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Abstract 
The goal of this study is to examine the cohesion and the anisotropy in dense, cohesive powders. 
This is done using a discrete element method (DEM) for the simulation of a bi-axial box deforma-
tion. Our approach includes normal (repulsive/cohesive) and tangential forces as well. Reorganiza-
tion of the contact network leads first to anisotropy and later to shear band formation and softening 
behavior from the macroscopic point of view. Both cohesion and friction enhance the material 
strength. An important result is the fact that the macroscopic cohesion can be related to the maximal 
microscopic attractive force. 
 
Introduction 
 
The material behavior of powders under large deformations is the issue of this study. For cohesive-
frictional powders, the discrete element method is a convenient tool to gain insight into the evolution 
of, e.g., shear localization. Powders, or more general granular media, are typically inhomogeneous, 
non-linear, disordered, and an-isotropic on a “microscopic” scale [1-3], where microscopic is to be 
understood as the particle size. The irregular, random packing responds to deformations via an inho-
mogeneous and an-isotropic stress distribution, accompanied by reorganizations of the contact-
network during deformation. An initially isotropic contact network becomes an-isotropic before the 
structure of the network reaches its limit of stability. Beyond some peak-stress, softening behavior is 
obtained [2-5], which is typical for an over-consolidated packing. Our work complements recent 
studies on shear band formation in frictional-cohesive granular media [4-8], for micro- and macro-
modeling [9,10], and in various systems [11,12] for different materials. 
 
The Model System 
 
One possibility to gain insight about the material behavior of a granular packing is to perform ele-
mentary tests in the laboratory. Here, we chose as alternative the simulation with the discrete element 
model [4-8,11,12]. The set-up chosen for the numerical “experiment” is the bi-axial box, see Fig. 1, 
where the left and bottom walls are fixed. Stress- or strain-controlled deformation is applied to the 
side- and top-walls, respectively. In a typical simulation, the top wall is slowly shifted downwards, 
while the right wall moves, controlled by a constant stress p, responding on the forces exerted on it 
by the material in the box. The motion of the top-wall follows a cosine function, in order to allow for 
a smooth start-up and finish of the motion so that shocks and inertia effects are reduced, however, 
the shape of the function is arbitrary as long as it is smooth. 
 
 



Discrete Element Model 
 
The units of powders are particles, which deform under stress. Since the realistic modeling of the de-
formations of the particles is much too complicated, the interaction force is related to the overlap of 
two particles, see Fig. 2. In our simplified model, two particles interact if they are in contact, and the 
force between two particles is decomposed into a normal and a tangential part. For the sake of sim-
plicity, we restrict ourselves to spherical particles here. The normal force is, in the simplest case, a 
linear spring (?? may be better:) boundary with stiffness k1, that takes care of perfect-plastic repul-
sion, and a linear dashpot that accounts for dissipation during contact [8,9,12]. Elasticity at the con-
tact level is added by a spring, with a larger stiffness k2, for unloading and reloading, so that the 
stiffness increases due to irreversible deformations. Cohesion (or an adhesion force) between the 
contacts comes into the model by a “cohesive stiffness” kc, which allows for attractive forces (here 
negative) up to a maximal attractive force fmin. The tangential force involves dissipation due to Cou-
lomb friction, but also some tangential elasticity that allows for stick-slip behavior on the contact 
level [1,2,6,8].  
If all forces acting on a selected particle (either from other particles, from boundaries or from exter-
nal forces) are known, the problem is reduced to the integration of Newton's equations of motion for 
the translational and rotational degrees of freedom. 
 
Simulation Results 
 
The system examined in the following contains N=1950 particles with radii randomly drawn from a 
homogeneous distribution with minimum 0.5 mm and maximum 1.5 mm. The total mass of the parti-
cles in the system is about 0.02 kg. If not explicitly mentioned, the material stiffness parameters are 
k2=105 N/m, k1/k2=1/2, and the contact-viscosity is 0.1 kg/s. The eigenfrequency of the particle con-
tact is hence typically 10-5 s so that an integration time-step of 2.10-7 s is used, in order to allow for a 
“safe” integration [1,12]. 
Initially, the particles are randomly distributed in a huge box, with rather low overall density. Then 
the box is compressed, either by moving the walls to their desired position, or by defining an external 
pressure p, in order to achieve an isotropic initial condition. Starting from this relaxed, isotropic ini-
tial configuration, the strain εzz is applied to the top wall and the response of the system is examined. 
In Fig. 3, the volume change of simulations with different cohesion strength shows first compression 
and then dilatancy. The stronger the cohesion, the more the material can be compressed, while the 
dilatancy is almost un-affected by cohesion. At the same time, the stress response (index zz denotes 
the vertical stress) becomes more and more an-isotropic, i.e., the vertical stress increases until it 
reaches a maximum, while the horizontal stress remains constant. After the peak, softening behavior 
and large fluctuations are evidenced. The peak stress value increases with the microscopic cohesion 
or adhesion force fmin. A representative snapshot from this simulation is shown in Fig. 4. 
 
The Macroscopic Mater ial Behavior  
 
From the macroscopic point of view, the flow behavior of the system can be examined by plotting 
Mohr-circles for different confining pressures (left-most point on the circle) and for the maximum 
stress (right-most point), see Fig. 5. The tangent to these circles can be seen as the flow function for 
the peak stress, which corresponds to a yield locus of an overconsolidated packing. It is linear for the 
examined parameters with a slope slightly larger than expected from the microscopic friction at the 
contacts alone. If no microscopic friction is active, a friction angle of about 13o is obtained (0o  ex-
pected), while for a microscopic friction coefficient µ=0.5, the friction angle is about 30.5o.(26.6o 
expected).  



When no adhesion forces are used or if the powder is practically free flowing, the macroscopic cohe-
sion is non-existent, i.e., the flow function hits the origin, see Fig. 6. For increasing microscopic ad-
hesion forces, the macroscopic cohesion also increases, following an analytical functional behavior 
as obtained from the microscopic contact model [8-10,12]. 
 
Summary 
 
In the bi-axial box geometry, anisotropy in the stress response is observed during shear, but also 
strong inhomogeneities of forces and stresses, already in the initial isotropic situation can be evi-
denced. During deformation the stiffness and the anisotropy of the material increase until, going 
ahead with shear band localization, the material becomes softer and less an-isotropic. The critical 
state shear regime is not examined in detail here, see [11]. Increasing friction or cohesion leads to 
stronger material and, as a central result of this work, the macroscopic cohesion of the material is 
related to the maximal attractive adhesion force, see Fig. 5 (right). 
Future work involves more detailed parameter studies and an extension of the method to three di-
mensional systems. The goal is then to quantitatively verify the simulations with experiments and 
eventually obtain constitutive laws from the model, based on microscopic parameters. This also in-
volves a micro-macro transition procedure [6-8] for macroscopic fields like, e.g., deformation gradi-
ent, and stress, as developed recently. 
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Figure 1  (left) Scheme of the model system; (right) top-wall motion as function of time 



     
 
 

Figure 2  (Left) Two-particle contact; (right) force displacement law for the DEM simulations [12] 



  
 

Figure 3 Volumetric strain (left) and stresses (right) during deformation 



 
 
Figure 4 Snapshot from a biaxial box simulation with no cohesion at a strain of 0.042. Dark and 
bright particles correspond to small and large stresses, i.e., potential energy densities. 



 
 

Figure 5 (Left) Mohr circle representation of the flow function at maximum stress for cohesion and 
no friction (Right) Macroscopic cohesion as function of the microscopic cohesive strength. The 
points are taken from the flow functions, the line corresponds to the analytical expression for the 

maximal attractive force as function of kc/k2 



 
 

Figure 6 
Mohr circle representation of the flow function at maximum stress for friction and no cohesion 

 


