fig. 1.3. Tangential velocity vy normalized by the velocity of the inner wheel 2R;,
plotted against 7. The lines are the fits to the simulation data for # = 0.25t08.1,
using vy (1) = vo exp(—7/s) with v,: 0.670, 0.756, 0.788 and s: 1.662, 1.584, 1.191, for

increasing density, as given in the inset, respectively

symmetric by definition and thus consists of up to three independent scalar
quantities in two dimensions. The first of them, the trace (or volumetric part)
Fy = tr(F) = (Fmax + Fmin), is the contact number density, with the major
and the minor eigenvalues Fi,.x and Fiin, respectively. With other words, one
obtains the relation tr(F) = vC with reasonable accuracy, where C is the average
number of contacts per particle.

The second scalar, the deviator FiIp = Fiax—Fmin, accounts for the anisotropy
of the contact network to first order, and the third, the angle ¢, gives the ori-
entation of the “major eigenvector”, i.e. the eigenvector corresponding to Fiax,
with respect to the radial outwards direction. In other words, the contact proba-
bility distribution is proportional to the function Fy + Fp cos(2(¢ — ¢r)) [3,16],
when averaged over many particles, an approximation which is not always rea-
sonable [24].

The trace of the fabric tensor and the mean number of contacts increases
with increasing distance from the inner ring, and is reduced in the vicinity of
the walls due to ordering. With increasing local density, the trace of F is system-
atically increasing, while the deviatoric fraction Fp/Fy seems to decrease; this
means that a denser system is more isotropic concerning the fabric. The major
eigendirection is tilted counter-clockwise (for counter-clockwise rotation of the
inner ring) by somewhat more than 7/4 from the radial outwards direction, ex-
cept for the innermost layer and for the strongly fluctuating outer region, where
the small deviator does not allow for a proper definition of ¢ anyway.
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1.5.2 Stress Tensor

The stress tensor, see table 1.2, is proportional to the dyadic product of the
force f¢ acting at a contact ¢ with its branch vector P, which accounts for
the distance over which the force is transmitted, see [3] for details. The trace
of the stress tensor, i.e. the volumetric stress, is almost constant over the whole
shear-cell besides fluctuations. In contrast, the non-diagonal elements of o decay
proportional to r~2 with increasing distance r from the inner ring. The deviatoric
fraction op /oy also decays like Fp/Fy, when moving outwards from the shear
band at the inner ring.

1.5.3 Elastic Deformation Gradient

To achieve the material properties of a granular ensemble one is interested in
the stress-strain relationship of the material. The strain € can be obtained by
time integration of the velocity gradient, see subsection 1.4.2, and subsequent
symmetrization and linearization. We present an alternative technique, the ap-
plication of “Voigt’s hypothesis” which assumes that the deformation is uniform
and that every particle displacement conforms to the corresponding mean dis-
placement field, but fluctuates about [3, 25].

This relates the actual deformations to a “virtual” reference state where all
contacts start to form, i.e. particles are just touching with § = 0, see [3] for
a detailed derivation. The result is a non-symmetric tensor €, which is not the
strain, instead we refer to it as the elastic deformation gradient, see table 1.2.

The volumetric part of the elastic deformation gradient is largest in the
shear zone and this effect is stronger the lower the global density. It is easier to
compress the dilute material closer to the inner ring, as compared to the denser
material in the outer part. The deviatoric fraction of €, is also decaying with
increasing distance from the center, similar to the deviatoric fractions of fabric
and stress.

[4

1.5.4 Material Properties

At first we have a closer look on the orientations of the tensors plotted in Fig. 1.4
in the inner part of the shear cell. In the outer part, the deviatoric fraction is
usually around 10 per-cent, i.e. so small that the orientations become too noisy
to allow for a proper definition. We find that all orientation angles ¢ show the
same qualitative behavior, however, the fabric is tilted more than the stress
which, in turn, is tilted more than the deformation gradient. Thus, the three
tensorial quantities examined so far are not co-linear.

We also compute the mean-field expectation values for o and €, in order to get
a rough estimate for the orders of magnitude of the following results. Replacing
f¢ by its mean f = k,0n°, the radius a, by a = @, IP° by an®, and k,/h by k!,
one gets & = (k!,0/ma) F for the stress. Performing some similar replacements
for the elastic deformation gradient leads to € = (7 /k!,) o - A = (§/a) L.
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Fig. 1.4. Orientation of the tensors F, o, and €, plotted against the distance from the
inner ring from simulation B. The data are shown only for about 10 layers of particles
counted from the inner ring. Solid circles are fabric, open diamonds are stress, and
solid diamonds are elastic deformation gradient data

The material stiffness, F, can be defined as the ratio of the volumetric parts
of stress and strain, so that one obtains the mean field prediction

E = (K, /2m) tx(F) . (1.7)

In Fig. 1.5 the rescaled stiffness of the granulate is plotted against the trace
of the fabric for all simulations. Note that all data collapse almost on a line,
but the mean-field value underestimates the simulation data by some per-cent.
Additional simulation data (not shown here) for different k,, and even data from
simulations with neither bottom- nor tangential friction collapse with the data
for fixed k, and different volume fractions, shown here. The few data points
which deviate most are close to the boundaries, where the material is strongly
layered. The deviation from the mean field prediction (solid line in Fig. 1.5)
seems to disappear in the absence of shear — a fact which can be accepted since
the mean field expression (1.7) does not account for the shear displacement.

In Fig. 1.6 the ratio of the deviatoric parts of stress and strain is plotted
against the trace of the fabric. We did not use the traditional definition of the
shear modulus [8], since our tensors are not co-linear as shown in Fig. 1.4. Like
the material stiffness, both quantities are proportional, for points near or within
the shear band. In the outer part of the shear-cell the particles are strongly
inter-locked and thus resist much more against shear, and therefore G diverges.
For increasing global density, the critical contact number density also grows, at
a critical density.
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Fig. 1.5. Granulate stiffness 2w E/k], = tr(o)/tr(e), plotted against tr(F) from all
simulations. Every point corresponds to one ring of 150, i.e. Ar & (1/8)dsman

7 T T T T T T
0.8084 o] .
6 I 08149 o .
0.8194 + S +
5 .
< 4 .
S
& 3 R
2 -
1 -
O e

05 1 15 2 25 3 35
tr(F')

Fig. 1.6. Scaled granulate shear resistance wG/k;, = dev(o)/dev(e) plotted against
tr(F) from all simulations. The line indicates the identity curve

1.6 Rotational Degrees of Freedom

The particles in the model are able to rotate so that also quantities concerning
the rotational degree of freedom are of interest [22]. In Fig. 1.7 the macroscopic
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particle rotations w, the continuum rotation W,4 and the excess rotation w* =
w — W4, are displayed. The spin is averaged using Q¥ = w? in Eq. (1.6) so that
one obtains the spin density

1
Y= & Z wh VPWP | (1.8)
peV

in analogy to the mass flux density.

0.1 B
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B
I

0.001 k
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16 20

=
(o]

0.0001
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Fig. 1.7. Angular velocities w (solid line) and W,4 (symbols) of the particles and the
continuum, plotted against the scaled radial distance (from simulation B). The dotted
line is W, 4 as obtained from the fit to vy, see subsection 1.4.2. In the inset, the excess
spin is displayed for all simulations

As it can be seen in Fig. 1.7, both the particle and the continuum rotation
decay exponentially with increasing #, similar to the velocity vg. The inset of
Fig. 1.7 shows an oscillation of the excess rotation near the inner wheel, from
one disk layer to the next. This is due to the fact that the disks in adjacent
layers are able roll over each other in the shear zone.

Because of the evident importance of the rotational degree of freedom, this
we use the theoretical framework of a Cosserat continuum [22, 26, 27]. In addition
to the stress and the displacement gradient one can define the couple stress M
and the curvature k. The couple stress tensor is defined here, in analogy to the

stress, as

CP
M= 3w Y @ x ) o, (1.9

peV c=1
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where the force is replaced by the torque due to the tangential component of
the force, and the ‘x’ denotes the vector-product. In a two dimensional system,
only the two components M, and M4 of the tensor are non-zero. The values
of M, as a function of 7 are shown in Fig. 1.8(a). Note that M = 0, when the
sum of the torques acting on one particle vanishes in static equilibrium. In our
steady state shear situation M fluctuates around zero, except for a large value
in the shear band, close to the inner wall. In analogy to € we define

12 — ——
] 1 (b) g

0.8 B

nz,/(ﬁ

0.6 B
04 B
0.2 B

1 O =

- -0.2 T N
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Fig.1.8. (a) Plot of the couple stress M,,/d? against 7, (b) plot of the curvature
kzr/d? against 7 from simulation B

CP
K= % duhd (@ x Ao - A, (1.10)
peEV c=1

where the local contact displacement AP¢ is replaced by the corresponding an-
gular vector IP¢ x AP°. The values of the curvature &, are plotted in Fig. 1.8(b)
against # with similar qualitative behavior as M,. The other components M
and k.4 lead to no new insights and are omitted here.

Since we are interested in the role the rotational degree of freedom plays for
the constitutive equations, we define the “torque resistance” u. as the ratio of
the magnitudes of the couple stress and the curvature components. This quantity
describes how strongly the material resists against applied torques. In Fig. 1.9
the torque resistance is plotted for the three simulations. In the dilute regions
near the inner wheel, where the particles are able to rotate more easily, p. is
smaller than in the dense outer part, where the particles are interlocked and
thus frustrated. This behavior is consistent with the results for increasing global
densities, i.e. the torque resistance increases with density. Note that the strongest
fluctuations are due to the division by small k., values and have no physical
meaning in our interpretation.
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Fig.1.9. Torque resistance y. = M, /k., plotted against 7 for all simulations.

1.7 Summary and Conclusion

Discrete element simulations of a 2D Couette shear cell were presented and used
as the basis for a micro-macro averaging procedure. The boundary conditions
were chosen to allow for averaging over large volumes (rings with width Ar,
where Ar can be much smaller than the particle diameter) and over a steady
state shear and thus over long times. A shear band is localized close to the inner,
rotating cylindrical wall. The configurations changed rather rapidly in the shear
band, whereas the system is almost frozen in the outer part.

The averaging strategy used assumes the quantities to be homogeneously
smeared out over the whole particle which is cut in slices by the averaging
volumes. This so called slicing method shows discretization effects in the range
of averaging volume widths Ar from about one to one fifth of a particle diameter,
whereas the results become independent of the size of the averaging volume for
smaller Ar. For Ar much larger than the particle-size, the microscopic details —
including rotations — are not longer resolved properly.

The material density, i.e. the volume fraction, the coordination number, the
fabric tensor, the stress tensor and the elastic, reversible deformation gradient
were obtained by the averaging procedure. The fabric is linearly proportional
to the product of volume fraction and coordination number. In the shear band,
dilation together with a reduction of the number of contacts is observed. The
mean volumetric stress is constant in radial direction while the mean deformation
gradient decays with the distance from the inner wall. The ratio of the volumetric
parts of stress and strain gives the material stiffness of the granulate, which is
small in the shear band and larger outside, due to dilation.
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In the shear band, large deviators, i.e. anisotropy, of all tensorial quantities
are found, however, decreasing algebraically with increasing distance from the
inner wall. The isotropy of the tensors grows only slightly with increasing density
and all tensors are tilted counter-clockwise from the radial direction by an angle
of the order of m/4. The system organizes itself such that more contacts are
created to act against the shear and also the shear resistance increases with the
contact density. An essential result is that the macroscopic tensors are not co-
linear, i.e. their orientations are different. The orientation of the fabric is tilted
most, that of the deformation gradient is tilted least and thus, the material
cannot be described by a simple elastic model involving only the two Lamé
constants (or bulk modulus and Poisson’s ratio) as the only parameters. The
stress and the deformation gradient are seemingly interconnected via the fabric
tensor.

Finally, the particle rotation was measured in analogy to the particle velocity.
Subtraction of the continuum rotation from the particle rotation leads to the
excess eigen-rotation of the particles with respect to the mean rotation, in the
spirit of a micro-polar or Cosserat continuum theory. In analogy to the stress
and elastic deformation gradient, we defined couple stress and curvature. The
quotient of the respective non-zero components gives a, “torque-resistance” which
increases with increasing local density and stress.
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