From molecular dynamics and particle
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Abstract One challenge of todays research is the realistic simulatialisordered
atomistic systems or particulate and granular materieésdand, powders, ceram-
ics or composites, which consist of many millions of atoragtiples. The inhomo-
geneous fine-structure of such materials makes it very diffto treat them with
continuum methods, which typically assume homogeneitysaate separation. As
an alternative, particle based methods can be straighdfoliywapplied, since they
intrinsically take the fine-structure into account. Thenuidte challenge is to find
constitutive relations for continuum theory from thesetisde-based simulations.
In this chapter, a particle simulation approach, the stedaliscrete element method
(DEM), as related to molecular dynamics (MD) methods, isdidticed and applied
to the simulation of many-particle systems. The examplessigring in granular
gases, and bi-axial as well as cylindrical shearing of d@as&ings) illustrate the
micro-macro transition towards continuum theory.

There exist two basically different approaches, the stedaloft particle molecu-
lar dynamics and the hard sphere, event-driven method. difmeef is straightfor-
ward, easy to generalize, and has numberless applicatidig, the latter is opti-
mized for rigid interactions and is mainly used for collis&b, dissipative granular
gases. The connection between the two methods will be eltdgbon. Models for
the forces between the atoms/particles are the basis of\dDtland DEM. A set
of the most basic contact force models for particles is preskinvolving elasto-
plasticity, adhesion, viscosity, static and dynamic foictas well as rolling- and
torsion-resistance. Besides some words about van-des\iaaks, we will not de-
tail on electro-magnetic interactions, dipole momentfdtding, and other effects
which become important when the objects become smallerraatles.
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1 Introduction

Materials with inhomogeneous fine-structures are the stilgjethis chapter. As
example, we mostly discuss particulate, granular systehesevhe fine-structures
are spherical, polydisperse, plastic, adhesive, anddnat objects.

One approach towards the microscopic understanding of macioscopic par-
ticulate material behavior [19, 25, 20] is the modeling oftjgées using so-called
discrete element methods (DEM). Even though millions ofiplas can be simu-
lated, the possible length of such a particle system is ireggrioo small in order
to regard it as macroscopic. Therefore, methods and togletimrm a so-called
micro-macro transition [68, 58, 24] are discussed, stgrirom the DEM simu-
lations. These “microscopic” simulations of a small san{pépresentative volume
element) can be used to derive macroscopic constitutiaéoak needed to describe
the material within the framework of a macroscopic contimubeory.

For granular materials, as an example, the particle priggextd interaction laws
are inserted into DEM, which is also often referred to as @k dynamics (MD),
and lead to the collective behavior of the dissipative mpasticle system. From a
particle simulation, one can extract, e.g., the pressutbefystem as a function
of density. This equation of state allows a macroscopicrifggmn of the material,
which can be viewed as a compressible, non-Newtonian cotfipid [48], includ-
ing a fluid-solid phase transition.

In the following, two versions of the molecular dynamics slation method are
introduced. The first is the so-called soft sphere molealjyaamics (MD=DEM),
as described in section 2. It is a straightforward impleraton to solve the equa-
tions of motion for a system of many interacting particlesq8]. For DEM, both
normal and tangential interactions, like friction, arecdissed for spherical particles.
The second method is the so-called event-driven (ED) sitionlaas discussed in
section 3, which is conceptually different from DEM, sinadlisions are dealt with
via a collision matrix that determines the momentum changphysical grounds.
For the sake of brevity, the ED method is only discussed faratmspherical parti-
cles. A comparison and a way to relate the soft and hard pantiethods is provided
in section 4.

As one ingredient of a micro-macro transition, the stresiefed for a dynamic
system of hard spheres, in section 5, by means of kinetoryrerguments [58], and
for a quasi-static system by means of volume averages [28nfples are presented
in the following sections 6 and 7, where the above-deschibeithods are applied.

2 The Soft Particle Molecular Dynamics Method

One possibility to obtain information about the behaviorgodnular media is to
perform experiments. An alternative are simulations wité& molecular dynamics
(MD) or discrete element model (DEM) [68, 9, 8, 6, 19, 63, 68, B7]. Note that
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both methods are identical in spirit, however, differerdugrs of researchers use
these (and also other) names.

Conceptually, the DEM method has to be separated from treedpdrere event-
driven (ED) molecular dynamics, see section 3, and also frenso-called Contact
Dynamics (CD). Like alternative (stochastic) methods,hesé are cell- or lattice-
gas-methods these are just named as keywords — not dis¢wessiirther.

2.1 Discrete Particle Model

The elementary units of granular materials are mesoscapiogwhich deform
under stress. Since the realistic modeling of the defomainf the particles is much
too complicated, we relate the interaction force to the laya¥ of two particles, see
Fig. 1. Note that the evaluation of the inter-particle fard®msed on the overlap
may not be sufficient to account for the inhomogeneous sttisssbution inside
the particles. Consequently, our results presented belewfahe same quality as
the simple assumptions about the force-overlap relates F5g. 1.
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Fig. 1 (Left) Two particle contact with overlad. (Right) Schematic graph of the piecewise linear,
hysteretic, adhesive force-displacement model used below

2.2 Equations of Motion

If all forces f; acting on the particlg either from other particles, from boundaries or
from external forces, are known, the problem is reducedearitegration of New-
ton’s equations of motion for the translational and rotagiadegrees of freedom:
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2 d?
mzli=fi+mg, and liz7; =t (1)

with the massn of particlei, its positionr; the total forcef; = ¥ f{ acting on it
due to contacts with other particles or with the walls, theederation due to volume
forces like gravityg, the spherical particles moment of inettigits angular velocity
w; = d¢; /dt and the total torque = 3. (IF x f{+q°), whereqf are torques/couples
at contacts other than due to a tangential force, e.g., digdlitog and torsion.

The equations of motion are thus a systen¥of (% — 1)/2 coupled ordinary
differential equations to be solved indimensions. With tools from numerical inte-
gration, as nicely described in textbooks as [5, 59], thidrimightforward. The typi-
cally short-ranged interactions in granular media, alloneffurther optimization by
using linked-cell or alternative methods [5, 59] in ordemake the neighborhood
search more efficient. In the case of long-range interastifmg. charged particles
with Coulomb interaction, or objects in space with selfvisg this is not possible
anymore, so that more advanced methods for optimizatioa twate applied — for
the sake of brevity, we restrict ourselves to short ranggactions here.

2.3 Normal Contact Force Laws

2.3.1 Linear Normal Contact Model

Two spherical particles and j, with radii & anda;, respectively, interact only if
they are in contact so that their overlap

o= (a+aj)—(ri—rj)-n ()

is positive,d > 0, with the unit vecton = njj = (r; —r;)/|r; —rj| pointing fromj
toi. The force on particlg from particlej, at contact, can be decomposed into a
normal and a tangential part §$:= ¢ = f"n+ f't, wheref" is discussed first.
The simplest normal contact force model, which takes intwoant excluded
volume and dissipation, involves a linear repulsive andiedr dissipative force

f" =k + yovn , 3)

with a spring stiffnesg, a viscous dampingp, and the relative velocity in normal
directionvy = —Vjj -n=—(vi —vj)-n=20.

This so-called linear spring dashpot model allows to view plarticle contact
as a damped harmonic oscillator, for which the half-periba wibration around an
equilibrium position, see Fig. 1, can be computed, and otedrmba typical response
time on the contact level,

=" with @= (ki) —ng. @



From particles to continuum theory 5

with the eigenfrequency of the contawt the rescaled damping coefficieng =
Yo/(2myj), and the reduced mass; = mm;/(m + m;). From the solution of the
equation of a half period of the oscillation, one also olstdive coefficient of resti-
tution

I = Va/Vn = €Xp(—TtNo/ ) = exp(—notc) , (5)

which quantifies the ratio of relative velocities after (peid) and before (unprimed)
the collision.

The contact duration in Eq. (4) is also of practical techhilcgortance, since
the integration of the equations of motion is stable onlyhi# integration time-
stepAtpem is much smaller thaky. Furthermore, it depends on the magnitude of
dissipation. In the extreme case of an overdamped sgrogn become very large.
Therefore, the use of neither too weak nor too strong diisip&s recommended.

2.3.2 Adhesive, Elasto-Plastic Normal Contact Model

Here we apply a variant of the linear hysteretic spring m¢ée) 31, 67, 39], as
an alternative to the frequently applied spring-dashpodef This model is the
simplest version of some more complicated nonlinear-mgsteforce laws [69, 70,
60], which reflect the fact that at the contact point, pladéformations may take
place. The repulsive (hysteretic) force can be written as

k10 for loading if k3(0— &) >kid
fvs— { k5(5 — &) for un/reloading if k& > k3(3 — &) > k& (6)
—k:0 for unloading if —keo>Kk5(0— dp)

with ky < k3, see Fig. 1, and Eq. (7) below for the definition of the (velaak; as
function of the constant model parameter

During the initial loading the force increases linearlytwihe overlapd, until
the maximum overlapmay is reached (which has to be kept in memory as a history
parameter). The line with sloga thus defines the maximum force possible for a
given d. During unloading the force drops from its valuedafax down to zero at
overlapdy = (1 —ki/k3)dmax on the line with slopés;. Reloading at any instant
leads to an increase of the force along this line, until thgimam force is reached;
for still increasingd, the force follows again the line with slofpe and dmax has to
be adjusted accordingly.

Unloading belowdy leads to negative, attractive forces until the minimum éorc
—keOmin is reached at the overlafin = (k5 — K1) dmax/ (K; + k). This minimum
force, i.e. the maximum attractive force, is obtained asrection of the model
parameters,, ko, ke, and the history parametémax. Further unloading leads to
attractive forcesf™s = —k.5 on the adhesive branch with slope.. The high-
est possible attractive force, for givém and kp, is reached foilk; — o, so that

,';gi: — (ko — k1) dmax- Since this would lead to a discontinuity@t= 0, it is avoided
by using finiteke.
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The lines with slope&; and —k; define the range of possible force values and
departure from these lines takes place in the case of umgatid reloading, re-
spectively. Between these two extremes, unloading an@deig follow the same
line with slopek,. Possible equilibrium states are indicated as circles g Ej
where the upper and lower circle correspond to a pre-stlesmse stress-free state,
respectively. Small perturbations lead, in general, tollde&iations along the line
with slopek, as indicated by the arrows.

A non-linear un/reloading behavior would be more realjdtiowever, due to a
lack of detailed experimental informations, we use thegiecse linear model as a
compromise. One refinement ikavalue dependent on the maximum overlap that
implies small and large plastic deformations for weak amdrgf contact forces,
respectively. One model, as implemented recently [50, &juires an additional
model parametey,,, SO thatk;(Jdmax) is increasing fronk; to ks (linear interpo-
lation is used below, however, this is another choice to béeeend will depend on
the material under consideration) with the maximum ovenleil J,,, is reached
1.

* _ k2 if 6max2 6r)‘,r<1ax
2 (Omar) = {k1+ (Ko — Ku) B/ G 1 Oimax < G 7)
While in the case of collisions of particles with large defi@tions, dissipation
takes place due to the hysteretic nature of the force-langer dissipation of small
amplitude deformations is achieved by adding the viscoeigcity dependent dis-
sipative force from Eq. (3) to the hysteretic force, suct tHa= S+ yov,,. The
hysteretic model contains the linear contact model as apeasek; = ko = k.

2.3.3 Long Range Normal Forces

Medium range van der Waals forces can be taken into accouaddition to the
hysteretic force such thdt' = fihys+ fvdW with, for example, the attractive part of
a Lennard-Jones Potential

YW = (e /ro) (ro/ris) — (ro/re)"] for rij <re. (®)

The new parameters necessary for this force are an energyes@atypical length
scalerg and a cut-off lengthr.. As long asr¢ is not much larger than the particle
diameter, the methods for short range interactions still loa applied to such a
medium range interaction model — only the linked cells haveetlarger than twice
the cut-off radius, and no force is active for re.

1 A limit to the slopek; is needed for practical reasons.kif would not be limited, the contact
duration could become very small so that the time step woae o be reduced below reasonable
values.
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2.4 Tangential Forces and Torquesin General

For the tangential degrees of freedom, there are threedifféorce- and torque-
laws to be implemented: (i) friction, (ii) rolling resiste@, and (iii) torsion resis-
tance.

2.4.1 Sliding

For dynamic (sliding) and staticiction, the relative tangential velocity of the con-
tact points,
Vi = Vij —Nn(N-Vij) )

is to be considered for the force and torque computationsbsextion 2.5, with the
total relative velocity of the particle surfaces at the emit

Vij = Vi —Vj+ainx w+anx ;| (10)

with the corrected radius relative to the contact pajpt= aq — d/2, fora =i, j.
Tangential forces acting on the contacting particles araprded from the accu-
mulated sliding of the contact points along each other, ariteed in detail in
subsection 2.5.1.

2.4.2 Objectivity

In general, two particles can rotate together, due to bottadion of the reference
frame or a non-central “collision”. The angular velooiby = w{j+ w}), of the rotat-
ing reference has the tangential-plane component

(11)

which is related to the relative velocity, while the normahtponentwy, is not.
Insertingw; = wj = w}, from Eq. (11), into Eq. (10) leads to zero sliding velocity,
proving that the above relations are objective. Tangeftdraes and torques due to
sliding can become active only when the particles are rgatiith respect to the
common rotating reference frante.

Since action should be equal to reaction, the tangentieéfare equally strong,
but opposite, i.e.ftj = —f!, while the corresponding torques are parallel but not

necessarily equal in magnitudg™>" = —a/n x f;, andq[""" = (a /a)qfreion,

Note that tangential forces and torquegetherconserve the total angular momen-

2 For rolling and torsion, there is no similar relation betweetational and tangential degrees of
freedom: for any rotating reference frame, torques due ltmgoand torsion can become active
only due to rotation relative to the common reference frasee,below.
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tum about the pair center of mass
L , 2 2t

with the rotational contributionksy = I4wq, for a =i, j, and the distance%cm =
Ira —rem| from the particle centers to the center of mags= (mri +m;jr;)/(m +
m;), see Ref. [31]. The change of angular momentum consistseotiiange of
particle spins (first term) and of the change of the angulamer@um of the two
masses rotating about their common center of mass (secony te

dlij i a dot
e <1+ g‘> + (Mo +mjriom) =2 (13)

which both contribute, but exactly cancel each other, since

. a.
qifnctlon <1_|_ é) = _(ai’+a’j)n x f; (14)

doot
— (Mt mirfen) g

see [37] for more details.

2.4.3 Rolling

A rolling velocity V! = —ajn x w; + ajn x wj, defined in analogy to the sliding
velocity, is not objective in general [14, 37] — only in theesfal cases of (i) equal-
sized particles or (ii) for a particle rolling on a fixed flartace.

The rolling velocity should quantify the distance the twofaaes roll over each
other (without sliding). Therefore, it is equal for both peles by definition. An
objective rolling velocitys obtained by using the reduced radiels, = a/a; /(& +
aj), so that

vr:—ai’j(nxwi—nij). (15)
This definition is objective since any common rotation oftilie particles vanishes
by construction. A more detailed discussion of this issuEeigond the scope of this
paper, rather see [14, 37] and the references therein.

A rolling velocity will activate torques, acting againsttholling motion, e.g.,
when two particles are rotating anti-parallel with spinstlie tangential plane.

These torques are then equal in magnitude and oppositesictidin, i.e..q°" =

_qgolling = ajjnx f,, with the quasi-force ., computed in analogy to the friction
force, as function of the rolling velocity in subsection 2.5.2; the quasi-forces for
both particles are equal and do not act on the centers of mhssefore, the total

momenta (translational and angular) are conserved.
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2.4.4 Torsion

Fortorsion resistancethe relative spin along the normal direction
Vo=ajj(N-wi—Nn-wj)n, (16)

is to be considered, which activates torques when two pestiare rotating anti-
parallel with spins parallel to the normal direction. Torsis not activated by a com-
mon rotation of the particles around the normal directioly = n- (w;i + wj) /2,
which makes the torsion resistance objective.

The torsion torques are equal in magnitude and directed piosife directions,
i.e.,qorsion— —gfersion— g;; f,, with the quasi-force ,, computed from the torsion
velocity in subsection 2.5.3, and also not changing thestetional momentum.
Like for rolling, the torsion torques conserve the total @lagmomentum.

2.4.5 Summary

The implementation of the tangential force computatiomsfof,, andf, as based
onv, Vi, andv,, respectively, is assumed to [entical i.e., even the same sub-
routine is used, but with different parameters as specifeddvib The difference is
that friction leads to a force in the tangential plane (chiagdoth translational and
angular momentum), while rolling- and torsion-resistalez to quasi-forces in
the tangential plane and the normal direction, respegtieblanging the particles’
angular momentum only. For more details on tangential @ymteodels, friction,
rolling and torsion, see Refs. [7, 13, 38, 37, 14].

2.5 Thetangential force- and torque-models

The tangential contact model presented now is a single groegsubroutine) that
can be used to compute either sliding, rolling, or torsimistance. The subroutine
needs a relative velocity as input and returns the respefiiice or quasi-force as
function of the accumulated deformation. The slidinglgtig friction model will
be introduced in detail, while rolling and torsion resistarare discussed where
different.

2.5.1 Sliding/Sticking Friction Model

The tangential force is coupled to the normal force via Couis law, ft < f& =
pst", where for the sliding case one has dynamic friction wiitk= f¢ := p94f". The
dynamic and the static friction coefficients follow, in gealethe relatioru® < us.
The static situation requires an elastic spring in ordetltmafor a restoring force,
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i.e., a non-zero remaining tangential force in static eloiilm due to activated
Coulomb friction.

If a purely repulsive contact is established, > 0, and the tangential force is
active. For an adhesive contact, Coulombs law has to be reddifiso far thaf" is
replaced byf" + k.. In this model, the reference for a contact is no longer the ze
force level, but it is the adhesive, attractive force levehg —k:o.

If a contact is active, one has to project (or better rotdte)tangential spring into
the actual tangential plane, since the frame of referendbeotontact may have
rotated since the last time-step. The tangential spring

§=¢ —n(n-&), 17)

is used for the actual computation, whéfds the old spring from the last iteration,
with |€] = |&'| enforced by appropriate scaling/rotation. If the springiésv, the
tangential spring-lengthis zero, but its change is wellrafiafter the first, initiation
step. In order to compute the changes of the tangentialgitangential test-force
is first computed as the sum of the tangential spring forcesatashgential viscous
force (in analogy to the normal viscous force)

fh=—k & — v , (18)

with the tangential spring stiffnegg, the tangential dissipation paramejgrandy
from Eq. (9). As long asfh| < f&, with f& = pS(f" +k:d), one has static friction
and, on the other hand, fofh| > f&, sliding friction becomes active. As soon as
|f6| gets smaller tharfd, static friction becomes active again.
In the static friction case, below the Coulomb limit, the tangential spring is in-
cremented
&' =& +wAtyp , (19)

to be used in the next iteration in Eq. (17), and the tangkhotiee f' = f}, from Eq.
(18) is used. In theliding friction case, the tangential spring is adjusted to a length
consistent with Coulombs condition, so that

21
ke

with the tangential unit vectot,= f}/|f}], defined by Eq. (18), and thus the mag-
nitude of the Coulomb force is used. Insertifigrom Eq. (20) into Eq. (18) during
the next iteration will lead td} ~ fdt. Note thatf{) andv; are not necessarily par-
allel in three dimensions. However, the mapping in Eq. (20)ks always, rotating
the new spring such that the direction of the frictional &is unchanged and, at
the same time, limiting the spring in length according to Bmbs law. In short
notation the tangential contact law reads

& = (f8t+wvt) , (20)

ft = f't = +min(fe, [ f5))t, (21)
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wherefc follows the static/dynamic selection rules described abdhe torque on
a particle due to frictional forces at this contacgfét°" = 1€ x ¢, wherel€ is the
branch vector, connecting the center of the particle wighabintact point. Note that
the torque on the contact partner is generally differentagnitude, sincé& can be
different, but points in the same direction; see subse@idr? for details on this.

The four parameters for the friction law dge us, @ = Ug/ Us, andy, accounting
for tangential stiffness, the static friction coefficietite dynamic friction ratio, and
the tangential viscosity, respectively. Note that the &antigl force described above
is identical to the classical Cundall-Strack spring onlthia limitsyu = =9, i.e.,
@ = 1, andy = 0. The sequence of computations and the definitions and mggpi
into the tangential direction can be used in 3D as well as in 2D

2.5.2 Rolling Resistance Model

The three new parameters for rolling resistancekarg,, andy;, while ¢ = ¢y is
used from the friction law. The new parameters account filingostiffness, a static
rolling “friction” coefficient, and rolling viscosity, rggectively. In the subroutine
called, the rolling velocity; is used instead of and the computed quasi-forég
is used to compute the torqueg'"9, on the particles.

2.5.3 Torsion Resistance Model

The three new parameters for rolling resistancekgrel,, andy,, while @ = @y is
used from the friction law. The new parameters account f@ido stiffness, a static
torsion “friction” coefficient, and torsion viscosity, igsctively. In the subroutine,
the torsion velocityy, is used instead of; and the projection is a projection along
the normal unit-vector, not into the tangential plane astlfier other two models.
The computed quasi-forcg, is then used to compute the torqug8s°", on the
particles.

2.6 Background Friction

Note that the viscous dissipation takes place in a two-glartiontact. In the bulk
material, where many particles are in contact with eachrpthis dissipation mode
is very inefficient for long-wavelength cooperative modemotion [42, 41]. There-
fore, an additional damping with the background can be thtoed, so that the total
force on patrticlé is

fi:Z(f”n+ftt)—ybvi , (22)

]

and the total torque
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o = Z (qfriction + qrolling _|_qt0rsion) _ Vmaizwi , (23)
]

with the damping artificially enhanced in the spirit of a ptlaxation and equili-
bration. The sum in Egs. (22) and (23) takes into accountaatact partnerg of
particlei, but the background dissipation can be attributed to theiunedetween
the particles. Note that the effect gf and y,, should be checked for each set of
parameters: it should be small in order to exclude artifizi@r-damping. The set of
parameters is summarized in table 1. Note that only a fewnpetiers are specified
with dimensions, while the other paramters are expresseatias.

[Property [Symbol ]
Time unit ty
Length unit Xu
Mass unit my
Particle radius a
Material density P
Elastic stiffness (variable)  |ko
Maximal elastic stiffness k=ky
Plastic stiffness ki /k
Adhesion “stiffness” ke/k
Friction stiffness ki /k
Rolling stiffness ki /k
Torsion stiffness Ko/k
Plasticity depth 0]

Coulomb friction coefficient |u = g = Us
Dynamic to static Friction rati@y = Hg/ s
Rolling “friction” coefficient |,

Torsion “friction” coefficient |y

Normal viscosity Y=
Friction viscosity Wy
Rolling viscosity /Y
Torsion viscosity Yo/ Y
Background viscosity w/Y

Background viscous torque |y /Y

Table 1 Summary of the microscopic contact model parameters. Tingeloranged forces and
their parametersg, ro, andr are not included here.

2.7 Example: Tension Test Simulation Results

In order to illustrate the power of the contact model (esgcihe adhesive normal
model), in this section, uni-axial tension and comprestésis are presented. Note
that the contact model parameters are chosen once and ta@aoisimulate loose
particles, pressure-sintering, and agglomerates witlsebef paramters. With slight
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extensions, the same model was already applied to tempersittering [50] or
self-healing [53, 52].

The tests consists of three stages: (i) pressure sintéiiingfress-relaxation, and
(iif) the compression- or tension-test itself. The confartameters, as introduced in
the previous section, are summarized in table 1 and typatakg are given in table
2. These parameters are used for particle-particle canthet same for all tests
unless explicitly specified.

First, for pressure sinteringa very loose assembly of particles is compressed
with isotropic stresgps2a/ks ~ 0.02 in a cuboidal volume so that the adhesive
contact forces are activated this way. The stress- andstmitrolled wall motion
modes aredescribed below in subsection 6.2.2.

Two of the six walls are adhesive, wik{?! /k, = 20, so that the sample sticks to
them later, while all other walls are adhesionless, so tiet tan be easily removed
in the next step. Note that during compression and sintetitggwalls could all be
without adhesion, since the high pressure used keeps thelesémgether anyway
— only later for relaxation, adhesion must switched on. If the sample does not
remain a solid, and it also could lose contact with the wallsch are later used to
apply the tensile strain.

All walls should be frictionless during sintering, whileetiparticles can be slightly
adhesive and frictional. If the walls would be frictiondlgtpressure from a certain
wall would not be transferred completely to the respectweasite wall, since fric-
tional forces carry part of the load — an effect that is knowmce the early work of
Janssen [21, 62, 66].

Pressure-sintering is stopped when the kinetic energyeo$éimple is many orders
of magnitude smaller than the potential energy — typicallpfiders of magnitude.

During stress-relaxation all wall stresses are slowly releasedpg ps < 1 and
the sample is relaxed again until the kinetic energy is mutdller than the potential
energy. After this, the sample is ready for thesion or compression tests. The non-
adhesive side walls still feel a very small external stréss is not big enough to
affect the dynamics of the tension test, it is just convetrtiekeep the walls close to
the sample. (This is a numerical and not a physical requingérs&ce our code uses
linked-cells and those are connected to the system sizee ifalls would move too
far away, either the linked cells would grow, or their numbeuld increase. Both
cases are numerically inefficient.)

For thetension test wall friction is typically active, but some variation doestn
show a big effect. One of the sticky walls is slowly and sméothoved outwards
like described and applied in earlier studies [46, 35, 38,38 52], following a
prescribed cosine-function with time.

2.7.1 Model Parameters for tension
The system presented in this subsection contilirs 1728 particles with radig

drawn from a Gaussian distribution arouad= 0.005mm [11, 10]. The contact
model parameters are summarized in tables 1 and 2. The vdiatigon, v =



14 Stefan Luding

5iV(a)/V, with the particle volume/ (a) = (4/3)ma?, reached during pressure
sintering with 2aps/k, = 0.01 isvs = 0.6754. The coordination number#s~: 7.16

in this state. After stress-relaxation, these values haamged tov ~ 0.629 and
¢ ~ 6.19. A different preparation procedure (with adhesdigfk, = 0 during sin-
tering) does not lead to a difference in density after singeiHowever, one observes
v =~ 0.630 and% ~ 6.23 after relaxation. For both preparation procedures the te
sion test results are virtually identical, so that only thstfprocedure is used in the
following.

[Symbol  ][Value Jrescaled unitfSI-units |
ty 1 1lus 10 %s

Xu 1 1mm 103m

my 1 1mg 10 ®kg

ap 0.005 [5um 5.10°m

o 2 2mg/mn¥  |2000 kg/n¥
k=ky 5 5mg/us’ 5.10° kg/s
ke /K 05

ke/k 05

k /K 0.2

ke /k = ko/k |01

o 0.05

M= pg = Hs||1

@ = Ha/ls ||1

Hr = Ho 0.1

Y= th 5.10°[5.10 ° mg/us|5.10" kg/s
w/y 0.2

¥/Y=Yo/y ||0.05

w/y 4.0

Yor/Y 1.0

Table 2 Microscopic material parameters used (second columnytierplicitly specified. The
third column contains these values in the appropriate Liréts when the time-, length-, and mass-
unit are s, mm, and mg, respectively. Column four contains the paten®én Sl-units. Energy,
force, acceleration, and stress have to be scaled withréaofdl, 1, 10°, and 16, respectively,
for a transition from reduced to Sl-units.

The material parameters used for the particle contactsieea (n table 2. The
particle-wall contact parameters are the same, excepofoesion and friction, for
whichk¥a! /k, = 20 andu"@" = 10 are used — the former during all stages, the latter
only during tensile testing.

The choice of numbers and units is such that the particle®espond spheres
with several microns in radius. The magnitude of stiffnesmnnot be compared
directly with the material bulk moduluS, since it is a contact property. However,
there are relations from micro-macro transition analysisch allow to relatek and
C ~k#a?/V [35, 39].

Using the parametde = ky in Eq. (4) leads to a typical contact duration (half-
period)tc ~ 6.510“ us, for a normal collision of a large and a small particle with
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y = 0. Accordingly, an integration time-step tfp = 5.10 % us is used, in order
to allow for a “safe” integration of the equations of motidiote that not only the
normal “eigenfrequency” but also the eigenfrequencieamgéntial and rotational
direction have to be considered as well as the viscous resptimest, ~ m/y.
All of the physical time-scales should be considerablydathantyp, whereas the
viscous response times should be even larger, sathat; > typ. A more detailed
discussion of all the effects due to the interplay betweemtlodel parameters and
the related times is, however, far from the scope of this pape

2.7.2 Compressive and tensile strength

The tensile (compressive) test is performed uni-axially-thirection by increasing
(reducing) slowly and smoothly the distance between the stieky walls. (The
same initial sample, prepared with/k, = 1/2, is used for all tests reported here.)

The stress-strain curves for different cohesion are mlattd=ig. 2, for both ten-
sion and compression. Note that the shape of the curves arapffarent material
behavior (ductile, quasi-brittle, and brittle) dependsomly on the contact param-
eters, but also on the rate the deformation is performed f@tiee viscous forces
introduced above). The present data are for moderate todddarmation. Faster
deformation leads to even smoother curves with larger &mpatrength, while con-
siderably slower deformation leads to more brittle behafath sharper drops of
stress) and somewhat smaller strength.

G,y [NIM?]
Gy INIM?]

Fig. 2 (Left) Axial tensile stress plotted against tensile stfainsimulations with weak, moderate
and strong particle contact adhesion; khgk, values are given in the inset. The line gives a fit to
the linear elastic regime witB; = 3.10" N/m?. (Right) Axial compressive stress plotted against
compressive strain for two of the parameter sets from theame!l. The initial slope is the same as
in the top panel, indicating that the linear elastic regismléntical for tension and compression.

The axial tensile stress initially increases linearly wathain, practically inde-
pendent from the contact adhesion strength. With incrgastirain, a considerable
number of contacts are opened due to tension — contacts opereasily for smaller
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adhesion (data not shown). This leads to a decrease of #sssitrain slope, then
the stress reaches a maximum and, for larger strain, tutosaisoftening failure
mode. As expected, the maximal stress is increasing wittacbadhesiok:/k.
The compressive strength is-67 times larger than the tensile strength, and a larger
adhesion force also allows for larger deformation befoileifa. The sample with
weakest adhesiork:/k, = 1/2, shows tensile and compressive failure at strains
&x ~ —0.006 andsy ~ 0.045, respectively.

Note that for tension, the post-peak behavior for the test li/k, = 20 is dif-
ferent from the other two cases, due to the strong partialégbe contact adhesion.
In this case, the tensile fracture occurs at the wall (extmpa few particles that
remain in contact with the wall). This is in contrast to theertcases with smaller
bulk-adhesion, where the fracture occurs in the bulk, sgeJi

Fig. 3 Snapshots from tensile tests with/k, = 1/5 and 1, at horizontal strain @&y ~ —0.8.
The color code denotes the distance from the viewer: blwergrand red correspond to large,
moderate, and short distance.

3 Hard Sphere Molecular Dynamics

In this section, the hard sphere model is introduced togetith the event-driven
algorithm. A generalized model takes into account the findatact duration of
realistic particles and, besides providing a physcialp&tar, saves computing time
because it avoids the “inelastic collapse”.

In the framework of the hard sphere model, particles arenasduo be perfectly
rigid and they follow an undisturbed motion until a collisioccurs as described
below. Due to the rigidity of the interaction, the collis®accur instantaneously, so
that an event-driven simulation method [28, 51, 57, 56, %] loe used. Note that
the ED method was only recently implemented in parallel 28, however, we
avoid to discuss this issue in detail.
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The instantaneous nature of hard sphere collisions iscatifhowever, it is a
valid limit in many circumstances. Even though details @& tontact- or collision
behavior of two particles are ignored, the hard sphere misdedlid when binary
collisions dominate and multi-particle contacts are rdrd.[The lack of physical in-
formation in the model allows a much simpler treatment ofisioins than described
in section 2 by just using a collision matrix based on momentonservation and
energy loss rules. For the sake of simplicity, we restrigselves to smooth hard
spheres here. Collision rules for rough spheres are extnsliscussed elsewhere,
see e.g. [47, 18], and references therein.

3.1 Smooth Hard Sphere Collision Model

Between collisions, hard spheres fly independently fronhesber. A change in
velocity — and thus a change in energy — can occur only at &iooll The stan-
dard interaction model for instantaneous collisions ohtel particles with radius
a, and massn, is used in the following. The post-collisional velociti€sof two
collision partners in their center of mass reference frareegaven, in terms of the
pre-collisional velocities, by

\/172 = V]_,2 F (1+ r)Vn /2 s (24)

with v, = [(v1 —V2) - n|n, the normal component of the relative velocity— va,
parallel ton, the unit vector pointing along the line connecting the eenbf the
colliding particles. If two particles collide, their velies are changed according to
Eq. (24), with the change of the translational energy at bsgoh AE = —my»(1—
r?)v2/2, with dissipation for restitution coefficients< 1.

3.2 Event-Driven Algorithm

Since we are interested in the behavior of granular pastigessibly evolving over
several decades in time, we use an event-driven (ED) methazhwdiscretizes the
sequence of events with a variable time step adapted to ¢indgon. This is different
from classical DEM simulations, where the time step is ugdided.

In the ED simulations, the particles follow an undisturbeshslational motion
until an event occurs. An event s either the collision of peaticles or the collision
of one particle with a boundary of a cell (in the linked-ceétusture) [5]. The cells
have no effect on the particle motion here; they were sofghpduced to accelerate
the search for future collision partners in the algorithm.

Simple ED algorithms update the whole system after eachtea@method which
is straightforward, but inefficient for large numbers oftides. In Ref. [28] an ED
algorithm was introduced which updates only those two glagiinvolved in the
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last collision. Because this algorithm is “asynchronous$o far that an event, i.e.
thenext event, can occur anywhere in the system, it is so complidatpdrallelize
it [57]. For the serial algorithm, a double buffering dateusture is implemented,
which contains the ‘old’ status and the ‘new’ status, eachsisting of: time of
event, positions, velocities, and event partners. Whenllsion occurs, the ‘old’
and ‘new’ status of the participating particles are excleahdhus, the former ‘new’
status becomes the actual ‘old’ one, while the former ‘oldfiss becomes the ‘new’
one and is then free for the calculation and storage of pleskiture events. This
seemingly complicated exchange of information is carriatl extremely simply
and fast by only exchanging the pointers to the ‘new’ and’‘sidtus respectively.
Note that the ‘old’ status of particiehas to be kept in memory, in order to update
the time of the next contact,;, of particlei with any other objeci if the latter,
independently, changed its status due to a collision witlagether particle. During
the simulation such updates may be neccessary severaldortbat the predicted
‘new’ status has to be modified.

The minimum of allj; is stored in the ‘new’ status of partidlgtogether with the
corresponding partngr Depending on the implementation, positions and velaitie
after the collision can also be calculated. This would be stevaf computer time,
since before the timg;, the predicted partnersand j might be involved in several
collisions with other particles, so that we apply a delaypdaie scheme [28]. The
minimum times of event, i.e. the times, which indicate thetrevent for a certain
particle, are stored in an ordered heap tree, such that tkteement is found at
the top of the heap with a computational effort@f1); changing the position of
one particle in the tree from the top to a new position n&edsgN) operations.
The search for possible collision partners is accelerajethé use of a standard
linked-cell data structure and consun@4) of numerical resources per particle. In
total, this results in a numerical effort @(NlogN) for N particles. For a detailed
description of the algorithm see Ref. [28]. Using all thekmathmic tricks, we
are able to simulate about Aarticles within reasonable time on a low-end PC
[45], where the particle number is more limited by memoryntisy CPU power.
Parallelization, however, is a means to overcome the liofite processor [57].

As a final remark concerning ED, one should note that the dé&adges con-
ncected to the assumptions made that allow to use an evernhdaigorithm limit
the applicability of this method. Within their range of ajgpbility, ED simulations
are typically much faster than DEM simulations, since therfer accounts for a
collision in one basic operation (collision matrix), whasehe latter requires about
one hundred basic steps (integration time steps). Notethimttatement is also
true in the dense regime. In the dilute regime, both methogsaguivalent results,
because collisions are mostly binary [41]. When the systeaoimes denser, multi-
particle collisions can occur and the rigidity assumptiatiim the ED hard sphere
approach becomes invalid.

The most striking difference between hard and soft spheréei fact that soft
particles dissipate less energy when they are in contabt winy others of their
kind. In the following chapter, the so called TC model is dsged as a means to
account for the contact duratigin the hard sphere model.
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4 The Link between ED and DEM via the TC Model

In the ED method the contact duration is implicitly zero, atég well the corre-
sponding assumption of instantaneous contacts used f@&irtagc theory [17, 22].
Due to this artificial simplification (which disregards tlaef that a real contact takes
always finite time) ED algorithms run into problems when thestbetween events
th gets too small: In dense systems with strong dissipatiionay even tend towards
zero. As a consequence the so-called “inelastic collapse’occur, i.e. the diver-
gence of the number of events per unit time. The problem ofrélkastic collapse
[54] can be avoided using restitution coefficients depethdenthe time elapsed
since the last event [51, 44]. For the contact that occuimatttj between particles

i andj, one uses = 1 if at least one of the partners involved had a collision with
another particle later thar —tc. The timet; can be seen as a typical duration of a
contact, and allows for the definition of the dimensionledior

Te = te/tn . (25)

The effect oft; on the simulation results is negligible for largeand smalk; for a
more detailed discussion see [51, 45, 44].

In assemblies of soft particles, multi-particle contaats possible and the in-
elastic collapse is avoided. The TC model can be seen as asneatlow for
multi-particle collisions in dense systems [43, 30, 51]the case of a homoge-
neous cooling system (HCS), one can explicitly compute treected cooling rate
(r.h.s.) in the energy balance equation

d

drE =-2I(E.t) , (26)
with the dimensionless time= (2/3)At /tg(0) for 3D systems, scaled by= (1 —
r?)/4, and the collision ratge* = (12/a)vg(v)+/T /(rm), with T = 2K /(3N). In
these units, the energy dissipation rate a function of the dimensionless energy
E = K/K(0) with the kinetic energ¥, and the cut-off timé. In this representation,
the restitution coefficient is hidden in the rescaled tin@As= A(r), so that inelastic
hard sphere simulations with differenscale on the same master-curve. When the
classical dissipation rai&®? [17] is extracted fron, so that (E, tc) = J(E,t)E%/?,
one has the correction-functidn— 1 for tc — 0. The deviation from the classical
HCS is [44]:

J(E L) = exp(¥(¥)) , (27)

with the series expansid#(x) = —1.268x+0.0168%2 — 0.0005783 + ¢'(x*) in
the collision integral, with = /7ittz 1 (0)VE = /Tite(0)VE = /Tt [44]. This is
close to the resul \y = —2x/+/m, proposed by Luding and McNamara, based on
probabilistic mean-field arguments [51]

Given the differential equation (26) and the correction tuaulti-particle con-
tacts from Eq. (27), it is possible to obtain the solution reuigally, and to compare

3 Y{\ thus neglects non-linear terms and underestimates thar lzet
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Fig. 4 (Left) Deviation from the HCS, i.e. rescaled eneEjE , whereE; is the classical solution
E: = (1+1)72. The data are plotted againsfor simulations with differentrs(0) = tc/tg (0) as
given in the inset, withr = 0.99, andN = 8000. Symbols are ED simulation results, the solid
line results from the third order correction. (Rigl)yE; plotted against for simulations with
r=0.99, andN = 2197. Solid symbols are ED simulations, open symbols are &t particle
simulations) with three differeri¢ as given in the inset.

it to the classicaE; = (1+ 1)~2 solution. Simulation results are compared to the
theory in Fig. 4 (left). The agreement between simulatiomd #heory is almost
perfect in the examined range fvalues, only when deviations from homogene-
ity are evidenced one expects disagreement between siamukatd theory. The
fixed cut-off timet; has no effect when the time between collisions is very large
te > t¢, but strongly reduces dissipation when the collisions oedgth high fre-
quencyt,g1 R t- L. Thus, in the homogeneous cooling state, there is a strdegt ef
initially, and if t; is large, but the long time behavior tends towards the aaksi
decayE — E; 0172,

The final check if the ED results obtained using the TC moderaasonable is
to compare them to DEM simulations, see Fig. 4 (right). Opeah $olid symbols
correspond to soft and hard sphere simulations respectiveé qualitative behav-
ior (the deviation from the classical HCS solution) is idealt The energy decay is
delayed due to multi-particle collisions, but later thesslaal solution is recovered.
A quantitative comparison shows that the deviatiofedfom E; is larger for ED
than for DEM, given that the santgis used. This weaker dissipation can be under-
stood from the strict rule used for ED: Dissipation is ineetif any particle had a
contact already. The disagreement between ED and DEM ismagsic and should
disappear if an about 30 per-cent smatleralue is used for ED. The disagreement
is also plausible, since the TC model disregards all disisipdor multi-particle
contacts, while the soft particles still dissipate energyen though much less - in
the case of multi-particle contacts.

The above simulations show that the TC model is in fact aktrio make hard
particles soft and thus connecting between the two typesmflation models: soft
and hard. The only change made to traditional ED involveslaged dissipation for
(rapid) multi-particle contacts.
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5 The Stress in Particle Simulations

The stress tensor is a macroscopic quantity that can benelttély measurement
of forces per area, or via a so-called micro-macro homogeioiz procedure. Both
methods will be discussed below. During derivation, it dlsms out that stress has
two contributions, the first is the “static stress” due totioée contacts, gotential
energy density, the second is the “dynamics stress” due to momentum flug, lik
in the ideal gas, &inetic energy density. For the sake of simplicity, we restrict
ourselves to the case of smooth spheres here.

5.1 Dynamic Stress

For dynamic systems, one has momentum transport via fluxeopé#hnticles. This
simplest contribution to the stress tensor is the standegdssin an ideal gas, where
the atoms (mass points) move with a certain fluctuation wglog. The kinetic
energyE = 3N ; mv?/2 due to the fluctuation velocity can be used to define the
temperature of the gdgT = 2E/(ZN), with the dimensionZ and the particle
numberN. Given a number density = N/V, the stress in the ideal gas is then
isotropic and thus quantified by the presspre nkgT; note that we will disregard
ks in the following. In the general case, the dynamic stress=is(1/V) 5 mvi ® Vi,
with the dyadic tensor product denoted ley, and the pressurp=tra/2 =nT is
the kinetic energy density.

The additional contribution to the stress is due to collisiand contacts and will
be derived from the principle of virtual displacement foftgoteraction potentials
below, and then be modified for hard sphere systems.

5.2 Static Stressfrom Virtual Displacements

From the centers of mass andr, of two particles, we define the so-called branch
vectorl = ry —rp, with the reference distande= ||| = 2a at contact, and the cor-
responding unit vecton = | /I. The deformation in the normal direction, relative
to the reference configuration, is defineddas- 2an— 1. A virtual change of the
deformation is then

00=0'-0~dl =¢-1, (28)

where the prime denotes the deformation after the virtugdldcement described
by the tensok. The corresponding potential energy density due to theactsmbf
one pair of particles is = k62/(2V), expanded to second orderdnleading to the
virtual change

_E } 2 NE n
0U—V (5 05—|—2(05) ) ~V5 o, (29)
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wherek is the spring stiffness (the prefactor of the quadratic taritne series ex-
pansion of the interaction potentiaVj is the averaging volume, aml" =n(n-¢-1)
is the normal component @l. Note thatdu depends only on the normal component
of dd due to the scalar product with which is parallel ton.

From the potential energy density, we obtain the stress &wirtual deformation
by differentiation with respect to the deformation tensemponents

Jdu k 1
o_ﬁ_\—/6®l_\7f®l, (30)

wheref = ko is the force acting at the contact, and the dyadic produof two
vectors leads to a tensor of rank two.

5.3 Stressfor Soft and Hard Spheres

Combining the dynamic and the static contributions to thesst tensor [49], one
has for smooth, soft spheres:

1

szi®Vi—Z/fc®|c
I ce

where the right sum runs over all contacti& the averaging volum¥. Replacing
the force vector by momentum change per unit time, one abfairhard spheres:

1

1
vaié@vi—ﬂzzpj@h

wherep; andl; are the momentum change and the center-contact vectortafipar
j at collisionn, respectively. The sum in the left term runs over all pagsc) the
first sum in the right term runs over all collision®ccurring in the averaging time
At, and the second sum in the right term concerns the collissotmers of collision
n [51].

Exemplary stress computations from DEM and ED simulatioagpaesented in the
following section.

6 2D Simulation Results

Stress computations from two dimensional DEM and ED sinmuiatare presented
in the following subsections. First, a global equation atest valid for all densities,
is proposed based on ED simulations, and second, the samessrtfrom a slow,
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quasi-static deformation is computed from DEM simulatianth frictional parti-
cles.

6.1 The Equation of State from ED

The mean pressure in two dimensionspis= (01 + 02)/2, with the eigenvalues
01 and o> of the stress tensor [48, 49, 32]. The 2D dimensionless,cesdipres-
sureP = p/(nT) — 1= pV/E — 1 contains only the collisional contribution and the
simulations agree nicely with the theoretical predict®n= 2vg,(v) for elastic
systems, with the pair-correlation functigp(v) = (1—7v/16)/(1—v)?, and the
volume fractionv = N7ta?/V, see Fig. 5. A better pair-correlation function is

_1-7v/16  v¥/16

g4(V) - (1_ V)Z 8(1— V)4 ) (33)

which defines the non-dimensional collisional strBgs= 2vgs(v). For a system
with homogeneous temperature, as a remark, the collisteng@roportional to the
dimensionless pressute! [0 P.

10
100 }

o '8
10 ¢

Fig. 5 The dashed lines af, andPyense@s functions of the volume fraction, and the symbols
are simulation data, with standard deviations as given bettor bars in the inset. The thick solid
line is Q, the corrected global equation of state from Eq. (34), aedtim solid line isQy without
empirical corrections.

When plottingP againstv with a logarithmic vertical axis, in Fig. 5, the sim-
ulation results can almost not be distinguished frignior v < 0.65, butP, leads
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to better agreement up to= 0.67. Crystallization is evidenced at the point of the
liquid-solid transitionv; ~ 0.7, and the data clearly deviate frd®n The pressure is
strongly reduced due to the increase of free volume causeddgying. Eventually,
the data diverge at the maximum packing fractigmx = 71/(2V/3) for a perfect
triangular array.

For high densities, one can compute from free-volume mottedseduced pres-
sure Py = 2Vmax/(Vmax— V). Slightly different functional forms do not lead to
much better agreement [32]. Based on the numerical datarap®ge the corrected
high density pressurBiense= Pvh(Vmax— V) — 1, with the empirical fit function
h(x) = 14 c1x+cax®, andc; = —0.04 andcs = 3.25, in perfect agreement with the
simulation results fov > 0.73.

Since, to our knowledge, there is no conclusive theory alglto combine the
disordered and the ordered regime [23], we propose a glojoalt®n of state

Q=Ps+m(v) [Pdense_ P4] ) (34)

with an empirical merging functiom(v) = [1+exp(—(v — v¢)/mp)] %, which se-
lects P, for v < v andPyensefor v > v¢, with the transition density. and the
width of the transitionmg. In Fig. 5, the fit parameteng = 0.702 andmy ~ 0.0062
lead to qualitative and quantitative agreement betw@éthick line) and the sim-
ulation results (symbols). However, a simpler vers@n= P, + m(v)[Py, — Py,
(thin line) without empirical corrections leads alreadyg¢asonable agreement when
Ve = 0.698 andmy = 0.0125 are used. In the transition region, this functi@yhas
no negative slope but is continuous and differentiablehaoit allows for an easy
and compact numerical integration Bf We selected the parameters 19§ as a
compromise between the quality of the fit on the one hand amdithplicity and
treatability of the function on the other hand.

As an application of the global equation of state, the dgrmibfile of a dense
granular gas in the gravitational field has been computeahforodisperse [49] and
bidisperse situations [48, 32]. In the latter case, howeeagregation was observed
and the mixture theory could not be applied. The equatiortaiésand also other
transport properties are extensively discussed in Ref4, Bl 2] for 2D, bi-disperse
systems.

6.2 Quasi-static DEM simulations

In contrast to the dynamic, collisional situation discussethe previous section, a
quasi-static situation, with all particles almost at resistrof the time, is discussed
in the following.
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6.2.1 Model Parameters

The systems examined in the following conthlia= 1950 particles with radia; ran-
domly drawn from a homogeneous distribution with minimagj, = 0.5103m
and maximummax = 1.510~3m. The massesy = (4/3)pma?, with the density
p = 2.010°kgm~3, are computed as if the particles were spheres. This is &n art
ficial choice and introduces some dispersity in mass in sufdib the dispersity in
size. Since we are mainly concerned about slow deformatidreguilibrium situ-
ations, the choice for the calculation of mass should notenathe total mass of
the particles in the system is thivb~ 0.02 kg with the typical reduced mass of a
pair of particles with mean radiusy, ~ 0.42 10 °kg. If not explicitly mentioned,
the material parameters gkg= 10°Nm~1 andyp = 0.1kg s L. The other spring-
constantk; andk; will be defined in units ok,. In order to switch on adhesion,
ki < ko andk; > 0 is used; if not mentioned explicitl = ky/2 is used, and; is
constant, independent of the maximum overlap previousijeaed.

Using the parametetg = kp andk; = 0 in Eq. (4) leads to a typical contact du-
ration (half-period)t; ~ 2.0310 °s foryy = 0,t. ~ 2.0410 °s foryp = 0.1kgs 1,
andte ~ 2.2110°s for yp = 0.5kg s ™! for a collision. Accordingly, an integration
time-step ofpem = 5107 s is used, in order to allow for a ‘safe’ integration of con-
tacts involving smaller particles. Large valueskgiead to strong adhesive forces,
so that also more energy can be dissipated in one collisiba.tffpical response
time of the particle pairs, however, is not affected so thatrtumerical integration
works well from a stability and accuracy point of view.

6.2.2 Boundary Conditions

The experiment chosen is the bi-axial box set-up, see Figih@re the left and
bottom walls are fixed, and stress- or strain-controlleddgétion is applied. In the
first case a wall is subject to a predefined pressure, in tlemdarase, the wall is sub-
jectto a pre-defined strain. In a typical ‘experiment’, thp tvall is strain controlled
and slowly shifted downwards while the right wall moves s¢reontrolled, depen-
dent on the forces exerted on it by the material in the box. §then-controlled
position of the top wall as function of tintds here

z(t):zf+zo—ng(1+coswt), with szzzl—% , (35)

where the initial and the final positiorzg andz can be specified together with the
rate of deformationnw = 27f so that after a half-perio@l/2 = 1/(2f) the extremal
deformation is reached. With other words, the cosine ivadtr 0< wt < 1. For
larger times, the top-wall is fixed and the system can reldgrfinitely. The cosine
function is chosen in order to allow for a smooth start-up finigh of the motion
so that shocks and inertia effects are reduced, howeveshtigge of the function is
arbitrary as long as it is smooth.

The stress-controlled motion of the side-wall is describyed
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Fig. 6 (Left) Schematic drawing of the model system. (Right) Rosibf the top-wall as function
of time for the strain-controlled situation.

MuX(t) = Fu(t) — ezlt) — JaX(t) . (36)

wherem,, is the mass of the right side wall. Large valueswf lead to slow adap-
tion, small values allow for a rapid adaption to the actuaiagion. Three forces are
active: (i) the force~(t) due to the bulk material, (ii) the forcepxz(t) due to the
external pressure, and (iii) a strong frictional force whiamps the motion of the
wall so that oscillations are reduced.

6.2.3 Initial Configuration and Compression

Initially, the particles are randomly distributed in a huog, with rather low overall
density. Then the box is compressed, either by moving thésualtheir desired
position, or by defining an external pressyre- px = pz, in order to achieve an
isotropic initial condition. Starting from a relaxed, isgpic initial configuration,
the strain is applied to the top wall and the response of teesyis examined. In
Fig. 7, snapshots from a typical simulation are shown ducogpression.

In the following, simulations are presented with differsiate pressurep = 20,
40, 100, 200, 400, and 500. The behavior of the averaged staldensor variables
during the simulations is examined in more detail for sitwag with small and large
confining pressure. The averages are performed such thed terenty per-cent of
the total volume are disregarded in the vicinity of each wedirder to avoid bound-
ary effects. A particle contact is taken into account for dverage if the contact
point lies within the averaging volumé.

6.2.4 Compression and Dilation

The first quantity of interest is the density (volume franjio and, related to it, the

volumetric strainsy = AV /V. From the averaged data, we evidence compression
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Fig. 7 Snapshots of the simulation at differesy}, for constant side pressug@ The color code
corresponds to the potential energy of each particle, degayom red over green to blue and
black. The latter black particles are so-called rattleet tto not contribute to the static contact
network.

for small deformation and large side pressure. This iniégime follows strong
dilation, for all pressures, until a quasi-steady-state@hed, where the density is
almost constant besides a weak tendency towards furttzioail

0.03
0.02
>

> W 0.01
0

-0.01

0 0.05 0.1 0.15 0.2 0O 0.05 0.1 0.15 0.2
8ZZ EZZ

Fig. 8 (Left) Volume fractionv = ¥; ra?/V for different confining pressurp. (Right) Volumetric
strain — negative values mean compression, whereas @ogitives correspond to dilation.
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An initially dilute granular medium (weak confining pressuthus shows dila-
tion from the beginning, whereas a denser granular maiati@ng confining pres-
sure) can be compressed even further by the relatively gieaternal forces until
dilation starts. The range of density changes is about ®@@lume fraction and
spans up to 3 % changes in volumetric strain.

From the initial slope, one can obtain the Poisson ratio efahlk material, and
from the slope in the dilatant regime, one obtains the sledalilatancy angle, a
measure of the magnitude of dilatancy required before shgarssible [46, 33].

The anisotropy of the granular packing is quantified by theaderic fabric (data
not shown). The anisotropy is initially of the order of a fegrpent at most —thus the
initial configurations are already not perfectly isotropiven though isotropically
prepared. With increasing deviatoric deformation, thesatnopy grows, reaches a
maximum and then saturates on a lower level in the criticaediow regime. The
scaled fabric grows faster for smaller side pressure anl$dsrelatively larger for
smaller p. The non-scaled fabric deviator, astonishingly, grows au&s around
f3®trF ~ 0.56+ 0.03, independently of the side pressures used here (data not
shown, see [33, 34] for details). Using the definitih:= devF /trF, the func-
tional behavior,

ofp
0813 o

was evidenced from simulations in Ref. [33], wit§®trF ~ const, and the devi-
atoric rate of approacB; = B¢ (p), decreasing with increasing side pressure. The
differential equation is solved by an exponential functiwett describes the approach
of the anisotropyfp to its maximal value, + (fp/f3'®) = exp(—Brep), but not
beyond.

B (f5*—fo) , (37)

6.2.5 Stress Tensor

The sums of the normal and the tangential stress-contifsiire displayed in Fig.
9 for two side-pressurgs= 20 andp = 200. The lines show the stress measured on
the walls, and the symbols correspond to the stress meagiarétte micro-macro
average in Eq. (31), proving the reasonable quality of therorinacro transition as
compared to the wall stress “measurement”.

There is also other macroscopic information hidden in tihesststrain curves
in Fig. 9. From the initial, rapid increase in stress, one datermine moduli of
the bulk-material, i.e, the stiffness under confineneritater, the stress reaches a
peak at approximately.@p and then saturates at abous. Zrom both peak- and
saturation stress, one obtains the yield stresses at pehlnamitical state flow,
respectively [61].

Note that for the parameters used here, both the dynamsssirel the tangential
contributions to the stress tensor are more than one ordaeaghitude smaller than
the normal contributions. As a cautionary note, we remask #hat the artificial
stress induced by the background viscous force is negdidible (about two per-
cent), wheny, = 103kg st and a compression frequenty= 0.1 s ! are used. For
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Fig. 9 Total stress tensar = ¢" + g for small (Left) and high (Right) pressure — the agreement
between the wall pressure and the averaged stress is alerésttp

faster compression with = 0.5s1, one obtains about ten per-cent contribution to
stress from the artificial background force.

The behavior of the stress is displayed in Fig. 10, wheresibiteapic stresétr o
is plotted in units ofp, and the deviatoric fraction is plotted in units of the ispic
stress. Note that the tangential forces do not contributbe@dsotropic stress here
since the corresponding entries in the averaging procesurgensate. From Fig.
10, we evidence that both normal contributions, the nonedisional trace and the
non-dimensional deviator behave similarly, independéth® side pressure: Start-
ing from an initial value, a maximum is approached, wherernf@aimum is only
weakly dependent op.
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Fig. 10 Non-dimensional stress tensor contributions for diffenenThe isotropic (Left) and the
deviatoric fractions (Right) are displayed as functionshefvertical and deviatoric strain, respec-
tively.
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The increase of stress is faster for lowerAfter the maximum is reached, the
stresses decay and approach a smaller value in the critatel fow regime. Us-
ing the definitionssy :=tr o /(2p) — 1 andsp := devo /tro, the maximal (non-
dimensional) isotropic and deviatoric stresses si& ~ 0.8+ 0.1 and {@* ~
0.440.02, respectively, with a rather large error margin. The esponding val-
ues at critical state flow ais§ ~ 0.4+ 0.1 ands§ ~ 0.29+ 0.04.

The evolution of theleviatoric stress fraction,sp, as function ofp, is displayed
in Fig. 10. Like the fabric, also the deviatoric stress exgtrally approaches its
maximum. This is described by the differential equation

—— =Bs(0” %) , (38)

wherefs = Bs(p) is decaying with increasing (roughly asBs ~ p~ /). For more
details on the deviatoric stress and also on the tangemtiiibution to the stress,
see [33, 34, 36, 35].

7 Larger Computational Examples

In this section, several examples of rather large particlalmers simulated with
DEM and ED are presented. The ED algorithm is first used to Isitawa freely
cooling dissipative gas in two and three dimensions [45, BBé&n, a peculiar three
dimensional ring-shear experiment is modeled with sofespDEM.

7.1 Free Cooling and Cluster Growth (ED)

In the following, a two-dimensional system of lendith- | /d = 560 withN = 99856
dissipative particles of diametdr= 2a is examined [51, 45], with volume fraction
v = 0.25 and restitution coefficiemt= 0.9. This 2D system is compared to a three-
dimensional system of length=1/d = 129 withN = 512000 dissipative spheres
of diameterd and volume fractiow = 0.25 withr = 0.3 [56].

7.1.1 Initial configuration

Initially the particles are arranged on a square latticéwandom velocities drawn
from an interval with constant probability for each coowtten The mean total ve-
locity, i.e. the random momentum due to the fluctuations lirmirated in order
to have a system with its center of mass at rest. The systeltovged to evolve
for some time, until the arbitrary initial condition is fartien, i.e. the density is
homogeneous, and the velocity distribution is a Gaussiaaah coordinate. Then
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dissipation is switched on and the evolution of the systerepsrted for the selected
r. In order to avoid the inelastic collapse, the TC model iglusdich reduces dis-
sipation if the time between collisions drops below a valfig e 10°s.

Fig. 11 (Left) Collision frequency of individual particles from @®2Ximulation, after about 5200
collisions per patrticle. (Right) Cluster visualizationifin a 3D simulation. The colors in both panels
indicate large (red), medium (green), and small (blue)siolh rates.

7.1.2 System evolution

For the values of used here, the system becomes inhomogeneous quite rapidly
[45, 56]. Clusters, and thus also dilute regions, build ug have the tendency to
grow. Since the system is finite, their extension will reagbtem size at a finite
time. Thus we distinguish between three regimes of systemuton: (i) the initially
(almost) homogeneous state, (ii) the cluster growth regame (iii) the system size
dependent final stage where the clusters have reached syigenWe note that a
cluster does not behave like a solid body, but has interndbmand can eventually
break into pieces after some time. These pieces (smallecg)stollide and can
merge to larger ones.

In Fig. 11, snapshots are presented and the collision ratelis-coded. The
collision rate and the pressure are higher inside the clsghan at their surface.
Note that most of the computational effort is spent in pregccollisions and to
compute the velocities after the collisions. Therefore, ibgions with the largest
collision frequencies require the major part of the compotzal resources. Due to
the TC model, this effort stays limited and the simulatioas easily continue for
many thousand collisions per particle.
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7.1.3 Discussion

Note that an event driven simulation can be 10-100 timesgifdlsan a soft-particle
DEM code applied to model the same particle number. How&I®tis rather lim-
ited to special, simple interactions between the particles

7.2 3D (Ring) Shear Cell Simulation

The simulation in this section models a ring-shear cell expent, as recently pro-
posed [15, 16]. The interesting observation in the experirieea universal shear
zone, initiated at the bottom of the cell and becoming widet emoving inwards
while propagating upwards in the system.

In the following, the shear-band will be examined, and thero¥macro transi-
tion from will be performed, leading to a yield stress (or flimction) based on
a single simulation. This is in contrast to the two-dimensicexample from the
previous chapter, where the yield stress had to be detednfiiom different simu-
lations with different side stregs In the ring shear cell, space- and time-averaging
is possible, so that - at different radial and vertical pos#, one obtains data for
different density, stress, velocity gradient, etc.

7.2.1 Model system

The numerical model chosen here is DEM with smooth particigbree dimen-
sions. In order to save computing time, only a quarter of ihg-shaped geometry
is simulated. The walls are cylindrical, and are rough ongasicle scale due to
some attached particles. The outer cylinder wall with ra& and part of the bot-
tomr > Rs are rotating around the symmetry axis, while the inner withwadius

Ri, and the attached bottom-disk: Rs remain at rest. In order to resemble the ex-
periment, the geometry data &Re= 0.0147 m,Rs = 0.085m, andR, = 0.110m.
Note that the smalR; value is artificial, but it does not affect the results for §ma
and intermediate filling heights.

The slit in the bottom wall at = Rs triggers a shear band. In order to examine the
behavior of the shear band as function of the filling heighthis system is filled
with 6000 to 64000 spherical particles with mean radiudmim and radii range
0.5mm< a< 1.5mm, which interact here via repulsive and dissipativedsranly.
The particles are forced towards the bottom by the gravitgefé ; = mg here and
are kept inside the system by the cylindrical walls. In ordeprovide some wall
roughness, a fraction of the particles (about 3 per-ceat)dte originally in contact
with the walls are glued to the walls and move with them.
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7.2.2 Material and system parameters

The material parameters for the particle-particle and l-ivdéractions arek =

10?7 N/m andyp = 2.10 3kg/s. Assuming a collision of the largest and the small-
est particle used, the reduced mass = 2.9410 ¢kg, leads to a typical contact
durationt; = 5.410*s and a restitution coefficient af= 0.83. The integration
time step ispem = 5.10 s, i.e. two orders of magnitude smaller than the contact
duration.

Fig. 12 Snapshots from the quarter-cylinder geometry. Visiblehame only those particles glued
to the wall; the cylinder and slit positions are indicatedthy lines. (Left) Top-view and (Right)
front-view. The colors blue and red correspond to staticranging wall particles.

The simulations run for 25 s with a rotation refte= 0.01 s™* of the outer cylin-
der, with angular velocity, = 2mf,. For the average of the displacement, only
timest > 10s are taken into account. Within the averaging accuraeysystem
seemingly has reached a quasi-steady state after abouh8 enipty cell is shown
in Fig. 12, while three realizations with different fillinglght are displayed in Fig.
13, both as top- and front-view.

7.2.3 Shear deformation results

From the top-view, it is evident that the shear band movesiidg/with increasing
filling height, and it also becomes wider. From the frontwithe same information
can be evidenced and, in addition, the shape of the shearibsidé the bulk is
visible: The inwards displacement happens deep in the mdklze position of the
shear band is not changing a lot closer to the surface.

In order to allow for a more quantitative analysis of the sheand, both on
the top and as function of depth, we perform fits with the ursiskeshape function

proposed in [15]:
Vp(r) r—Re
ToR _A<1+erf(T)> , (39)
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Fig. 13 Snapshots from simulations with different filling heigheea from the top and from the
front, and the particle numbét is given in the inset. The colors blue, green, orange andeadte
particles withrdg < 0.5mm,rdg < 2mm,rdg < 4 mm, andrdg > 4mm, i.e. the displacement
in tangential direction per second, respectively. Thenfillheights in these simulations dre=
0.018 m, 0037 m, and M61 m (from left to right).

whereA is a dimensionless amplitude= 0.50+0.02,R. is the center of the shear-
band, andV its width.

The fits to the simulations confirm qualitatively the expegirtal findings in so
far that the center of the shear band, as observed on top ohalerial, see Fig.
14, moves inwards with B; [0 H%/2 behavior, and that the width of the shear band
increases almost linearly witH. For filling heights larger thail ~ 0.05m, de-
viations from this behavior are observed, because the iryleder is reached and
thus sensed by the shearband. Slower shearing does nath&eenter, but reduces
slightly the width - as checked by one simulation.

Like in the experiments, the behavior of the shearband witiné bulk, see Fig.
15, deviates qualitatively from the behavior seen from the tnstead of a slow
motion of the shear band center inwards, the shear bandyapales inwards at
small heightsh, and reaches a saturation distance with small change diosee
surface. Again, a slower rotation does not affect the cantereduces the width.

From the velocity field in the bulk it is straightforward toropute the velocity
gradient tensor and, from this extracting the (symmetti@)is rate:

ov, Y, AN
—\Jd2+dz= \/—“’——"’ +(a—z"’) (40)

i.e., the shear intensity in the shear plane [40]. Note thatsblid-body rotation
termvy,/r comes from the cylindrical coordinate system used. Therghlaaes are
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Fig. 14 (Left) Distance of the top-layer shearband center from thel®th plotted against the
filling height H. The open symbols are simulation results, the solid symdal simulation with
slower rotationf, = 0.005s %, and the line is a fit with constamk = 30. (Right) Width of the

shearband from the same simulations; the line is a fit wjth= 2/5.

0.04 — T 0.04 —_—

””””” CrHo ot e Gy Ho R
0.035 ~ 0.035 » 1

A
0.03 # 0.03 o 1
~ 0025 s 0.025 A
3 o z

o 0.02 / y ; 0.02 1
0015 o7 0.015 .
0.01 0.01} 1
0.005 0.005 - 1

I /'/'1’/ 1 1 1 1 1 1 1 1 1 1

0L
0 0.010.02 0.03 0.04 0.05 0.06 0.07
h(m)

oL &
0 0.010.02 0.03 0.04 0.05 0.06 0.07
h (m)

Fig. 15 (Left) Distance of the bulk shearband center from the slit, §Right) width of the shear-
band, both plotted against the heightThe open symbols are simulation results obtained with
fo = 0.01s1, the solid symbols are obtained with slower rotatigr= 0.005 st Squares, circles
and triangles correspond to the filling heiglts= 0.037 m, 0049 m, and @61 m, respectively.
The curves are identical to those plotted in Fig. 14.

in fact described by a normal unit vectgr= (cos6,0,sinf), with 6 = 8(r,z) =
arccos$d; /y), as predicted [12]. The center of the shear band indicagedithction
of the unit-vectoy. In the system with friction, we observe that the averagégas
spin is also normal to the shear-plane, i.e., parallgl,twithin the rather strong
fluctuations (data not shown).

From the stress, as computed according to Eq. (31), the streas is extracted
(in analogy to the strain rate) as proposed in [12]:

1| =\/0f+0Z -

(41)
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Remarkably, the shear stress intensity p~ 1 is almost constant for practically
all averaging volumina with strain rates larger than somesthold value, i.ey > v,
with y ~ 0.02s 1. Whether the threshold has a physical meaning or is only an
artefact due to the statistical fluctuations in the avereagfa tias to be examined
further by much longer runs with better statistics.

From the constant shear stress intensity in the shear zoaean determine the
Mohr-Coulomb-type friction angle of the equivalent ma@mgic constitutive law,
see Fig. 16, ag/ ~ arcsinu. Interestingly, without frictiony is rather large, i.e.,
much larger than expected from a frictionless material,re&g it is astonishingly
small with friction (data not shown), i.e., smaller than thigroscopic contact fric-
tion u = 0.4 used, see Ref. [40].
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Fig. 16 (Left) Shear stresig| and (Right) shear stress intensity/ p plotted against pressure. The
size of the points is proportional to the shear rate, and #sbef line (right panel) separates the
data from simulations without (Bottom) and with (Top) fran, see [40].

7.2.4 Discussion

In summary, the example of a ring shear cell simulation in 3B $hown, that even
without the more complicated details of fancy interactiaw$, experiments can be
reproduced at least qualitatively. A more detailed studgudintitative agreement
has been performed in 2D [27], and is in progress for the 3B.cas

A challenge for the future remains the micro-macro traositfor which a first
result has been shown, i.e. the yield stress can be extriioreda single 3D DEM
simulation for various pressures and shear rates. Operingm@a objective contin-
uum theory formulation of the shear band problem.
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8 Conclusion

The present study is a summary of the most important dethdsitasoft particle
molecular dynamics (MD), widely referred to as discreteraat methods (DEM)
in engineering, and hard particle event driven (ED) simaiest, together with an
attempt to link the two approaches in the dense limit wher#isparticle contacts
become important.

As an example for a micro-macro transition, the stress tewss defined and
computed for dynamic and quasi-static systems. This ladgXample, to a global
equation of state, valid for all attainable densities, also & the partial stresses
due to normal and tangential (frictional) contacts. Foréteer situation, the micro-
macro average is compared to the macroscopic stress (&ogeg measurement
(with reasonable agreement) and, at least in 3D, a yieldsfienction can be ex-
tracted from a single ring shear cell simulation.

In conclusion, discrete element methods have proven auiglasl for the un-
derstanding of many granular systems, while MD is the stahtieol for atomistic
and molecular systems. The methods presented in this papérecapplied to both
DEM and MD simulation results with the goal to obtain microdgarticle-based
constitutive relations for continuum theory.

The qualitative approach on DEM of the early years has nowldeed into the
attempt of a quantitative predictive modeling tool for theetise modes of complex
behavior in granular media. To achieve this goal will be a&aesh challenge for
the next decades, involving enhanced kinetic theories émsd collisional flows
and elaborate constitutive models for quasi-static, degse=ms with shear band
localisation.

In the future this tool will allow to impose a desired behaby control or de-
sign, with particular application in mind as, e.g., modenmtesed materials, reactors
involving catalysts, and many others.
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