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Corrections are provided for two transport coefficients derived by Willits
and Arnarson' for a binary mixture of nearly elastic, circular disks using the
Revised Enskog Theory. The corrected viscosity coefficient is compared to
the shear viscosity obtained from simulation results of a bidisperse mixture of
inelastic, hard disks, undergoing uniform shear flow. The agreement is good

for a wide range of sizes and masses.

I. INTRODUCTION

In a recent paper, Willits and Arnarson® (hereafter referred to as WA) outline a rheolog-
ical model for a mixture of inelastic disks using the Revised Enskog Theory. Along with the
balance laws for mass, momentum and granular energy, they derive the rheologocal equations
of state for pressure, shear viscosity, bulk viscosity and thermal conductivity. To validate

their arduous and extensive calculations they compare the results to molecular dynamics



simulation of a binary mixture of elastic disks of almost equal mass and size. They show
that their expression for the shear viscosity agrees excellently with the simulation results if
equal or almost equal masses are assumed®. In our work, we show that WA’s expression is
correct only for the special case of a binary mixture with particles having equal mass, but
significant deviations occur for the more general case of a mixture differing both in mass

and size.

II. BACKGROUND

As a first step, we attempt to recover the known values for the monodisperse limit by
assuming a vanishing fraction of particles of one species. Figure 1 shows the variation of
the viscosity with the size ratio R = d;/d; (d; and ds denote the diameters of larger and
smaller species, respectively) for an equal-density mixture with a volume fraction ratio of
v /vs = 10", where v = v, + v, = 0.3 is the total volume fraction of disks. The solid and
dashed lines represent the results of WA and the corrected expressions, respectively. Since
the volume fraction of the smaller species is almost equal to zero, v, /v, = 107, we expect
the viscosity to be independent of the size-ratio; in contrast, however, the result of WA

shows a monotonic decrease with R as observed in Fig. 1.
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FIG. 1. Analytical results for the variation of the shear viscosity u with the size-ratio R for
uniform shear flow of an almost monodisperse mixture with volume fraction ratio v;/vs; = 1014
and the total volume fraction v = 0.3. The coeflicient of restitution is e = 0.99 and the shear rate
v = 1.0. The viscosity has been nondimensionalised by ppdl v, with p, being the material density
of the particles. The solid line corresponds to the original results of WA, the dashed line denotes

the results presented here.

Since the results did not agree, we derived the correct expression for the shear viscosity
following the mathematical procedure of Ferziger and Kaper® and Lopez de Haro et al.*.
Upon comparing our expression with that of WA, we found that a factor is missing from
the coefficient of the Sonine polynomial expansion b,y used in the expression for the shear
viscosity. In the following, we briefly outline the procedure to obtain the shear viscosity of

a binary mixture of hard disks.

III. SHEAR VISCOSITY

Let us consider a binary mixture of smooth inelastic disks of species [ and s, with
diameters d;, masses m;, and number densities n; (i = [,s). For the sake of an easy one-

to-one comparison, we retain the notations of WA. The shear viscosity of such a mixture is

given by
u(N) = %T%j %K;biq( + 2 \/_ zlj]zlj (2Mim;)"? ninyd2.gij, (1)
where |
K, =1+ g Zl anjid?jgij, (2)
j=l,s

with M;; = m;/(m;+m;), dij = d;+d;, g;j is the contact value of the equilibrium pair distri-
bution function, and 7" the granular temperature. b;,(N) in equation (1) are the coeflicients
of the Sonine polynomial expansion, with N being the number of Sonine polynomials used
(i.e. N-th Enskog approximation). At the N-th level of approximation, the b;,(N) satisfy

the relation



N-1

big(N) 3 njgiiBpcs + D 1 9ij Bpgbbia(N)| = 2nK;0p, (3)

q=0 j=l,s j=ls
forallp=0,1,...,N — 1, and 7 = [, s, where J, is the Kronecker delta, and B;,’gg and B;;%
are the partial bracket integrals for hard disks®*.

We are interested in the first Enskog approximation (N = () for which we need to know

the following two bracket integrals:

By, = dijAijM;i(1 4+ M;;)  and By} = —d;ijNij M M, (4)

2T
Aij =1/ .
J sz]z (5)

At this level of approximation, equation (3) reduces to a set of two coupled algebraic

where );; is defined by

equations for b;y:

Ciibio + Cirbro = 2K, (6)
for i =1, s and ¢ # k, with
n; s n, 154 1y ";
Ci = ElgiiBoéé + Y #gijBOZOJQ and Cj = ;gikBoé’S- (7)
j=ls

The solution for b; is, for 7 # k, given by

b 2(K;Cyr — K;,Ci) @®
0 (CiiCri — CirCri)’

which, after some algebraic manipulation, simplifies to the expression:
bio = 2n [nngﬂz + nkK,;MszkZ]
B — M My, ’

=
T ningdiggik ik
with

Ly dik gre | M;
P o1+ M) + 21 dii gri \ Mk

(10)

Comparing with the expression for 3; given in WA on page 3119, we find that the
second term in our expression for 8; has a factor (M;,/My)'/? that is missing from the WA
expression. The dashed line in Fig. 1 corresponds to the shear viscosity obtained using our

corrected §; from Eq. (10).
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FIG. 2. Comparison of shear viscosity with ED simulations: v;/v; = 19; v = 0.3; e = 0.99;

v =1.0.

In Fig. 2, we compare our expression for the shear viscosity with the simulation results
of a bidisperse mixture of inelastic hard disks undergoing uniform shear flow; the simulation
technique is the standard event-driven simulation. (The details of these calculations are the
subject of a forthcoming publication.?) The parameter values are set to v = 0.3, v;/v, = 19;
the coefficient of restitution, e, is 0.99 and the shear rate, 7, is 1.0. It is observed that the
simulation results agree closely with the viscosity in Eq. (1) using b;y from Eq. (9) with the
corrected term in Eq. (10).

There remain quantitative discrepancies at large size ratios — for example, the theory
underpredicts the simulation results by about 0.25% and 11% at R = 5 and 10, respectively.
The result of WA underpredicts the viscosity levels significantly over the whole range of
size-ratios for this set of parameters. It is worthwhile to comment on their comparison of
the viscosity expression with the molecular dynamics simulation (see Fig. 1 in WA). The
simulation results compare excellently with the analytical results since a binary mixture
with particles having equal mass was considered. For this special case of equal mass, the

missing factor in their expression for §; is simply unity.



IV. HEAT CONDUCTIVITY

Without explicit derivation, we note that the term «; on page 3119 of the paper by WA

should be corrected® by the factor (M;,/My)'/? as well, such that

Nk Tk Gkke 1 ( Mig M2
;= 12My, + AMy My; + 5M;, + ——= == ( ) :
“ b+ A M 08 N Tik Gike Mg \ My,

(11)

with k£ # 1.

Furthermore, the expression for the collisional contribution to the heat flux should read:

3M;; M, 1
qij = ggijcr?jnij {Mij'vi + Mjivj — # [(Clﬂ -+ aﬂ)V In T] + ﬁ(tzldz -+ tjldj)}
9 . T 1/2
g, T (%) VinT . (12)
ij

It should be stated that a numerical check of the heat conduction properties of a granular
mixture is not as straightforward as the test of the viscosity. While in the latter case the
set-up of a homogeneous simulation is possible, the heat flux is only active in the presence
of a temperature gradient, which typically involves also a density gradient. Those gradients
however lead to segregation’ and thus destroy the homogeneity of the system. For the
additional problems occuring when a fixed density boundary condition has to be achieved

see the study by Luding” and the references therein.

V. CONCLUSIONS

In summary, we have corrected the expressions for the shear viscosity and the heat
conductivity of a binary mixture of hard disks in the paper by WA!. The resulting expression
for the viscosity agrees well with the simulation results for a system of nearly elastic (e =
0.99) hard disks of equal density and different size, over a large range of particle size ratios.
The corrected expressions for heat conductivity and collisional heat flux are only mentioned,

but could not be checked in a similar, straightforward simulation.



Our work thus suggests that the first Enskog approximation for the shear viscosity is
applicable to situations with extremely different particle sizes and masses?, a promising

perspective which should lead to further research in the field of granular mixtures.

VI. ACKNOWLEDGMENTS

Discussions with J. T. Jenkins are acknowledged together with the financial support
of the Alexander von Humboldt Foundation and of the Deutsche Forschungsgemeinschaft

(DFG).

[1] J. T. Willits and B. O. Arnarson, “Kinetic theory of a binary mixture of nearly elastic disks,”

Phys. Fluids 11, 3116-3122 (1999).

[2] M. Alam and S. Luding, “Rheology of bidisperse granular media: uniform shear flow”, preprint

(2001).

[3] J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases (North

Holland, London, 1972).

[4] M. Lépez de Haro, E. D. G. Cohen, and J. M. Kincaid, “The Enskog theory for multicomponent

mixtures. I. Linear transport theory,” J. Chem. Phys. 78, 2746-2759 (1983).

[5] J. T. Jenkins and F. Mancini, “Kinetic theory for binary mixtures of smooth, nearly elastic

spheres,” Phys. Fluids A 1, 2050-2059 (1989).

[6] J. T. Jenkins, J. Willits, and B. O. Arnarson, private communication about the corrected

expressions discussed in this paper (unpublished).

[7] S. Luding, O. Strauss, and S. McNamara, Segregation of polydisperse granular media in the

presence of a temperature gradient, in: Segregation in Granular Flows, IUTAM symposium,



A. D. Rosato and D. L. Blackmore (eds.), Kluwer Academic Publishers, 2000, pp. 305-310;

cond-mat/9910085.



