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Abstract

In dense, static, polydisperse granular media under isotropic pressure, the prob-

ability density and the correlations of particle-wall contact forces are studied.

Furthermore, the probability density functions of the populations of pressures

measured with different sized circular pressure cells is examined. The questions

answered are: (i) What is the number of contacts that has to be considered so

that the measured pressure lies within a certain error margin from its expec-

tation value? (ii) What is the statistics of the pressure probability density as

function of the size of the pressure cell? Astonishing non-random correlations

between contact forces are evidenced that lead to a rapid decay of the width

of the distribution and range at least 10 to 15 particle diameters. Finally, an

experiment is proposed to tackle and better understand this issue.

Keywords: Force and stress correlations, DEM simulations, dense static

granular packings, pressure cells

PACS: 45.70, 47.50+d, 51.10.+y

1. Introduction

One of the open issues in the field of disordered, random systems like dense,

static granular packings, is the probability density of the contact forces and
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their possible long range correlations. There is common agreement that the

probability for large forces decays exponentially [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15] but the small forces are much harder to measure [2, 16, 17], so

that there is still ongoing discussion about the shape of the probability density

for small forces, possible correlations between the forces, and a predictive model

for the force propagation inside dense packings of frictional particles [18].

Furthermore, it is observed that the deformation of particle systems is not

affine in general, but displays finite distance correlations which are assumed to

increase when approaching the jamming transition [6, 19, 20, 21, 22, 23, 24,

25, 26, 27]. However, the issue whether these correlations (and possibly anti-

correlations due to vortex formation) depend on the system size [28] or not

[29, 30] is not completely resolved yet.

Since the forces that granular particles exert onto their confinement (walls)

strongly fluctuate from one particle to the next, so does also the local pressure.

When the pressure on the wall is measured with a circular pressure cell, per-

forming many independent measurements, one obtains a probability density of

the measured pressure, with its first moment approaching the mean pressure,

and the standard deviation decreasing with increasing cell size. While the case

of uncorrelated forces is rather behaving as expected, the case of subtly corre-

lated forces in granular packings leads to interesting results and probably can

be understood with advanced statistical methods [34], which can e.g. account

for contact number fluctuations. Data on stress fluctuations in sheared systems

of frictional particles were reported in Refs. [31, 32]. Miller et al. [31] observed

that the width of the distribution was rather independent of the particle size

and thus weakly dependent on the number of particles contributing to the stress

measured on their pressure cell. They attributed this to the fact that force chains

rather than single particles are carriying most of the load so that they become

responsible for the statistics rather than the number of particle contacts. In our

study we will therefore simplify by switching off friction and shear and, instead

of varying particle size, we measure the pressure at the walls with pressure-cells

of different sizes. Baran and Kondic [32], on the other hand, observed that the
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width of the distribution decays slower than for un-correlated forces for larger

averaging times and attribute this to the absence of zero-force contacts. Their

system, however, was sheared in the collisional and thus dynamic regime, unlike

the quasi-static isotropically stressed situation considered in this study.

A local measurement of the wall pressure can be far away from the total

pressure (or the mean, representative pressure), unless “enough” particles are

contained in the pressure cell. Besides the question, how much “enough” is, also

the question of the behavior of the width of the pressure probability density

is examined in this study. The reason to examine the pressure distribution

instead of the force distribution is that the former is much easier to access

experimentally, as will be outlined at the end of this paper.

In general, more knowledge on the force- and pressure-density functions is

needed for the understanding of pressure measurements aiming, for example, at

a safe design of containers of granular materials such as silos.

The simplest model for the force probability density function is the so-called

q-model, introduced 1995 by Liu, et al. [16, 2], that describes the occurrence of

force chains based on uncorrelated probabilistic assumptions. Even though there

are many more advanced models available that take into account the disorder

and the geometric packings of granular media, see e.g. Refs. [14, 15], we use

the q-model as starting point for convenience. In a dense packing of discrete

particles, the contact forces that one particle in a certain layer feels from above

plus its weight, determines the sum of the contact forces on the particles below.

The magnitude of the two forces at the two contacts below, are the fractions q

and 1 − q of the sum. In general, the weights can also depend on neighboring

sites and contacts can open and close. The mean field approximation, however,

neglects these dependencies and thus simplifies the model vastly. Eq. (1) gives

us the normalized, scaled density function of the inter-particle forces f∗ = f/〈f〉,
predicted by the q-model:

pq(f∗) =
CC

(C − 1)!
fC−1
∗

exp (−Cf∗) , (1)

where C is the number of the neighboring particles (below or above). The
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weakness of the q-model is the improper prediction of the probability to find

small forces, see Fig. 1.
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Figure 1: Normalized probability density p(f∗) plotted against the normalized force f∗ =

f/〈f〉. The circles are simulation data, and the dashed and solid lines are Eqs. (1) and (2),

with C = 1.8, respectively. The inset shows the same data in log-scale, together with the

“quality factor”, i.e. the simulation data divided by the fit-function as dots around unity; the

fit has deviations less than two per-cent for f∗ < 3 and less than ten per-cent for f∗ < 5. The

q-model, Eq. (1), is invalid for f∗ < 0.2 and has varying deviations of about ten per-cent for

0.2 < f∗ < 5.

A function, that provides an excellent fit to the simulation data is

pf (f∗) =

(

1 − a exp

(

− (f∗ + b)2

8

))

c exp (−df∗) , (2)

with the fit-parameters a = 0.983 ± 0.003, b = 0.56 ± 0.05, c = 1.80 ± 0.02,

and d = 10.4 ± 0.7. Note that a similar function was found experimentally,

see Refs. [35, 36]. The number of parameters can be reduced by using the

normalization relations
∫

pfdf = 1 and
∫

f pfdf = 1 1. The fit-parameters for

1the factor 8 in the denominator leads to some better fit-quality by stretching the Gaussian

correction function
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ν a b c d

0.80 0.995298 0.477783 14.089 1.91749

0.70 0.971913 0.68069 7.72909 1.68119

0.68 1.00345 1.05915 5.127 1.54689

0.66 0.970768 1.11105 4.25643 1.47278

0.64 0.902126 0.507015 6.3781 1.57989

e [%] 1 − 4 15-23 11-20 2-4

Table 1: Fit results for different volume fractions ν, where the row e contains the typical

relative error of the respective fit-parameter.

different densities are given in table 1.

2. Theory
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Figure 2: The forces of particles that touch the walls fluctuate around a mean value.

Let us consider a cubical container filled with granular material under isotropic,

hydrostatic pressure. Each particle i of the Nw particles that touch a wall exerts

a force fi (see Fig. 2) on the wall and contributes to a (finite: 1 ≤ i ≤ Nw)

population of forces p(f) with mean µw = 〈f〉 and standard deviation σw, where

the subscript w refers to the population of all wall-particle forces. If we select

one sample j of size n out of this population by applying a circular sensitive

area D(R) = πR2 that includes the n forces that are acting on this area, we

obtain the pressure

Pj(R) = Pj(nj(R)) =
(1/n)

∑n
j=1 fj

D(R)/n
= (1/n)

n
∑

j=1

fj/D1 , (3)
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with the area per particle, D1 = D(R)/n, and n = nj(R). Note that such areas

have to be selected such that their center – on the selected wall – is at least a

distance R away from any other wall. Taking many samples, m ≫ 1, will result

in a population of pressure values with probability density pR(P ) around the

mean µP = 〈Pj(R)〉 = (1/m)
∑m

j=1 Pj(R), with standard deviation

σP =
√

〈

P 2
j (R)

〉

− µ2
P ,

where the subscript P refers to the population of pressures.

P (R)

D(R)

j

Figure 3: The average force of sample j, divided by the sensitive area D(R)/n per particle,

of this detector, leads to a pressure Pj(R) corresponding to one measurement j.

2.1. Central Limit Theorem

According to the central limit theorem (CLT), and for the corresponding

assumptions, the probability density function pR(P ) of our population of sam-

ples Pj(R) provides the same expectation value as for the original population

µP ≈ ∑Nw

i=1 fi/A, where A denotes the total surface of the confinement and the

sum goes over all particles in the system touching the walls 2. The CLT also

tells us that the probability density function becomes more and more Gaussian:

gR (P ) =
1√

2πσP

exp

[

−1

2

(

P − µP

σP

)2
]

, (4)

the larger we chose n, i.e., by increasing the detector size R. The standard devia-

tion then equals σP = σP (R) = (n(R)σw)/(D(R)
√

n(R)) = σw/(D1

√

n(R)) =:

2This is valid under the assumption that all wall-particles are similar, i.e. there is no

inhomogeneity in the forces on the wall particles, e.g. as function of distance from another

wall in the edges of the cuboid.
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Pf/
√

n, with the pressure Pf that corresponds to the standard deviation of the

force density function scaled by the area of the pressure cell per particle.

2.2. Confidence Intervals

Integration from −∞ to +∞ of the normalized distributions pR(P ) and

gR(P ) gives unity. Now, to gain more advanced statistical predictions about

the pressure distribution, let us consider a lower and an upper integration limit

zα/2 < µP and z1−α/2 > µP , respectively, such that the integral over Eq. (4)

equals

1 − α =

z1−α/2
∫

zα/2

gR(P ) dP = 1 −
zα/2
∫

−∞

gR(P ) dP −
∞
∫

z1−α/2

gR(P ) dP

=
1

2

[

erf

(

z1−α/2 − µP√
2σP

)

+ erf

(

µP − zα/2√
2σP

)]

. (5)

If the integration limits are chosen such that a fraction α/2 lies outside of

the integration range, both to the left and the right, the integration limits

correspond to the confidence interval 2δα = z1−α/2 − zα/2; a fraction 1 − α of

the n measurements Pj lies within the confidence interval.

Keeping n = const. and considering α = 0 (probability for finding the mea-

sured value in-between our limits then equals 1), we expect that the interval of

confidence tends to infinity. On the other hand, for α = 1 (probability vanishes),

one expects δα → 0.

Due to the symmetry of the Gaussian distribution, one can compute

δα := z1−α/2 − µP = µP − zα/2 (6)

explicitly, using the relation: ierf(1 − α) = δα/(
√

2σP ) = δα
√

n/(
√

2Pf ) such

that:

n = 2 (Pf/δα)
2

ierf2
(

1 − α
)

, (7)

where the pressure Pf = n(R)σw/D(R) = σw/D1 is, of course, a constant for

given geometry and p(f). The general equation (7) gives us information about

how many particles n need to be considered in a measuring process, so that a
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measurement Pj(R) lies in-between the error margin ±δα with probability 1−α.

Note, that δα and n depend on the size R of the sensitive area δα ∝ 1/
√

n(R) ∝
1/R.

2.3. Explicit predictions

2.3.1. q-model

Now we use the distribution predicted by the q-model for the analysis. The

first two moments obtained from Eq. (1) are f = 〈f〉 and f2 = C+1
C 〈f〉2, which

leads to the standard deviation pq(f), namely σq
f =

(

f2 − f
2
)1/2

=
√

1/C 〈f〉.
Considering Eq. (1) as a finite population and applying the CLT by taking many

samples, one can then replace P 2
f in Eq. (7) to get

n(q) =
2

C

( 〈f〉
D(R)/n

)2

ierf2
(

1 − α
) 1

δ2
α

= (2/C) ierf2(1 − α)(Pf/δα)2 . (8)

2.3.2. Best Fit

Now we use the distribution as obtained by our fit to the data for the analysis.

The first two moments obtained from Eq. (2) are f ≈ 〈f〉, f2 = 1.61〈f〉2 and

the corresponding standard deviation can be computed to σfit
f = 0.78〈f〉. In

comparison with these results the q-model provides σq
f = 0.76〈f〉 for a dense

granular packing with C = 1.8 corresponding to a special geometry.

3. Simulation

3.1. The System

The systems studied in the following contain N perfectly spherical particles

with radii ri drawn from a homogeneous distribution ri ∈ [rmin, rmax], where

we used rmax/rmin = 2 and 3, and the mass (4/3)πr3
i ρ, where ρ represents the

uniform material density of the particles. Since the mass is not relevant in the

static limit, we refer to density only with the dimensionless volume fraction

νf = 4
3V π

∑N
i r3

i , with volume V =
∏3

β=1 Lβ , where Lβ denotes the length

of the simulation volume in direction β ∈ (x = 1, y = 2, z = 3). All of the

simulations were done in a cuboid volume which is limited by walls that repell
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Figure 4: Snapshot of a dense, polydisperse assembly of N = 8000 particles confined in a

cuboid. The volume fraction here is ν ≈ 0.7 and the particle sizes are grey scaled (bright

particles are big, dark particles are small).

touching particles. Fig. 4 gives an example of a typical static and dense granular

sample, while Fig. 5 shows a representative subset of particles that touch a wall

(Left) and the corresponding magnitudes of forces (Right), quantified by the

radius of the circles.

3.2. Molecular Dynamics

The simulations were performed by means of a molecular dynamics (MD)

code in three dimensions, without tangential forces like friction. MD simula-

tions are characterized by discretizing time into timesteps ∆t and solving the

Newton’s equations of motion for each particle. In each integration step, the

new position of the particles is computed from its previous and present positions
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Figure 5: View of one of the walls for a packing with N = 20000 particles with ν ≈ 0.67.

(Left) Each circle is a particle in contact with the wall; the color coding is the same as in Fig.

4. (Right) Same data as (left), but here each circle radius is scaled with the force exerted by

the particle on the wall. (Big, bright circles correspond to large forces, whereas small, dark

circles correspond to small forces on the wall).

and accelerations due to forces currently acting on it [37]. MD is also referred

to as discrete element method (DEM) or as soft-sphere model, i.e. the repul-

sive forces fn normal to the plane through the point of contact depend on the

overlaps of the spheres, that replace the contact deformation. The linear spring-

dashpot (LSD), the non-linear Hertzian model and a hysteretic force model can

be used [38], among many others. For particle-wall contacts, the same spring

constant were used as for contacts between particles. Here, only the LSD re-

sults are discussed because no qualitative differences could be evidenced for the

different contact laws.

3.3. Initial Configurations and Relaxation

As initial configurations, N = 8000 or N = 20000 poly-disperse particles

with random initial velocities were placed on a regular cubic lattice with low

total density. Due to the free space between the particles, the initial order is

forgotten and the particles dissipate energy during collisions. Eventually, the
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dense, relaxed and disordered granular packing is obtained by either applying

hydrostatic pressure on the walls or by growing the particles. Due to the dissi-

pative nature of the contact law, energy is dissipated and the system reaches a

static configuration, where we use as criterion the ratio of kinetic and potential

energy, Ekin/Epot = ǫ, with ǫ ≤ 10−7. If ǫ is small, the particles are typically

almost at rest and the major contribution to the total energy stems from the

contact potential energy between particles and between particles and the walls.

Since the results were identical for the two preparation procedures, we only

mention that there are more alternative ways of achieving a static packing, see

[39], which is far from the scope of this study. Furthermore, we do not consider

friction, since friction makes the packing structure dependent on the history and

on details of the preparation procedure.

4. Results

In this section, we present the results concerning force probability density

functions. When scaled by their respective mean, the particle-particle and

particle-wall force probability density functions were identical – within the con-

siderably larger fluctuations of the latter. The larger fluctuations are due to the

smaller number of wall contacts as compared to the bulk contacts. Since we are

interested in the experimentally accessible pressure measured at the wall, we will

not present bulk data in the following, except for some qualitative comparison

between wall and bulk results.

4.1. Width of probability distributions

When a circular measuring area with radius R is put around each wall-

particle (for all wall particles with distance larger than Rmax from any other

wall), one obtains a set of Pj(R) values and, from these, can compute the mean

values and standard deviations. A typical set of wall-particles is shown in Fig.

5. Note that Rmax is introduced, so that the same set of wall-particles is used

for the computation independent of R and, if Rmax/rmax becomes larger than
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12-13, the statistics becomes bad, since too few particles close to the center of

the wall are taken into account as the centers of pressure cells.

For each sample with given R, from the corresponding pressures Pj(R), the

histograms are obtained, as shown in Fig. 6 for three different R-values. The

larger the cell size, the more the pressure density function appears Gaussian

and, as Fig. 7 shows, the smaller the standard deviation σP becomes. Note,

however, the interesting fact, that the decay of σP is steeper than the simple

relation σP ∝ 1/R, expected from the central limit theorem.
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Figure 6: Probability density for the pressures from many samples with sizes R∗ = R/rmax =

1.0, 2.5, and 5.0. Points are simulation data and lines correspond to Eq. (4) The top panel

shows the same data as the bottom panel, where the latter has a logarithmic vertical axis.
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Figure 7: Scaled standard deviation σP /µP plotted against the size of the cells R∗ for different

Rmax. The symbols are simulation data, while the solid and the dashed lines correspond to

σP /µP =
√

nσw/(πR2µP ) and σP /µP ∝ 1/R∗, respectively.

Fig. 7 also contains steps for small cell sizes due to integer jumps in the

particle number n(R). For larger R, the change of σP becomes smooth and

independent of R∗. For every kind of distribution of the population we should

get – according to CLT – a Gaussian distribution of the Pj(R) around the

population mean. Eq. (7) is a consequence of these simplifications. But our

simulations show 〈n〉 ∝ δ−1.5
α (see Fig. 8) or, what is equivalent, deviations from

the Gaussian shape of the curves for large R as well. Note, that for very small

radii only a very small amount of particles will contribute to the pressure, i.e.,

at least, the central particle will contribute to the pressure.

These correlations vanish if we replace the forces in our data files by ran-

domly and uniformly distributed forces. These (faked) data then show agree-

ment with Eq. (7), see also Fig. 8, as expected, and finally confirm that cor-

relations do occur in our systems (samples of particles that contribute to the

pressure measured at the walls).

In a few systems, we also studied the correlations of the bulk-pressure in

cubical volumes of different sizes (data not shown). The standard deviation of

these data decays in close agreement with the expectations from the Central
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Limit Theorem. A more detailed study of the range of the correlations goes

beyond the scope of this study, so that the open question why the correlations

occur only at the walls remains open.

In order to check whether the correlations can be caused by the fact that

our sampling areas (pressure-cells) have overlap, we studied the statistics with

randomly leaving out 80 or 90 per-cent of the samples, with no significant change

in the conclusions (besides some worse statistics).
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<
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α = 0.0, uncorrelated
α = 0.0, correlated

Figure 8: Number of particles averaged over many samples with given radius R, for many

radii drawn from the interval of confidence for α = 0, scaled by the population mean. The

simulations were performed with N = 20000 particles and LSD. The data with slope of −1.5

obtained by our MD simulations reveal correlations between the forces of the wall-particles

because they do not match to theory, see Eq. (7), that predicts a slope of −2. Data with slope

of −2 are “faked” by replacing the forces by uniformly distributed random forces.

4.2. Correlation Function

An alternative way to examine the correlations in a set of forces is to compute

the correlation function

C(r) =
〈fifj(r)〉
〈fi〉〈fj(r)〉

, (9)

where the fα are the forces of the center particles, for α = i, and of all other

particles at distance r in the pressure cells, for α = j. As displayed in Fig. 9

(Left), the correlations decay about two orders of magnitude within a distance
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Figure 9: (Left) Correlation function 1 − C(r∗) as function of the scaled distance from the

center of the pressure cell, r∗ = r/rmax, for different sizes of the pressure cells R∗

max, as given

in the inset. (Right) Correlation function 1 − C(r∗) for different densities ν, as given in the

inset.

of approximately 15 particle (maximal) radii. For small R∗

max, this contrasts

the results from the confidence interval (or standard deviation) measurements,

where no change of behavior could be evidenced. These results do not change

for larger R∗

max.

The data for different densities in Fig. 9 (Right) show that the correlations

decay much faster for larger densities. Note that there is no qualitative difference

visible when one examines σ/µP as function of R∗ for different densities: The

absolute values decrease with increasing density, but the slope of −3/2 remains

independent of the density (data not shown). Thus, in conclusion, the pressure

cell approach is capable of detecting a different type of correlations, which is

not caught by the classical correlation function approach.

5. Conclusions

From static, frictionless and isotropically compressed packings, we extract

the probability distribution of measured stresses on circular sensors at the walls.

The width of the distribution decays more rapidly than expected from the Cen-
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tral Limit Theorem (CLT) for uncorrelated forces, which is in contrast to alter-

native previous observations [31, 32] on sheared, dynamic, and frictional particle

systems.

Our main objective was to determine how the number of particles contribut-

ing to the pressure on a given sensor correlate with the interval of confidence,

which is a measure for the width of the pressure density functions. As expected,

the confidence interval increases the smaller the detector size is chosen, i.e., the

worse the statistics becomes. Surprisingly, the relation 〈n(R)〉 ∝ δα(R)−1.5

is observed, i.e. for a certain amount of particles, given a desired probability

1 − α, the measured pressure values can be expected to be closer to the av-

erage, 〈P (R)〉, as assumed from CLT. Thus, our simulations predict a better

confidence in measured data.

As a possible reason for this, one has the correlations between forces exerted

by close-by particles on the walls. These correlations range over a rather long

distance. The limited sensor size (and the related fluctuations of particle num-

bers) were excluded as source of this effect, because we found 〈n(R)〉 ∝ δα(R)−2

for a fully random (uncorrelated), uniform force distribution.

Finally, we note that our systems were rather small, so that we cannot

exclude the possibility that our observations are due to a finite size effect. Also

the possibility of correlations due to the overlapping pressure cells cannot be

excluded (avoiding the overlap leads to prohibitively bad statistics). Therefore,

much larger simulations should be performed to confirm the present results and

better understand the source of the correlations as evident from the width of

the pressure probability density function.

Furthermore, we analysed our simulation data mainly at the walls, so that

a direct experimental access to the same information is possible. Thus, the

pressure correlations presented here should be confronted more systematically

to bulk stress data (of both isotropic and deviatoric stresses) in order to learn

if this is a wall effect or intrinsic also to bulk particulate systems, with force

chains and the respective correlations, also far away from the walls.

Future studies should involve more realistic material properties like friction,
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and more realistic particle shapes as well as the study of cohesive, humid or

saturated systems – all under dynamic driving or, e.g., shear.
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