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Abstract One challenge of todays research is the realistic simulation of disordered
atomistic systems or particulate and granular materials like sand, powders, ceram-
ics or composites, which consist of many millions of atoms/particles. The inhomo-
geneous fine-structure of such materials makes it very difficult to treat them with
continuum methods, which typically assume homogeneity andscale separation. As
an alternative, particle based methods can be straightforwardly applied, since they
intrinsically take the fine-structure into account. The ultimate challenge is to find
constitutive relations for continuum theory from these particle-based simulations.
In this chapter, a particle simulation approach, the so-called discrete element method
(DEM), as related to molecular dynamics (MD) methods, is introduced and applied
to the simulation of many-particle systems. The examples (clustering in granular
gases, and bi-axial as well as cylindrical shearing of densepackings) illustrate the
micro-macro transition towards continuum theory.
There exist two basically different approaches, the so-called soft particle molecu-
lar dynamics and the hard sphere, event-driven method. The former is straightfor-
ward, easy to generalize, and has numberless applications,while the latter is opti-
mized for rigid interactions and is mainly used for collisional, dissipative granular
gases. The connection between the two methods will be elaborated on. Models for
the forces between the atoms/particles are the basis of bothMD and DEM. A set
of the most basic contact force models for particles is presented involving elasto-
plasticity, adhesion, viscosity, static and dynamic friction as well as rolling- and
torsion-resistance. Besides some words about van-der Waals forces, we will not de-
tail on electro-magnetic interactions, dipole moments, H-bonding, and other effects
which become important when the objects become smaller and smaller.
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1 Introduction

Materials with inhomogeneous fine-structures are the subject of this chapter. As
example, we mostly discuss particulate, granular systems where the fine-structures
are spherical, polydisperse, plastic, adhesive, and frictional objects.

One approach towards the microscopic understanding of suchmacroscopic par-
ticulate material behavior [19, 25, 20] is the modeling of particles using so-called
discrete element methods (DEM). Even though millions of particles can be simu-
lated, the possible length of such a particle system is in general too small in order
to regard it as macroscopic. Therefore, methods and tools toperform a so-called
micro-macro transition [68, 58, 24] are discussed, starting from the DEM simu-
lations. These “microscopic” simulations of a small sample(representative volume
element) can be used to derive macroscopic constitutive relations needed to describe
the material within the framework of a macroscopic continuum theory.

For granular materials, as an example, the particle properties and interaction laws
are inserted into DEM, which is also often referred to as molecular dynamics (MD),
and lead to the collective behavior of the dissipative many-particle system. From a
particle simulation, one can extract, e.g., the pressure ofthe system as a function
of density. This equation of state allows a macroscopic description of the material,
which can be viewed as a compressible, non-Newtonian complex fluid [48], includ-
ing a fluid-solid phase transition.

In the following, two versions of the molecular dynamics simulation method are
introduced. The first is the so-called soft sphere moleculardynamics (MD=DEM),
as described in section 2. It is a straightforward implementation to solve the equa-
tions of motion for a system of many interacting particles [5, 59]. For DEM, both
normal and tangential interactions, like friction, are discussed for spherical particles.
The second method is the so-called event-driven (ED) simulation, as discussed in
section 3, which is conceptually different from DEM, since collisions are dealt with
via a collision matrix that determines the momentum change on physical grounds.
For the sake of brevity, the ED method is only discussed for smooth spherical parti-
cles. A comparison and a way to relate the soft and hard particle methods is provided
in section 4.

As one ingredient of a micro-macro transition, the stress isdefined for a dynamic
system of hard spheres, in section 5, by means of kinetic-theory arguments [58], and
for a quasi-static system by means of volume averages [26]. Examples are presented
in the following sections 6 and 7, where the above-describedmethods are applied.

2 The Soft Particle Molecular Dynamics Method

One possibility to obtain information about the behavior ofgranular media is to
perform experiments. An alternative are simulations with the molecular dynamics
(MD) or discrete element model (DEM) [68, 9, 8, 6, 19, 63, 64, 65, 27]. Note that
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both methods are identical in spirit, however, different groups of researchers use
these (and also other) names.

Conceptually, the DEM method has to be separated from the hard sphere event-
driven (ED) molecular dynamics, see section 3, and also fromthe so-called Contact
Dynamics (CD). Like alternative (stochastic) methods, as there are cell- or lattice-
gas-methods these are just named as keywords – not discussedhere further.

2.1 Discrete Particle Model

The elementary units of granular materials are mesoscopic grains which deform
under stress. Since the realistic modeling of the deformations of the particles is much
too complicated, we relate the interaction force to the overlapδ of two particles, see
Fig. 1. Note that the evaluation of the inter-particle forces based on the overlap
may not be sufficient to account for the inhomogeneous stressdistribution inside
the particles. Consequently, our results presented below are of the same quality as
the simple assumptions about the force-overlap relation, see Fig. 1.
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Fig. 1 (Left) Two particle contact with overlapδ . (Right) Schematic graph of the piecewise linear,
hysteretic, adhesive force-displacement model used below.

2.2 Equations of Motion

If all forces f i acting on the particlei, either from other particles, from boundaries or
from external forces, are known, the problem is reduced to the integration of New-
ton’s equations of motion for the translational and rotational degrees of freedom:
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mi
d2

dt2 r i = f i +mig , and Ii
d2

dt2 ϕ i = t i (1)

with the massmi of particlei, its positionr i the total forcef i = ∑c f c
i acting on it

due to contacts with other particles or with the walls, the acceleration due to volume
forces like gravityg, the spherical particles moment of inertiaIi , its angular velocity
ω i = dϕ i/dt and the total torquet i = ∑c (lci × f c

i +qc
i ), whereqc

i are torques/couples
at contacts other than due to a tangential force, e.g., due torolling and torsion.

The equations of motion are thus a system ofD +D(D −1)/2 coupled ordinary
differential equations to be solved inD dimensions. With tools from numerical inte-
gration, as nicely described in textbooks as [5, 59], this isstraightforward. The typi-
cally short-ranged interactions in granular media, allow for a further optimization by
using linked-cell or alternative methods [5, 59] in order tomake the neighborhood
search more efficient. In the case of long-range interactions, (e.g. charged particles
with Coulomb interaction, or objects in space with self-gravity) this is not possible
anymore, so that more advanced methods for optimization have to be applied – for
the sake of brevity, we restrict ourselves to short range interactions here.

2.3 Normal Contact Force Laws

2.3.1 Linear Normal Contact Model

Two spherical particlesi and j, with radii ai anda j , respectively, interact only if
they are in contact so that their overlap

δ = (ai +a j)− (r i − r j) ·n (2)

is positive,δ > 0, with the unit vectorn = ni j = (r i − r j)/|r i − r j | pointing from j
to i. The force on particlei, from particle j, at contactc, can be decomposed into a
normal and a tangential part asf c := f c

i = f nn+ f tt, wheref n is discussed first.
The simplest normal contact force model, which takes into account excluded

volume and dissipation, involves a linear repulsive and a linear dissipative force

f n = kδ + γ0vn , (3)

with a spring stiffnessk, a viscous dampingγ0, and the relative velocity in normal
directionvn = −vi j ·n = −(vi −vj) ·n = δ̇ .

This so-called linear spring dashpot model allows to view the particle contact
as a damped harmonic oscillator, for which the half-period of a vibration around an
equilibrium position, see Fig. 1, can be computed, and one obtains a typical response
time on the contact level,

tc =
π
ω

, with ω =
√

(k/m12)−η2
0 , (4)



From particles to continuum theory 5

with the eigenfrequency of the contactω , the rescaled damping coefficientη0 =
γ0/(2mi j ), and the reduced massmi j = mimj/(mi + mj). From the solution of the
equation of a half period of the oscillation, one also obtains the coefficient of resti-
tution

r = v′n/vn = exp(−πη0/ω) = exp(−η0tc) , (5)

which quantifies the ratio of relative velocities after (primed) and before (unprimed)
the collision.

The contact duration in Eq. (4) is also of practical technical importance, since
the integration of the equations of motion is stable only if the integration time-
step∆ tDEM is much smaller thantc. Furthermore, it depends on the magnitude of
dissipation. In the extreme case of an overdamped spring,tc can become very large.
Therefore, the use of neither too weak nor too strong dissipation is recommended.

2.3.2 Adhesive, Elasto-Plastic Normal Contact Model

Here we apply a variant of the linear hysteretic spring model[69, 31, 67, 39], as
an alternative to the frequently applied spring-dashpot models. This model is the
simplest version of some more complicated nonlinear-hysteretic force laws [69, 70,
60], which reflect the fact that at the contact point, plasticdeformations may take
place. The repulsive (hysteretic) force can be written as

f hys =







k1δ for loading, if k∗2(δ − δ0) ≥ k1δ
k∗2(δ − δ0) for un/reloading, if k1δ > k∗2(δ − δ0) > −kcδ
−kcδ for unloading, if −kcδ ≥ k∗2(δ − δ0)

(6)

with k1 ≤ k∗2, see Fig. 1, and Eq. (7) below for the definition of the (variable) k∗2 as
function of the constant model parameterk2.

During the initial loading the force increases linearly with the overlapδ , until
the maximum overlapδmax is reached (which has to be kept in memory as a history
parameter). The line with slopek1 thus defines the maximum force possible for a
given δ . During unloading the force drops from its value atδmax down to zero at
overlapδ0 = (1− k1/k∗2)δmax, on the line with slopek∗2. Reloading at any instant
leads to an increase of the force along this line, until the maximum force is reached;
for still increasingδ , the force follows again the line with slopek1 andδmax has to
be adjusted accordingly.

Unloading belowδ0 leads to negative, attractive forces until the minimum force
−kcδmin is reached at the overlapδmin = (k∗2−k1)δmax/(k∗2 +kc). This minimum
force, i.e. the maximum attractive force, is obtained as a function of the model
parametersk1, k2, kc, and the history parameterδmax. Further unloading leads to
attractive forcesf hys = −kcδ on the adhesive branch with slope−kc. The high-
est possible attractive force, for givenk1 and k2, is reached forkc → ∞, so that
f hys
max=−(k2−k1)δmax. Since this would lead to a discontinuity atδ = 0, it is avoided

by using finitekc.
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The lines with slopek1 and−kc define the range of possible force values and
departure from these lines takes place in the case of unloading and reloading, re-
spectively. Between these two extremes, unloading and reloading follow the same
line with slopek2. Possible equilibrium states are indicated as circles in Fig. 1,
where the upper and lower circle correspond to a pre-stressed and stress-free state,
respectively. Small perturbations lead, in general, to small deviations along the line
with slopek2 as indicated by the arrows.

A non-linear un/reloading behavior would be more realistic, however, due to a
lack of detailed experimental informations, we use the piece-wise linear model as a
compromise. One refinement is ak∗2 value dependent on the maximum overlap that
implies small and large plastic deformations for weak and strong contact forces,
respectively. One model, as implemented recently [50, 39],requires an additional
model parameter,δ ∗

max, so thatk∗2(δmax) is increasing fromk1 to k2 (linear interpo-
lation is used below, however, this is another choice to be made and will depend on
the material under consideration) with the maximum overlap, until δ ∗

max is reached
1:

k∗2(δmax) =

{

k2 if δmax≥ δ ∗
max

k1 +(k2−k1)δmax/δ ∗
max if δmax < δ ∗

max
. (7)

While in the case of collisions of particles with large deformations, dissipation
takes place due to the hysteretic nature of the force-law, stronger dissipation of small
amplitude deformations is achieved by adding the viscous, velocity dependent dis-
sipative force from Eq. (3) to the hysteretic force, such that f n = f hys+ γ0vn. The
hysteretic model contains the linear contact model as special casek1 = k2 = k.

2.3.3 Long Range Normal Forces

Medium range van der Waals forces can be taken into account inaddition to the
hysteretic force such thatf n = f hys

i + f vdW
i with, for example, the attractive part of

a Lennard-Jones Potential

f vdW = −6(ε/r0)[(r0/r i j )
7− (r0/rc)

7] for r i j ≤ rc . (8)

The new parameters necessary for this force are an energy scale ε, a typical length
scaler0 and a cut-off lengthrc. As long asrc is not much larger than the particle
diameter, the methods for short range interactions still can be applied to such a
medium range interaction model – only the linked cells have to be larger than twice
the cut-off radius, and no force is active forr > rc.

1 A limit to the slopek2 is needed for practical reasons. Ifk2 would not be limited, the contact
duration could become very small so that the time step would have to be reduced below reasonable
values.
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2.4 Tangential Forces and Torques in General

For the tangential degrees of freedom, there are three different force- and torque-
laws to be implemented: (i) friction, (ii) rolling resistance, and (iii) torsion resis-
tance.

2.4.1 Sliding

For dynamic (sliding) and staticfriction, the relative tangential velocity of the con-
tact points,

vt = vi j −n(n·vi j ) , (9)

is to be considered for the force and torque computations in subsection 2.5, with the
total relative velocity of the particle surfaces at the contact

vi j = vi −vj +a′in×ω i +a′jn×ω j , (10)

with the corrected radius relative to the contact pointa′α = aα − δ/2, for α = i, j.
Tangential forces acting on the contacting particles are computed from the accu-
mulated sliding of the contact points along each other, as described in detail in
subsection 2.5.1.

2.4.2 Objectivity

In general, two particles can rotate together, due to both a rotation of the reference
frame or a non-central “collision”. The angular velocityω0 = ωn

0+ωt
0, of the rotat-

ing reference has the tangential-plane component

ωt
0 =

n× (vi −vj)

a′i +a′j
, (11)

which is related to the relative velocity, while the normal component,ωn
0, is not.

Insertingω i = ω j = ωt
0, from Eq. (11), into Eq. (10) leads to zero sliding velocity,

proving that the above relations are objective. Tangentialforces and torques due to
sliding can become active only when the particles are rotating with respect to the
common rotating reference frame.2

Since action should be equal to reaction, the tangential forces are equally strong,
but opposite, i.e.,f t

j = − f t
i , while the corresponding torques are parallel but not

necessarily equal in magnitude:qfriction
i = −a′in× f i , andqfriction

j = (a′j/a′i)q
friction
i .

Note that tangential forces and torquestogetherconserve the total angular momen-

2 For rolling and torsion, there is no similar relation between rotational and tangential degrees of
freedom: for any rotating reference frame, torques due to rolling and torsion can become active
only due to rotation relative to the common reference frame,see below.
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tum about the pair center of mass

Li j = Li +L j +mir
2
icmωt

0 +mj r
2
jcmωt

0 , (12)

with the rotational contributionsLα = Iαωα , for α = i, j, and the distancesrαcm =
|rα − rcm| from the particle centers to the center of massrcm = (mir i +mj r j)/(mi +
mj), see Ref. [31]. The change of angular momentum consists of the change of
particle spins (first term) and of the change of the angular momentum of the two
masses rotating about their common center of mass (second term):

dLi j

dt
= qfriction

i

(

1+
a′j
a′i

)

+
(

mir
2
icm+mj r

2
jcm

) dωt
0

dt
, (13)

which both contribute, but exactly cancel each other, since

qfriction
i

(

1+
a′j
a′i

)

= −(a′i +a′j)n× f i (14)

= −
(

mir
2
icm+mj r

2
jcm

) dωt
0

dt
,

see [37] for more details.

2.4.3 Rolling

A rolling velocity v0
r = −a′in× ω i + a′jn×ω j , defined in analogy to the sliding

velocity, is not objective in general [14, 37] – only in the special cases of (i) equal-
sized particles or (ii) for a particle rolling on a fixed flat surface.

The rolling velocity should quantify the distance the two surfaces roll over each
other (without sliding). Therefore, it is equal for both particles by definition. An
objective rolling velocityis obtained by using the reduced radius,a′i j = a′ia

′
j/(a′i +

a′j), so that
vr = −a′i j (n×ω i −n×ω j) . (15)

This definition is objective since any common rotation of thetwo particles vanishes
by construction. A more detailed discussion of this issue isbeyond the scope of this
paper, rather see [14, 37] and the references therein.

A rolling velocity will activate torques, acting against the rolling motion, e.g.,
when two particles are rotating anti-parallel with spins inthe tangential plane.
These torques are then equal in magnitude and opposite in direction, i.e.,qrolling

i =

−qrolling
j = ai j n× f r , with the quasi-forcef r , computed in analogy to the friction

force, as function of the rolling velocityvr in subsection 2.5.2; the quasi-forces for
both particles are equal and do not act on the centers of mass.Therefore, the total
momenta (translational and angular) are conserved.
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2.4.4 Torsion

For torsion resistance, the relative spin along the normal direction

vo = ai j (n·ω i −n·ω j)n , (16)

is to be considered, which activates torques when two particles are rotating anti-
parallel with spins parallel to the normal direction. Torsion is not activated by a com-
mon rotation of the particles around the normal directionn ·ω0 = n · (ω i + ω j)/2,
which makes the torsion resistance objective.

The torsion torques are equal in magnitude and directed in opposite directions,
i.e.,qtorsion

i = −qtorsion
j = ai j f o, with the quasi-forcef o, computed from the torsion

velocity in subsection 2.5.3, and also not changing the translational momentum.
Like for rolling, the torsion torques conserve the total angular momentum.

2.4.5 Summary

The implementation of the tangential force computations for f t , f r , and f o as based
on vt , vr , andvo, respectively, is assumed to beidentical, i.e., even the same sub-
routine is used, but with different parameters as specified below. The difference is
that friction leads to a force in the tangential plane (changing both translational and
angular momentum), while rolling- and torsion-resistancelead to quasi-forces in
the tangential plane and the normal direction, respectively, changing the particles’
angular momentum only. For more details on tangential contact models, friction,
rolling and torsion, see Refs. [7, 13, 38, 37, 14].

2.5 The tangential force- and torque-models

The tangential contact model presented now is a single procedure (subroutine) that
can be used to compute either sliding, rolling, or torsion resistance. The subroutine
needs a relative velocity as input and returns the respective force or quasi-force as
function of the accumulated deformation. The sliding/sticking friction model will
be introduced in detail, while rolling and torsion resistance are discussed where
different.

2.5.1 Sliding/Sticking Friction Model

The tangential force is coupled to the normal force via Coulomb’s law, f t ≤ f s
C :=

µs f n, where for the sliding case one has dynamic friction withf t = f t
C := µd f n. The

dynamic and the static friction coefficients follow, in general, the relationµd ≤ µs.
The static situation requires an elastic spring in order to allow for a restoring force,
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i.e., a non-zero remaining tangential force in static equilibrium due to activated
Coulomb friction.

If a purely repulsive contact is established,f n > 0, and the tangential force is
active. For an adhesive contact, Coulombs law has to be modified in so far thatf n is
replaced byf n +kcδ . In this model, the reference for a contact is no longer the zero
force level, but it is the adhesive, attractive force level along−kcδ .
If a contact is active, one has to project (or better rotate) the tangential spring into
the actual tangential plane, since the frame of reference ofthe contact may have
rotated since the last time-step. The tangential spring

ξ = ξ ′−n(n·ξ ′) , (17)

is used for the actual computation, whereξ ′ is the old spring from the last iteration,
with |ξ | = |ξ ′| enforced by appropriate scaling/rotation. If the spring isnew, the
tangential spring-length is zero, but its change is well defined after the first, initiation
step. In order to compute the changes of the tangential spring, a tangential test-force
is first computed as the sum of the tangential spring force anda tangential viscous
force (in analogy to the normal viscous force)

f t
0 = −kt ξ − γtvt , (18)

with the tangential spring stiffnesskt , the tangential dissipation parameterγt , andvt

from Eq. (9). As long as| f t
0| ≤ f s

C, with f s
C = µs( f n + kcδ ), one has static friction

and, on the other hand, for| f t
0| > f s

C, sliding friction becomes active. As soon as
| f t

0| gets smaller thanf d
C, static friction becomes active again.

In thestatic friction case, below the Coulomb limit, the tangential spring is in-
cremented

ξ ′ = ξ +vt ∆ tMD , (19)

to be used in the next iteration in Eq. (17), and the tangential force f t = f t
0 from Eq.

(18) is used. In thesliding friction case, the tangential spring is adjusted to a length
consistent with Coulombs condition, so that

ξ ′ = − 1
kt

(

f d
C t + γtvt

)

, (20)

with the tangential unit vector,t = f t
0/| f t

0|, defined by Eq. (18), and thus the mag-
nitude of the Coulomb force is used. Insertingξ ′ from Eq. (20) into Eq. (18) during
the next iteration will lead tof t

0 ≈ f d
Ct. Note thatf t

0 andvt are not necessarily par-
allel in three dimensions. However, the mapping in Eq. (20) works always, rotating
the new spring such that the direction of the frictional force is unchanged and, at
the same time, limiting the spring in length according to Coulombs law. In short
notation the tangential contact law reads

f t = f t t = +min
(

fC, | f t
0|
)

t , (21)
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where fC follows the static/dynamic selection rules described above. The torque on
a particle due to frictional forces at this contact isqfriction = lci × f c

i , wherelci is the
branch vector, connecting the center of the particle with the contact point. Note that
the torque on the contact partner is generally different in magnitude, sincelci can be
different, but points in the same direction; see subsection2.4.2 for details on this.

The four parameters for the friction law arekt , µs, φd = µd/µs, andγt , accounting
for tangential stiffness, the static friction coefficient,the dynamic friction ratio, and
the tangential viscosity, respectively. Note that the tangential force described above
is identical to the classical Cundall-Strack spring only inthe limitsµ = µs = µd, i.e.,
φd = 1, andγt = 0. The sequence of computations and the definitions and mappings
into the tangential direction can be used in 3D as well as in 2D.

2.5.2 Rolling Resistance Model

The three new parameters for rolling resistance arekr , µr , andγr , while φr = φd is
used from the friction law. The new parameters account for rolling stiffness, a static
rolling “friction” coefficient, and rolling viscosity, respectively. In the subroutine
called, the rolling velocityvr is used instead ofvt and the computed quasi-forcef r
is used to compute the torques,qrolling, on the particles.

2.5.3 Torsion Resistance Model

The three new parameters for rolling resistance areko, µo, andγo, while φo = φd is
used from the friction law. The new parameters account for torsion stiffness, a static
torsion “friction” coefficient, and torsion viscosity, respectively. In the subroutine,
the torsion velocityvo is used instead ofvt and the projection is a projection along
the normal unit-vector, not into the tangential plane as forthe other two models.
The computed quasi-forcef o is then used to compute the torques,qtorsion, on the
particles.

2.6 Background Friction

Note that the viscous dissipation takes place in a two-particle contact. In the bulk
material, where many particles are in contact with each other, this dissipation mode
is very inefficient for long-wavelength cooperative modes of motion [42, 41]. There-
fore, an additional damping with the background can be introduced, so that the total
force on particlei is

f i = ∑
j

(

f nn+ f tt
)

− γbvi , (22)

and the total torque
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qi = ∑
j

(

qfriction +qrolling +qtorsion
)

− γbra
2
i ω i , (23)

with the damping artificially enhanced in the spirit of a rapid relaxation and equili-
bration. The sum in Eqs. (22) and (23) takes into account all contact partnersj of
particlei, but the background dissipation can be attributed to the medium between
the particles. Note that the effect ofγb andγbr should be checked for each set of
parameters: it should be small in order to exclude artificialover-damping. The set of
parameters is summarized in table 1. Note that only a few parameters are specified
with dimensions, while the other paramters are expressed asratios.

Property Symbol

Time unit tu
Length unit xu

Mass unit mu

Particle radius a0
Material density ρ
Elastic stiffness (variable) k2
Maximal elastic stiffness k = k2
Plastic stiffness k1/k
Adhesion “stiffness” kc/k
Friction stiffness kt/k
Rolling stiffness kr/k
Torsion stiffness ko/k
Plasticity depth φ f

Coulomb friction coefficient µ = µd = µs

Dynamic to static Friction ratioφd = µd/µs

Rolling “friction” coefficient µr

Torsion “friction” coefficient µo

Normal viscosity γ = γn

Friction viscosity γt/γ
Rolling viscosity γr/γ
Torsion viscosity γo/γ
Background viscosity γb/γ
Background viscous torque γbr/γ

Table 1 Summary of the microscopic contact model parameters. The longer ranged forces and
their parameters,ε , r0, andrc are not included here.

2.7 Example: Tension Test Simulation Results

In order to illustrate the power of the contact model (especially the adhesive normal
model), in this section, uni-axial tension and compressiontests are presented. Note
that the contact model parameters are chosen once and then one can simulate loose
particles, pressure-sintering, and agglomerates with oneset of paramters. With slight
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extensions, the same model was already applied to temperature-sintering [50] or
self-healing [53, 52].

The tests consists of three stages: (i) pressure sintering,(ii) stress-relaxation, and
(iii) the compression- or tension-test itself. The contactparameters, as introduced in
the previous section, are summarized in table 1 and typical values are given in table
2. These parameters are used for particle-particle contacts, the same for all tests,
unless explicitly specified.

First, for pressure sintering, a very loose assembly of particles is compressed
with isotropic stressps2a/k2 ≈ 0.02 in a cuboidal volume so that the adhesive
contact forces are activated this way. The stress- and strain-controlled wall motion
modes aredescribed below in subsection 6.2.2.

Two of the six walls are adhesive, withkwall
c /k2 = 20, so that the sample sticks to

them later, while all other walls are adhesionless, so that they can be easily removed
in the next step. Note that during compression and sintering, the walls could all be
without adhesion, since the high pressure used keeps the sample together anyway
– only later for relaxation, adhesion must switched on. If not the sample does not
remain a solid, and it also could lose contact with the walls,which are later used to
apply the tensile strain.
All walls should be frictionless during sintering, while the particles can be slightly
adhesive and frictional. If the walls would be frictional, the pressure from a certain
wall would not be transferred completely to the respective opposite wall, since fric-
tional forces carry part of the load – an effect that is known since the early work of
Janssen [21, 62, 66].
Pressure-sintering is stopped when the kinetic energy of the sample is many orders
of magnitude smaller than the potential energy – typically 10 orders of magnitude.

During stress-relaxation all wall stresses are slowly released topr/ps ≪ 1 and
the sample is relaxed again until the kinetic energy is much smaller than the potential
energy. After this, the sample is ready for thetension or compression tests. The non-
adhesive side walls still feel a very small external stress that is not big enough to
affect the dynamics of the tension test, it is just convenient to keep the walls close to
the sample. (This is a numerical and not a physical requirement, since our code uses
linked-cells and those are connected to the system size. If the walls would move too
far away, either the linked cells would grow, or their numberwould increase. Both
cases are numerically inefficient.)

For thetension test wall friction is typically active, but some variation does not
show a big effect. One of the sticky walls is slowly and smoothly moved outwards
like described and applied in earlier studies [46, 35, 38, 53, 39, 52], following a
prescribed cosine-function with time.

2.7.1 Model Parameters for tension

The system presented in this subsection containsN = 1728 particles with radiiai

drawn from a Gaussian distribution arounda = 0.005mm [11, 10]. The contact
model parameters are summarized in tables 1 and 2. The volumefraction, ν =
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∑i V (ai)/V , with the particle volumeV (ai) = (4/3)πa3
i , reached during pressure

sintering with 2aps/k2 = 0.01 isνs = 0.6754. The coordination number isC ≈ 7.16
in this state. After stress-relaxation, these values have changed toν ≈ 0.629 and
C ≈ 6.19. A different preparation procedure (with adhesionkc/k2 = 0 during sin-
tering) does not lead to a difference in density after sintering. However, one observes
ν ≈ 0.630 andC ≈ 6.23 after relaxation. For both preparation procedures the ten-
sion test results are virtually identical, so that only the first procedure is used in the
following.

Symbol Value rescaled unitsSI-units

tu 1 1 µs 10−6 s
xu 1 1 mm 10−3 m
mu 1 1 mg 10−6 kg
a0 0.005 5µm 5.10−6m
ρ 2 2 mg/mm3 2000 kg/m3

k = k2 5 5 mg/µs2 5.106 kg/s2

k1/k 0.5
kc/k 0.5
kt/k 0.2
kr/k = ko/k 0.1
φ f 0.05
µ = µd = µs 1
φd = µd/µs 1
µr = µo 0.1
γ = γn 5.10−5 5.10−5 mg/µs 5.101 kg/s
γt/γ 0.2
γr/γ = γo/γ 0.05
γb/γ 4.0
γbr/γ 1.0

Table 2 Microscopic material parameters used (second column), if not explicitly specified. The
third column contains these values in the appropriate units, i.e., when the time-, length-, and mass-
unit areµs, mm, and mg, respectively. Column four contains the parameters in SI-units. Energy,
force, acceleration, and stress have to be scaled with factors of 1, 103, 109, and 109, respectively,
for a transition from reduced to SI-units.

The material parameters used for the particle contacts are given in table 2. The
particle-wall contact parameters are the same, except for cohesion and friction, for
whichkwall

c /k2 = 20 andµwall = 10 are used – the former during all stages, the latter
only during tensile testing.

The choice of numbers and units is such that the particles correspond spheres
with several microns in radius. The magnitude of stiffnessk cannot be compared
directly with the material bulk modulusC, since it is a contact property. However,
there are relations from micro-macro transition analysis,which allow to relatek and
C ∼ kC a2/V [35, 39].

Using the parameterk = k2 in Eq. (4) leads to a typical contact duration (half-
period)tc ≈ 6.510−4 µs, for a normal collision of a large and a small particle with



From particles to continuum theory 15

γ = 0. Accordingly, an integration time-step oftMD = 5.10−6 µs is used, in order
to allow for a “safe” integration of the equations of motion.Note that not only the
normal “eigenfrequency” but also the eigenfrequencies in tangential and rotational
direction have to be considered as well as the viscous response timestγ ≈ m/γ.
All of the physical time-scales should be considerably larger thantMD , whereas the
viscous response times should be even larger, so thattγ > tc > tMD . A more detailed
discussion of all the effects due to the interplay between the model parameters and
the related times is, however, far from the scope of this paper.

2.7.2 Compressive and tensile strength

The tensile (compressive) test is performed uni-axially inx-direction by increasing
(reducing) slowly and smoothly the distance between the twosticky walls. (The
same initial sample, prepared withkc/k2 = 1/2, is used for all tests reported here.)

The stress-strain curves for different cohesion are plotted in Fig. 2, for both ten-
sion and compression. Note that the shape of the curves and the apparent material
behavior (ductile, quasi-brittle, and brittle) depends not only on the contact param-
eters, but also on the rate the deformation is performed (dueto the viscous forces
introduced above). The present data are for moderate to slowdeformation. Faster
deformation leads to even smoother curves with larger apparent strength, while con-
siderably slower deformation leads to more brittle behavior (with sharper drops of
stress) and somewhat smaller strength.

-4

-3

-2

-1

 0

-0.025 -0.02 -0.015 -0.01 -0.005  0

σ x
x 

[N
/m

2 ]

εxx

Ct ε
kc/k2=1/2

kc/k2=1
kc/k2=20

 12

 10

 8

 6

 4

 2

 0
 0  0.05  0.1  0.15  0.2  0.25

σ x
x 

[N
/m

2 ]

εxx

Ct ε
kc/k2=1/2

kc/k2=1

Fig. 2 (Left) Axial tensile stress plotted against tensile strainfor simulations with weak, moderate
and strong particle contact adhesion; thekc/k2 values are given in the inset. The line gives a fit to
the linear elastic regime withCt = 3.1011 N/m2. (Right) Axial compressive stress plotted against
compressive strain for two of the parameter sets from the toppanel. The initial slope is the same as
in the top panel, indicating that the linear elastic regime is identical for tension and compression.

The axial tensile stress initially increases linearly withstrain, practically inde-
pendent from the contact adhesion strength. With increasing strain, a considerable
number of contacts are opened due to tension – contacts open more easily for smaller
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adhesion (data not shown). This leads to a decrease of the stress-strain slope, then
the stress reaches a maximum and, for larger strain, turns into a softening failure
mode. As expected, the maximal stress is increasing with contact adhesionkc/k2.
The compressive strength is 6−7 times larger than the tensile strength, and a larger
adhesion force also allows for larger deformation before failure. The sample with
weakest adhesion,kc/k2 = 1/2, shows tensile and compressive failure at strains
εxx ≈−0.006 andεxx ≈ 0.045, respectively.

Note that for tension, the post-peak behavior for the test with kc/k2 = 20 is dif-
ferent from the other two cases, due to the strong particle-particle contact adhesion.
In this case, the tensile fracture occurs at the wall (exceptfor a few particles that
remain in contact with the wall). This is in contrast to the other cases with smaller
bulk-adhesion, where the fracture occurs in the bulk, see Fig. 3.

Fig. 3 Snapshots from tensile tests withkc/k2 = 1/5 and 1, at horizontal strain ofεxx ≈ −0.8.
The color code denotes the distance from the viewer: blue, green, and red correspond to large,
moderate, and short distance.

3 Hard Sphere Molecular Dynamics

In this section, the hard sphere model is introduced together with the event-driven
algorithm. A generalized model takes into account the finitecontact duration of
realistic particles and, besides providing a physcial parameter, saves computing time
because it avoids the “inelastic collapse”.

In the framework of the hard sphere model, particles are assumed to be perfectly
rigid and they follow an undisturbed motion until a collision occurs as described
below. Due to the rigidity of the interaction, the collisions occur instantaneously, so
that an event-driven simulation method [28, 51, 57, 56, 55] can be used. Note that
the ED method was only recently implemented in parallel [29,57]; however, we
avoid to discuss this issue in detail.
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The instantaneous nature of hard sphere collisions is artificial, however, it is a
valid limit in many circumstances. Even though details of the contact- or collision
behavior of two particles are ignored, the hard sphere modelis valid when binary
collisions dominate and multi-particle contacts are rare [44]. The lack of physical in-
formation in the model allows a much simpler treatment of collisions than described
in section 2 by just using a collision matrix based on momentum conservation and
energy loss rules. For the sake of simplicity, we restrict ourselves to smooth hard
spheres here. Collision rules for rough spheres are extensively discussed elsewhere,
see e.g. [47, 18], and references therein.

3.1 Smooth Hard Sphere Collision Model

Between collisions, hard spheres fly independently from each other. A change in
velocity – and thus a change in energy – can occur only at a collision. The stan-
dard interaction model for instantaneous collisions of identical particles with radius
a, and massm, is used in the following. The post-collisional velocitiesv′ of two
collision partners in their center of mass reference frame are given, in terms of the
pre-collisional velocitiesv, by

v′1,2 = v1,2∓ (1+ r)vn/2 , (24)

with vn ≡ [(v1− v2) ·n]n, the normal component of the relative velocityv1 − v2,
parallel ton, the unit vector pointing along the line connecting the centers of the
colliding particles. If two particles collide, their velocities are changed according to
Eq. (24), with the change of the translational energy at a collision ∆E = −m12(1−
r2)v2

n/2, with dissipation for restitution coefficientsr < 1.

3.2 Event-Driven Algorithm

Since we are interested in the behavior of granular particles, possibly evolving over
several decades in time, we use an event-driven (ED) method which discretizes the
sequence of events with a variable time step adapted to the problem. This is different
from classical DEM simulations, where the time step is usually fixed.

In the ED simulations, the particles follow an undisturbed translational motion
until an event occurs. An event is either the collision of twoparticles or the collision
of one particle with a boundary of a cell (in the linked-cell structure) [5]. The cells
have no effect on the particle motion here; they were solely introduced to accelerate
the search for future collision partners in the algorithm.

Simple ED algorithms update the whole system after each event, a method which
is straightforward, but inefficient for large numbers of particles. In Ref. [28] an ED
algorithm was introduced which updates only those two particles involved in the
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last collision. Because this algorithm is “asynchronous” in so far that an event, i.e.
thenext event, can occur anywhere in the system, it is so complicatedto parallelize
it [57]. For the serial algorithm, a double buffering data structure is implemented,
which contains the ‘old’ status and the ‘new’ status, each consisting of: time of
event, positions, velocities, and event partners. When a collision occurs, the ‘old’
and ‘new’ status of the participating particles are exchanged. Thus, the former ‘new’
status becomes the actual ‘old’ one, while the former ‘old’ status becomes the ‘new’
one and is then free for the calculation and storage of possible future events. This
seemingly complicated exchange of information is carried out extremely simply
and fast by only exchanging the pointers to the ‘new’ and ‘old’ status respectively.
Note that the ‘old’ status of particlei has to be kept in memory, in order to update
the time of the next contact,ti j , of particle i with any other objectj if the latter,
independently, changed its status due to a collision with yet another particle. During
the simulation such updates may be neccessary several timesso that the predicted
‘new’ status has to be modified.

The minimum of allti j is stored in the ‘new’ status of particlei, together with the
corresponding partnerj. Depending on the implementation, positions and velocities
after the collision can also be calculated. This would be a waste of computer time,
since before the timeti j , the predicted partnersi and j might be involved in several
collisions with other particles, so that we apply a delayed update scheme [28]. The
minimum times of event, i.e. the times, which indicate the next event for a certain
particle, are stored in an ordered heap tree, such that the next event is found at
the top of the heap with a computational effort ofO(1); changing the position of
one particle in the tree from the top to a new position needsO(logN) operations.
The search for possible collision partners is accelerated by the use of a standard
linked-cell data structure and consumesO(1) of numerical resources per particle. In
total, this results in a numerical effort ofO(N logN) for N particles. For a detailed
description of the algorithm see Ref. [28]. Using all these algorithmic tricks, we
are able to simulate about 105 particles within reasonable time on a low-end PC
[45], where the particle number is more limited by memory than by CPU power.
Parallelization, however, is a means to overcome the limitsof one processor [57].

As a final remark concerning ED, one should note that the disadvantages con-
ncected to the assumptions made that allow to use an event driven algorithm limit
the applicability of this method. Within their range of applicability, ED simulations
are typically much faster than DEM simulations, since the former accounts for a
collision in one basic operation (collision matrix), whereas the latter requires about
one hundred basic steps (integration time steps). Note thatthis statement is also
true in the dense regime. In the dilute regime, both methods give equivalent results,
because collisions are mostly binary [41]. When the system becomes denser, multi-
particle collisions can occur and the rigidity assumption within the ED hard sphere
approach becomes invalid.

The most striking difference between hard and soft spheres is the fact that soft
particles dissipate less energy when they are in contact with many others of their
kind. In the following chapter, the so called TC model is discussed as a means to
account for the contact durationtc in the hard sphere model.
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4 The Link between ED and DEM via the TC Model

In the ED method the contact duration is implicitly zero, matching well the corre-
sponding assumption of instantaneous contacts used for thekinetic theory [17, 22].
Due to this artificial simplification (which disregards the fact that a real contact takes
always finite time) ED algorithms run into problems when the time between events
tn gets too small: In dense systems with strong dissipation,tn may even tend towards
zero. As a consequence the so-called “inelastic collapse” can occur, i.e. the diver-
gence of the number of events per unit time. The problem of theinelastic collapse
[54] can be avoided using restitution coefficients dependent on the time elapsed
since the last event [51, 44]. For the contact that occurs at time ti j between particles
i and j, one usesr = 1 if at least one of the partners involved had a collision with
another particle later thanti j − tc. The timetc can be seen as a typical duration of a
contact, and allows for the definition of the dimensionless ratio

τc = tc/tn . (25)

The effect oftc on the simulation results is negligible for larger and smalltc; for a
more detailed discussion see [51, 45, 44].

In assemblies of soft particles, multi-particle contacts are possible and the in-
elastic collapse is avoided. The TC model can be seen as a means to allow for
multi-particle collisions in dense systems [43, 30, 51]. Inthe case of a homoge-
neous cooling system (HCS), one can explicitly compute the corrected cooling rate
(r.h.s.) in the energy balance equation

d
dτ

E = −2I(E,tc) , (26)

with the dimensionless timeτ = (2/3)At/tE(0) for 3D systems, scaled byA = (1−
r2)/4, and the collision ratet−1

E = (12/a)νg(ν)
√

T/(πm), with T = 2K/(3N). In
these units, the energy dissipation rateI is a function of the dimensionless energy
E = K/K(0) with the kinetic energyK, and the cut-off timetc. In this representation,
the restitution coefficient is hidden in the rescaled time viaA = A(r), so that inelastic
hard sphere simulations with differentr scale on the same master-curve. When the
classical dissipation rateE3/2 [17] is extracted fromI, so thatI(E,tc) = J(E,tc)E3/2,
one has the correction-functionJ → 1 for tc → 0. The deviation from the classical
HCS is [44]:

J(E,tc) = exp(Ψ(x)) , (27)

with the series expansionΨ(x) = −1.268x +0.01682x2−0.0005783x3+O(x4) in
the collision integral, withx =

√
πtct

−1
E (0)

√
E =

√
πτc(0)

√
E =

√
πτc [44]. This is

close to the resultΨLM = −2x/
√

π, proposed by Luding and McNamara, based on
probabilistic mean-field arguments [51]3.

Given the differential equation (26) and the correction dueto multi-particle con-
tacts from Eq. (27), it is possible to obtain the solution numerically, and to compare

3 ΨLM thus neglects non-linear terms and underestimates the linear part
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Fig. 4 (Left) Deviation from the HCS, i.e. rescaled energyE/Eτ , whereEτ is the classical solution
Eτ = (1+ τ)−2. The data are plotted againstτ for simulations with differentτc(0) = tc/tE(0) as
given in the inset, withr = 0.99, andN = 8000. Symbols are ED simulation results, the solid
line results from the third order correction. (Right)E/Eτ plotted againstτ for simulations with
r = 0.99, andN = 2197. Solid symbols are ED simulations, open symbols are DEM(soft particle
simulations) with three differenttc as given in the inset.

it to the classicalEτ = (1+ τ)−2 solution. Simulation results are compared to the
theory in Fig. 4 (left). The agreement between simulations and theory is almost
perfect in the examined range oftc-values, only when deviations from homogene-
ity are evidenced one expects disagreement between simulation and theory. The
fixed cut-off timetc has no effect when the time between collisions is very large
tE ≫ tc, but strongly reduces dissipation when the collisions occur with high fre-
quencyt−1

E
>∼ t−1

c . Thus, in the homogeneous cooling state, there is a strong effect
initially, and if tc is large, but the long time behavior tends towards the classical
decayE → Eτ ∝ τ−2.

The final check if the ED results obtained using the TC model are reasonable is
to compare them to DEM simulations, see Fig. 4 (right). Open and solid symbols
correspond to soft and hard sphere simulations respectively. The qualitative behav-
ior (the deviation from the classical HCS solution) is identical: The energy decay is
delayed due to multi-particle collisions, but later the classical solution is recovered.
A quantitative comparison shows that the deviation ofE from Eτ is larger for ED
than for DEM, given that the sametc is used. This weaker dissipation can be under-
stood from the strict rule used for ED: Dissipation is inactive if any particle had a
contact already. The disagreement between ED and DEM is systematic and should
disappear if an about 30 per-cent smallertc value is used for ED. The disagreement
is also plausible, since the TC model disregards all dissipation for multi-particle
contacts, while the soft particles still dissipate energy -even though much less - in
the case of multi-particle contacts.

The above simulations show that the TC model is in fact a “trick” to make hard
particles soft and thus connecting between the two types of simulation models: soft
and hard. The only change made to traditional ED involves a reduced dissipation for
(rapid) multi-particle contacts.
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5 The Stress in Particle Simulations

The stress tensor is a macroscopic quantity that can be obtained by measurement
of forces per area, or via a so-called micro-macro homogenization procedure. Both
methods will be discussed below. During derivation, it alsoturns out that stress has
two contributions, the first is the “static stress” due to particle contacts, apotential
energy density, the second is the “dynamics stress” due to momentum flux, like
in the ideal gas, akinetic energy density. For the sake of simplicity, we restrict
ourselves to the case of smooth spheres here.

5.1 Dynamic Stress

For dynamic systems, one has momentum transport via flux of the particles. This
simplest contribution to the stress tensor is the standard stress in an ideal gas, where
the atoms (mass points) move with a certain fluctuation velocity vi . The kinetic
energyE = ∑N

i=1 mv2
i /2 due to the fluctuation velocityvi can be used to define the

temperature of the gaskBT = 2E/(DN), with the dimensionD and the particle
numberN. Given a number densityn = N/V , the stress in the ideal gas is then
isotropic and thus quantified by the pressurep = nkBT ; note that we will disregard
kB in the following. In the general case, the dynamic stress isσ = (1/V)∑i mi vi ⊗vi ,
with the dyadic tensor product denoted by ‘⊗’, and the pressurep = trσ/D = nT is
the kinetic energy density.

The additional contribution to the stress is due to collisions and contacts and will
be derived from the principle of virtual displacement for soft interaction potentials
below, and then be modified for hard sphere systems.

5.2 Static Stress from Virtual Displacements

From the centers of massr1 andr2 of two particles, we define the so-called branch
vectorl = r1− r2, with the reference distancel = |l| = 2a at contact, and the cor-
responding unit vectorn = l/l. The deformation in the normal direction, relative
to the reference configuration, is defined asδ = 2an− l. A virtual change of the
deformation is then

∂δ = δ ′− δ ≈ ∂ l = ε · l , (28)

where the prime denotes the deformation after the virtual displacement described
by the tensorε. The corresponding potential energy density due to the contacts of
one pair of particles isu = kδ 2/(2V ), expanded to second order inδ , leading to the
virtual change

∂u =
k
V

(

δ ·∂δ +
1
2
(∂δ )2

)

≈ k
V

δ ·∂ ln , (29)
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wherek is the spring stiffness (the prefactor of the quadratic termin the series ex-
pansion of the interaction potential),V is the averaging volume, and∂ ln = n(n ·ε · l)
is the normal component of∂ l. Note that∂u depends only on the normal component
of ∂δ due to the scalar product withδ , which is parallel ton.

From the potential energy density, we obtain the stress froma virtual deformation
by differentiation with respect to the deformation tensor components

σ =
∂u
∂ε

=
k
V

δ ⊗ l =
1
V

f ⊗ l , (30)

where f = kδ is the force acting at the contact, and the dyadic product⊗ of two
vectors leads to a tensor of rank two.

5.3 Stress for Soft and Hard Spheres

Combining the dynamic and the static contributions to the stress tensor [49], one
has for smooth, soft spheres:

σ =
1
V

[

∑
i

mivi ⊗ vi − ∑
c∈V

f c⊗ lc

]

, (31)

where the right sum runs over all contactsc in the averaging volumeV . Replacing
the force vector by momentum change per unit time, one obtains for hard spheres:

σ =
1
V

[

∑
i

mivi ⊗ vi −
1

∆ t ∑
n

∑
j

p j ⊗ l j

]

, (32)

wherep j andl j are the momentum change and the center-contact vector of particle
j at collisionn, respectively. The sum in the left term runs over all particlesi, the
first sum in the right term runs over all collisionsn occurring in the averaging time
∆ t, and the second sum in the right term concerns the collision partners of collision
n [51].
Exemplary stress computations from DEM and ED simulations are presented in the
following section.

6 2D Simulation Results

Stress computations from two dimensional DEM and ED simulations are presented
in the following subsections. First, a global equation of state, valid for all densities,
is proposed based on ED simulations, and second, the stress tensor from a slow,
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quasi-static deformation is computed from DEM simulationswith frictional parti-
cles.

6.1 The Equation of State from ED

The mean pressure in two dimensions isp = (σ1 + σ2)/2, with the eigenvalues
σ1 andσ2 of the stress tensor [48, 49, 32]. The 2D dimensionless, reduced pres-
sureP = p/(nT )−1 = pV/E −1 contains only the collisional contribution and the
simulations agree nicely with the theoretical predictionP2 = 2νg2(ν) for elastic
systems, with the pair-correlation functiong2(ν) = (1−7ν/16)/(1− ν)2, and the
volume fractionν = Nπa2/V , see Fig. 5. A better pair-correlation function is

g4(ν) =
1−7ν/16
(1−ν)2 − ν3/16

8(1−ν)4 , (33)

which defines the non-dimensional collisional stressP4 = 2νg4(ν). For a system
with homogeneous temperature, as a remark, the collision rate is proportional to the
dimensionless pressuret−1

n ∝ P.
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Fig. 5 The dashed lines areP4 andPdenseas functions of the volume fractionν , and the symbols
are simulation data, with standard deviations as given by the error bars in the inset. The thick solid
line isQ, the corrected global equation of state from Eq. (34), and the thin solid line isQ0 without
empirical corrections.

When plottingP againstν with a logarithmic vertical axis, in Fig. 5, the sim-
ulation results can almost not be distinguished fromP2 for ν < 0.65, butP4 leads
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to better agreement up toν = 0.67. Crystallization is evidenced at the point of the
liquid-solid transitionνc ≈ 0.7, and the data clearly deviate fromP4. The pressure is
strongly reduced due to the increase of free volume caused byordering. Eventually,
the data diverge at the maximum packing fractionνmax = π/(2

√
3) for a perfect

triangular array.
For high densities, one can compute from free-volume models, the reduced pres-

sure Pfv = 2νmax/(νmax− ν). Slightly different functional forms do not lead to
much better agreement [32]. Based on the numerical data, we propose the corrected
high density pressurePdense= Pfvh(νmax− ν)− 1, with the empirical fit function
h(x) = 1+ c1x+ c3x3, andc1 = −0.04 andc3 = 3.25, in perfect agreement with the
simulation results forν ≥ 0.73.

Since, to our knowledge, there is no conclusive theory available to combine the
disordered and the ordered regime [23], we propose a global equation of state

Q = P4 + m(ν)[Pdense−P4] , (34)

with an empirical merging functionm(ν) = [1+exp(−(ν −νc)/m0)]
−1, which se-

lects P4 for ν ≪ νc andPdensefor ν ≫ νc, with the transition densityνc and the
width of the transitionm0. In Fig. 5, the fit parametersνc = 0.702 andm0 ≈ 0.0062
lead to qualitative and quantitative agreement betweenQ (thick line) and the sim-
ulation results (symbols). However, a simpler versionQ0 = P2 + m(ν)[Pfv − P2],
(thin line) without empirical corrections leads already toreasonable agreement when
νc = 0.698 andm0 = 0.0125 are used. In the transition region, this functionQ0 has
no negative slope but is continuous and differentiable, so that it allows for an easy
and compact numerical integration ofP. We selected the parameters forQ0 as a
compromise between the quality of the fit on the one hand and the simplicity and
treatability of the function on the other hand.

As an application of the global equation of state, the density profile of a dense
granular gas in the gravitational field has been computed formonodisperse [49] and
bidisperse situations [48, 32]. In the latter case, however, segregation was observed
and the mixture theory could not be applied. The equation of state and also other
transport properties are extensively discussed in Refs. [4, 1, 3, 2] for 2D, bi-disperse
systems.

6.2 Quasi-static DEM simulations

In contrast to the dynamic, collisional situation discussed in the previous section, a
quasi-static situation, with all particles almost at rest most of the time, is discussed
in the following.
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6.2.1 Model Parameters

The systems examined in the following containN = 1950 particles with radiiai ran-
domly drawn from a homogeneous distribution with minimumamin = 0.510−3 m
and maximumamax = 1.510−3 m. The massesmi = (4/3)ρπa3

i , with the density
ρ = 2.0103kg m−3, are computed as if the particles were spheres. This is an arti-
ficial choice and introduces some dispersity in mass in addition to the dispersity in
size. Since we are mainly concerned about slow deformation and equilibrium situ-
ations, the choice for the calculation of mass should not matter. The total mass of
the particles in the system is thusM ≈ 0.02 kg with the typical reduced mass of a
pair of particles with mean radius,m12 ≈ 0.4210−5 kg. If not explicitly mentioned,
the material parameters arek2 = 105 N m−1 andγ0 = 0.1 kg s−1. The other spring-
constantsk1 andkc will be defined in units ofk2. In order to switch on adhesion,
k1 < k2 andkc > 0 is used; if not mentioned explicitly,k1 = k2/2 is used, andk2 is
constant, independent of the maximum overlap previously achieved.

Using the parametersk1 = k2 andkc = 0 in Eq. (4) leads to a typical contact du-
ration (half-period):tc ≈ 2.0310−5 s forγ0 = 0, tc ≈ 2.0410−5 s forγ0 = 0.1 kg s−1,
andtc ≈ 2.2110−5 s for γ0 = 0.5 kg s−1 for a collision. Accordingly, an integration
time-step oftDEM = 510−7 s is used, in order to allow for a ‘safe’ integration of con-
tacts involving smaller particles. Large values ofkc lead to strong adhesive forces,
so that also more energy can be dissipated in one collision. The typical response
time of the particle pairs, however, is not affected so that the numerical integration
works well from a stability and accuracy point of view.

6.2.2 Boundary Conditions

The experiment chosen is the bi-axial box set-up, see Fig. 6,where the left and
bottom walls are fixed, and stress- or strain-controlled deformation is applied. In the
first case a wall is subject to a predefined pressure, in the second case, the wall is sub-
ject to a pre-defined strain. In a typical ‘experiment’, the top wall is strain controlled
and slowly shifted downwards while the right wall moves stress controlled, depen-
dent on the forces exerted on it by the material in the box. Thestrain-controlled
position of the top wall as function of timet is here

z(t) = zf +
z0− zf

2
(1+cosωt) , with εzz = 1− z

z0
, (35)

where the initial and the final positionsz0 andzf can be specified together with the
rate of deformationω = 2π f so that after a half-periodT/2 = 1/(2 f ) the extremal
deformation is reached. With other words, the cosine is active for 0≤ ωt ≤ π . For
larger times, the top-wall is fixed and the system can relax indefinitely. The cosine
function is chosen in order to allow for a smooth start-up andfinish of the motion
so that shocks and inertia effects are reduced, however, theshape of the function is
arbitrary as long as it is smooth.
The stress-controlled motion of the side-wall is describedby
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Fig. 6 (Left) Schematic drawing of the model system. (Right) Position of the top-wall as function
of time for the strain-controlled situation.

mwẍ(t) = Fx(t)− pxz(t)− γwẋ(t) , (36)

wheremw is the mass of the right side wall. Large values ofmw lead to slow adap-
tion, small values allow for a rapid adaption to the actual situation. Three forces are
active: (i) the forceFx(t) due to the bulk material, (ii) the force−pxz(t) due to the
external pressure, and (iii) a strong frictional force which damps the motion of the
wall so that oscillations are reduced.

6.2.3 Initial Configuration and Compression

Initially, the particles are randomly distributed in a hugebox, with rather low overall
density. Then the box is compressed, either by moving the walls to their desired
position, or by defining an external pressurep = px = pz, in order to achieve an
isotropic initial condition. Starting from a relaxed, isotropic initial configuration,
the strain is applied to the top wall and the response of the system is examined. In
Fig. 7, snapshots from a typical simulation are shown duringcompression.

In the following, simulations are presented with differentside pressuresp = 20,
40, 100, 200, 400, and 500. The behavior of the averaged scalar and tensor variables
during the simulations is examined in more detail for situations with small and large
confining pressure. The averages are performed such that tento twenty per-cent of
the total volume are disregarded in the vicinity of each wallin order to avoid bound-
ary effects. A particle contact is taken into account for theaverage if the contact
point lies within the averaging volumeV .

6.2.4 Compression and Dilation

The first quantity of interest is the density (volume fraction) ν and, related to it, the
volumetric strainεV = ∆V/V . From the averaged data, we evidence compression
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εzz= 0 εzz= 0.042 εzz= 0.091

Fig. 7 Snapshots of the simulation at differentεzz for constant side pressurep. The color code
corresponds to the potential energy of each particle, decaying from red over green to blue and
black. The latter black particles are so-called rattlers that do not contribute to the static contact
network.

for small deformation and large side pressure. This initialregime follows strong
dilation, for all pressures, until a quasi-steady-state isreached, where the density is
almost constant besides a weak tendency towards further dilation.
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Fig. 8 (Left) Volume fractionν = ∑i πa2
i /V for different confining pressurep. (Right) Volumetric

strain – negative values mean compression, whereas positive values correspond to dilation.
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An initially dilute granular medium (weak confining pressure) thus shows dila-
tion from the beginning, whereas a denser granular material(strong confining pres-
sure) can be compressed even further by the relatively strong external forces until
dilation starts. The range of density changes is about 0.02 in volume fraction and
spans up to 3 % changes in volumetric strain.

From the initial slope, one can obtain the Poisson ratio of the bulk material, and
from the slope in the dilatant regime, one obtains the so-called dilatancy angle, a
measure of the magnitude of dilatancy required before shearis possible [46, 33].

The anisotropy of the granular packing is quantified by the deviatoric fabric (data
not shown). The anisotropy is initially of the order of a few percent at most – thus the
initial configurations are already not perfectly isotropic- even though isotropically
prepared. With increasing deviatoric deformation, the anisotropy grows, reaches a
maximum and then saturates on a lower level in the critical state flow regime. The
scaled fabric grows faster for smaller side pressure and is also relatively larger for
smaller p. The non-scaled fabric deviator, astonishingly, grows to values around
f max
D trF ≈ 0.56± 0.03, independently of the side pressures used here (data not

shown, see [33, 34] for details). Using the definitionfD := devF /trF , the func-
tional behavior,

∂ fD
∂εD

= β f ( f max
D − fD) , (37)

was evidenced from simulations in Ref. [33], withf max
D trF ≈ const., and the devi-

atoric rate of approachβ f = β f (p), decreasing with increasing side pressure. The
differential equation is solved by an exponential functionthat describes the approach
of the anisotropyfD to its maximal value, 1− ( fD/ f max

D ) = exp
(

−β f εD
)

, but not
beyond.

6.2.5 Stress Tensor

The sums of the normal and the tangential stress-contributions are displayed in Fig.
9 for two side-pressuresp = 20 andp = 200. The lines show the stress measured on
the walls, and the symbols correspond to the stress measuredvia the micro-macro
average in Eq. (31), proving the reasonable quality of the micro-macro transition as
compared to the wall stress “measurement”.

There is also other macroscopic information hidden in the stress-strain curves
in Fig. 9. From the initial, rapid increase in stress, one candetermine moduli of
the bulk-material, i.e, the stiffness under confinementp. Later, the stress reaches a
peak at approximately 2.6p and then saturates at about 2p. From both peak- and
saturation stress, one obtains the yield stresses at peak and in critical state flow,
respectively [61].

Note that for the parameters used here, both the dynamic stress and the tangential
contributions to the stress tensor are more than one order ofmagnitude smaller than
the normal contributions. As a cautionary note, we remark also that the artificial
stress induced by the background viscous force is negligible here (about two per-
cent), whenγb = 10−3 kg s−1 and a compression frequencyf = 0.1 s−1 are used. For
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Fig. 9 Total stress tensorσ = σn +σ t for small (Left) and high (Right) pressure – the agreement
between the wall pressure and the averaged stress is almost perfect.

faster compression withf = 0.5 s−1, one obtains about ten per-cent contribution to
stress from the artificial background force.

The behavior of the stress is displayed in Fig. 10, where the isotropic stress12tr σ
is plotted in units ofp, and the deviatoric fraction is plotted in units of the isotropic
stress. Note that the tangential forces do not contribute tothe isotropic stress here
since the corresponding entries in the averaging procedurecompensate. From Fig.
10, we evidence that both normal contributions, the non-dimensional trace and the
non-dimensional deviator behave similarly, independent of the side pressure: Start-
ing from an initial value, a maximum is approached, where themaximum is only
weakly dependent onp.
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Fig. 10 Non-dimensional stress tensor contributions for different p. The isotropic (Left) and the
deviatoric fractions (Right) are displayed as functions ofthe vertical and deviatoric strain, respec-
tively.
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The increase of stress is faster for lowerp. After the maximum is reached, the
stresses decay and approach a smaller value in the critical state flow regime. Us-
ing the definitionssV := tr σ /(2p)− 1 andsD := devσ /trσ , the maximal (non-
dimensional) isotropic and deviatoric stresses aresmax

V ≈ 0.8± 0.1 and smax
D ≈

0.4± 0.02, respectively, with a rather large error margin. The corresponding val-
ues at critical state flow aresc

V ≈ 0.4±0.1 andsc
D ≈ 0.29±0.04.

The evolution of thedeviatoric stress fraction,sD, as function ofεD, is displayed
in Fig. 10. Like the fabric, also the deviatoric stress exponentially approaches its
maximum. This is described by the differential equation

∂ sD

∂εD
= βs(s

max
D − sD) , (38)

whereβs = βs(p) is decaying with increasingp (roughly asβs ≈ p−1/2). For more
details on the deviatoric stress and also on the tangential contribution to the stress,
see [33, 34, 36, 35].

7 Larger Computational Examples

In this section, several examples of rather large particle numbers simulated with
DEM and ED are presented. The ED algorithm is first used to simulate a freely
cooling dissipative gas in two and three dimensions [45, 56]. Then, a peculiar three
dimensional ring-shear experiment is modeled with soft sphere DEM.

7.1 Free Cooling and Cluster Growth (ED)

In the following, a two-dimensional system of lengthL = l/d = 560 withN = 99856
dissipative particles of diameterd = 2a is examined [51, 45], with volume fraction
ν = 0.25 and restitution coefficientr = 0.9. This 2D system is compared to a three-
dimensional system of lengthL = l/d = 129 withN = 512000 dissipative spheres
of diameterd and volume fractionν = 0.25 with r = 0.3 [56].

7.1.1 Initial configuration

Initially the particles are arranged on a square lattice with random velocities drawn
from an interval with constant probability for each coordinate. The mean total ve-
locity, i.e. the random momentum due to the fluctuations, is eliminated in order
to have a system with its center of mass at rest. The system is allowed to evolve
for some time, until the arbitrary initial condition is forgotten, i.e. the density is
homogeneous, and the velocity distribution is a Gaussian ineach coordinate. Then
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dissipation is switched on and the evolution of the system isreported for the selected
r. In order to avoid the inelastic collapse, the TC model is used, which reduces dis-
sipation if the time between collisions drops below a value of tc = 10−5 s.

Fig. 11 (Left) Collision frequency of individual particles from a 2D simulation, after about 5200
collisions per particle. (Right) Cluster visualization from a 3D simulation. The colors in both panels
indicate large (red), medium (green), and small (blue) collision rates.

7.1.2 System evolution

For the values ofr used here, the system becomes inhomogeneous quite rapidly
[45, 56]. Clusters, and thus also dilute regions, build up and have the tendency to
grow. Since the system is finite, their extension will reach system size at a finite
time. Thus we distinguish between three regimes of system evolution: (i) the initially
(almost) homogeneous state, (ii) the cluster growth regime, and (iii) the system size
dependent final stage where the clusters have reached systemsize. We note that a
cluster does not behave like a solid body, but has internal motion and can eventually
break into pieces after some time. These pieces (small clusters) collide and can
merge to larger ones.

In Fig. 11, snapshots are presented and the collision rate iscolor-coded. The
collision rate and the pressure are higher inside the clusters than at their surface.
Note that most of the computational effort is spent in predicting collisions and to
compute the velocities after the collisions. Therefore, the regions with the largest
collision frequencies require the major part of the computational resources. Due to
the TC model, this effort stays limited and the simulations can easily continue for
many thousand collisions per particle.
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7.1.3 Discussion

Note that an event driven simulation can be 10-100 times faster than a soft-particle
DEM code applied to model the same particle number. However,ED is rather lim-
ited to special, simple interactions between the particles.

7.2 3D (Ring) Shear Cell Simulation

The simulation in this section models a ring-shear cell experiment, as recently pro-
posed [15, 16]. The interesting observation in the experiment is a universal shear
zone, initiated at the bottom of the cell and becoming wider and moving inwards
while propagating upwards in the system.

In the following, the shear-band will be examined, and the micro-macro transi-
tion from will be performed, leading to a yield stress (or flowfunction) based on
a single simulation. This is in contrast to the two-dimensional example from the
previous chapter, where the yield stress had to be determined from different simu-
lations with different side stressp. In the ring shear cell, space- and time-averaging
is possible, so that - at different radial and vertical positions, one obtains data for
different density, stress, velocity gradient, etc.

7.2.1 Model system

The numerical model chosen here is DEM with smooth particlesin three dimen-
sions. In order to save computing time, only a quarter of the ring-shaped geometry
is simulated. The walls are cylindrical, and are rough on theparticle scale due to
some attached particles. The outer cylinder wall with radiusRo, and part of the bot-
tom r > Rs are rotating around the symmetry axis, while the inner wall with radius
Ri , and the attached bottom-diskr < Rs remain at rest. In order to resemble the ex-
periment, the geometry data areRi = 0.0147 m,Rs = 0.085 m, andRo = 0.110m.
Note that the smallRi value is artificial, but it does not affect the results for small
and intermediate filling heights.

The slit in the bottom wall atr = Rs triggers a shear band. In order to examine the
behavior of the shear band as function of the filling heightH, this system is filled
with 6000 to 64000 spherical particles with mean radius 1.0 mm and radii range
0.5 mm< a < 1.5 mm, which interact here via repulsive and dissipative forces only.
The particles are forced towards the bottom by the gravity force f g = mg here and
are kept inside the system by the cylindrical walls. In orderto provide some wall
roughness, a fraction of the particles (about 3 per-cent) that are originally in contact
with the walls are glued to the walls and move with them.
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7.2.2 Material and system parameters

The material parameters for the particle-particle and -wall interactions arek =
102 N/m andγ0 = 2.10−3 kg/s. Assuming a collision of the largest and the small-
est particle used, the reduced massm12 = 2.9410−6 kg, leads to a typical contact
durationtc = 5.410−4 s and a restitution coefficient ofr = 0.83. The integration
time step istDEM = 5.10−6 s, i.e. two orders of magnitude smaller than the contact
duration.

Fig. 12 Snapshots from the quarter-cylinder geometry. Visible arehere only those particles glued
to the wall; the cylinder and slit positions are indicated bythe lines. (Left) Top-view and (Right)
front-view. The colors blue and red correspond to static andmoving wall particles.

The simulations run for 25 s with a rotation ratefo = 0.01 s−1 of the outer cylin-
der, with angular velocityΩo = 2π fo. For the average of the displacement, only
times t > 10 s are taken into account. Within the averaging accuracy, the system
seemingly has reached a quasi-steady state after about 8 s. The empty cell is shown
in Fig. 12, while three realizations with different filling height are displayed in Fig.
13, both as top- and front-view.

7.2.3 Shear deformation results

From the top-view, it is evident that the shear band moves inwards with increasing
filling height, and it also becomes wider. From the front-view, the same information
can be evidenced and, in addition, the shape of the shear bandinside the bulk is
visible: The inwards displacement happens deep in the bulk and the position of the
shear band is not changing a lot closer to the surface.

In order to allow for a more quantitative analysis of the shear band, both on
the top and as function of depth, we perform fits with the universal shape function
proposed in [15]:

vϕ(r)

rΩo
= A

(

1+erf

(

r−Rc

W

))

, (39)
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N = 16467 N = 34518 N = 60977

Fig. 13 Snapshots from simulations with different filling heights seen from the top and from the
front, and the particle numberN is given in the inset. The colors blue, green, orange and red denote
particles withrdφ ≤ 0.5 mm, rdφ ≤ 2 mm, rdφ ≤ 4 mm, andrdφ > 4 mm, i.e. the displacement
in tangential direction per second, respectively. The filling heights in these simulations areH =
0.018 m, 0.037 m, and 0.061 m (from left to right).

whereA is a dimensionless amplitudeA = 0.50±0.02,Rc is the center of the shear-
band, andW its width.

The fits to the simulations confirm qualitatively the experimental findings in so
far that the center of the shear band, as observed on top of thematerial, see Fig.
14, moves inwards with aRc ∝ H5/2 behavior, and that the width of the shear band
increases almost linearly withH. For filling heights larger thanH ≈ 0.05 m, de-
viations from this behavior are observed, because the innercylinder is reached and
thus sensed by the shearband. Slower shearing does not affect the center, but reduces
slightly the width - as checked by one simulation.

Like in the experiments, the behavior of the shearband within the bulk, see Fig.
15, deviates qualitatively from the behavior seen from the top. Instead of a slow
motion of the shear band center inwards, the shear band rapidly moves inwards at
small heightsh, and reaches a saturation distance with small change closerto the
surface. Again, a slower rotation does not affect the centerbut reduces the width.

From the velocity field in the bulk it is straightforward to compute the velocity
gradient tensor and, from this extracting the (symmetric) strain rate:

γ̇ =
√

d2
1 + d2

2 =
1
2

√

(

∂vφ

∂ r
− vφ

r

)2

+

(

∂vφ

∂ z

)2

, (40)

i.e., the shear intensity in the shear plane [40]. Note that the solid-body rotation
termvφ/r comes from the cylindrical coordinate system used. The shear planes are
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Fig. 14 (Left) Distance of the top-layer shearband center from the slit, both plotted against the
filling height H. The open symbols are simulation results, the solid symbol is a simulation with
slower rotationfo = 0.005 s−1, and the line is a fit with constantcR = 30. (Right) Width of the
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in fact described by a normal unit vectorγ̂ = (cosθ ,0,sinθ ), with θ = θ (r,z) =
arccos(d1/γ̇), as predicted [12]. The center of the shear band indicates the direction
of the unit-vector̂γ. In the system with friction, we observe that the average particles
spin is also normal to the shear-plane, i.e., parallel toγ̂, within the rather strong
fluctuations (data not shown).

From the stress, as computed according to Eq. (31), the shearstress is extracted
(in analogy to the strain rate) as proposed in [12]:

|τ| =
√

σ2
rφ + σ2

zφ . (41)
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Remarkably, the shear stress intensity|τ|/p≈ µ is almost constant for practically
all averaging volumina with strain rates larger than some threshold value, i.e.,̇γ > γ̇c,
with γ̇c ≈ 0.02 s−1. Whether the threshold has a physical meaning or is only an
artefact due to the statistical fluctuations in the average data has to be examined
further by much longer runs with better statistics.

From the constant shear stress intensity in the shear zone, one can determine the
Mohr-Coulomb-type friction angle of the equivalent macroscopic constitutive law,
see Fig. 16, asψ ≈ arcsinµ . Interestingly, without frictionψ is rather large, i.e.,
much larger than expected from a frictionless material, whereas it is astonishingly
small with friction (data not shown), i.e., smaller than themicroscopic contact fric-
tion µ = 0.4 used, see Ref. [40].
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Fig. 16 (Left) Shear stress|τ | and (Right) shear stress intensity|τ |/p plotted against pressure. The
size of the points is proportional to the shear rate, and the dashed line (right panel) separates the
data from simulations without (Bottom) and with (Top) friction, see [40].

7.2.4 Discussion

In summary, the example of a ring shear cell simulation in 3D has shown, that even
without the more complicated details of fancy interaction laws, experiments can be
reproduced at least qualitatively. A more detailed study ofquantitative agreement
has been performed in 2D [27], and is in progress for the 3D case.

A challenge for the future remains the micro-macro transition, for which a first
result has been shown, i.e. the yield stress can be extractedfrom a single 3D DEM
simulation for various pressures and shear rates. Open remains an objective contin-
uum theory formulation of the shear band problem.
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8 Conclusion

The present study is a summary of the most important details about soft particle
molecular dynamics (MD), widely referred to as discrete element methods (DEM)
in engineering, and hard particle event driven (ED) simulations, together with an
attempt to link the two approaches in the dense limit where multi-particle contacts
become important.

As an example for a micro-macro transition, the stress tensor was defined and
computed for dynamic and quasi-static systems. This led, for example, to a global
equation of state, valid for all attainable densities, and also to the partial stresses
due to normal and tangential (frictional) contacts. For thelatter situation, the micro-
macro average is compared to the macroscopic stress (=force/area) measurement
(with reasonable agreement) and, at least in 3D, a yield stress function can be ex-
tracted from a single ring shear cell simulation.

In conclusion, discrete element methods have proven a helpful tool for the un-
derstanding of many granular systems, while MD is the standard tool for atomistic
and molecular systems. The methods presented in this paper can be applied to both
DEM and MD simulation results with the goal to obtain micro- and particle-based
constitutive relations for continuum theory.

The qualitative approach on DEM of the early years has now developed into the
attempt of a quantitative predictive modeling tool for the diverse modes of complex
behavior in granular media. To achieve this goal will be a research challenge for
the next decades, involving enhanced kinetic theories for dense collisional flows
and elaborate constitutive models for quasi-static, densesystems with shear band
localisation.

In the future this tool will allow to impose a desired behavior by control or de-
sign, with particular application in mind as, e.g., modern sintered materials, reactors
involving catalysts, and many others.
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Géotechnique50(1), 43–53 (2000)
64. Thornton, C., Antony, S.J.: Quasi-static deformation of a soft particle system. Powder Tech-

nology109(1-3), 179–191 (2000)
65. Thornton, C., Zhang, L.: A dem comparison of different shear testing devices. In: Y. Kishino

(ed.) Powders & Grains 2001, pp. 183–190. Balkema, Rotterdam (2001)
66. Tighe, B.P., Sperl, M.: Pressure and motion of dry sand: translation of hagen’s paper from

1852. Granular Matter9(3/4), 141–144 (2007)
67. Tomas, J.: Particle adhesion fundamentals and bulk powder consolidation. KONA18, 157–

169 (2000)
68. Vermeer, P.A., Diebels, S., Ehlers, W., Herrmann, H.J.,Luding, S., Ramm, E. (eds.): Contin-

uous and Discontinuous Modelling of Cohesive Frictional Materials. Springer, Berlin (2001).
Lecture Notes in Physics 568

69. Walton, O.R., Braun, R.L.: Viscosity, granular-temperature, and stress calculations for shear-
ing assemblies of inelastic, frictional disks. J. Rheol.30(5), 949–980 (1986)

70. Zhu, C.Y., Shukla, A., Sadd, M.H.: Prediction of dynamiccontact loads in granular assemblies.
J. of Applied Mechanics58, 341 (1991)


