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Summary. In this paper, a two-dimensional granular gas of inelastic, rough spheres
subject to driving is examined. Either the translational degrees of freedom are ag-
itated proportional to a power |v(~x)|δ of the local particle velocity v(~x), or the
rotational degrees are agitated randomly with respect to the angular velocity ω(~x).

The steady state properties of the model, with respect to energy, partition of en-
ergy, and velocity distributions, are examined for different values of δ, and compared
with the homogeneous driving case δ = 0. A driving linearly proportional to v(~x)
seems to reproduce some experimental observations which could not be reproduced
by a homogeneous driving. Furthermore, we obtain that the system can be homog-
enized even for strong dissipation, if a driving inversely proportional to the velocity
is used (δ < 0). In the case of rotational driving, the system is well randomized
and clusters are hindered. Even though rotational driving may be difficult to realize
experimentally, this is an opportunity to avoid or delay the often unwanted effect of
clustering.
PACS: 45.70, 47.50+d, 51.10.+y, 47.11.+j

1 Introduction

Granular materials belong to the fascinating world of non-linear, dissipative,
non-equilibrium systems [1–3]. Hard spheres, as a special case, are used also
as basic model for gases, liquids, and e.g. glasses [4]. Adding dissipation and
rotation to hard spheres, one has the simplest yet realistic model granulate.
Granular media are (more complicated) collections of macroscopic particles
with rough surfaces and dissipative, frictional interactions, but also involve
eigen-modes of vibration and possibly plastic deformation or fracture. Disre-
garding the latter two, one has Molecular dynamics (MD) simulations as an
established tool to complement advanced theoretical approaches and difficult
experimental studies.
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Granular gases are the more dynamic limit of granular media as opposed
to static systems. One of the outstanding effects in granular gases is the so
called clustering, a self-stabilized density instability due to dissipation [5–7],
where large, dense collections of particles co-exist with almost empty areas.
Clustering occurs in initially homogeneous systems [5–10] and should not be
confused with the so-called “inelastic collapse” [5, 11], the divergence of the
collision rate, which is inherent to the frequently used hard (rigid) sphere
model [5, 6, 12, 13]. Freely cooling systems – mainly examined numerically and
theoretically – are almost impossible to realize experimentally. Only in the
last years, laboratory experiments were performed, where clustering could
be examined in driven systems [14–20], where also kinetic theory approaches
[21–32] complemented by numerical simulations have proven to be successful
[12, 25, 33–39].

The driving of a granular material can be realized by moving walls [2, 40]
which lead to local heating and possibly shock-waves [41], or the system can
alternatively be driven by a global homogeneous, random energy source in dif-
ferent variations [12, 25, 29, 36, 42–45]. The latter type of energy input does not
exactly resemble the experimental situation, where a two-dimensional (2D)
horizontal layer of spheres is agitated by vertical vibrations of the bottom sur-
face and the horizontal degrees of freedom are indirectly agitated due to the
different vertical jump heights of the colliding particles [15, 19, 20, 38]. Trans-
lational energy input (due to vibrations) was also applied for other boundary
conditions and a variety of interesting experimental results were obtained just
recently [14–17, 19, 20, 46].

Generic seems to be that one can obtain a gas and a liquid state, together
with dense, solid-like clusters which form due to dissipation. Thus, the choice
of the driving term to put into a theory for dissipative systems is an open
problem and we expect that it depends on the nature of the driving (vibrating
wall, airflow, Brownian noise, etc.). In this paper we present a more detailed
and complete study as in [12, 13] and also combine both approaches in the
framework of a mean field theory for the evolution to the steady state.

In [12], in order to find possible candidates for a realistic energy input,
the inelastic hard sphere (IHS) model with an inhomogeneous, multiplicative
driving was examined. The driving is proportional to the local velocity |v(~x)|δ,
with a given power δ which can take both positive and negative values. The
classical homogeneous driving with δ = 0 is contained in our approach as a
special case. A positive power leads to weak energy input for slow particles,
e.g. those moving collectively inside a cluster [15, 19, 38]. We present a series
of results from numerical simulations performed for different sizes N of the
system, different values of r and different exponents δ of the driving. Then we
compare our results with an analytical MF approach.

A driving linearly proportional to v(~x) (δ = 1) seems to reproduce some
experimental observations which could not be reproduced by a homogeneous
driving, like an anticipated onset of clustering with respect to the case of
homogeneous driving, stable clustering in equilibrium with a low density (gas)
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phase, anomalous velocity distribution in the clustering regime with exponents
different from the value 3/2 obtained analytically and numerically for the case
with homogeneous driving [47]. Furthermore, we obtain that the system can
be homogenized even for strong dissipation, if a driving inversely proportional
to the velocity is used (δ < 0).

Depending on the experimental setup, energy can be given to the transla-
tional degrees of freedom or, alternatively, to the rotational ones, or to both.
Since the first case catched most of the attention, we change the focus and
feed also rotational energy instead of translational. Driving of the rotational
degrees of freedom is scarcely realized so far [M. Markus, private communica-
tion, A. Kudrolli, private communication, D. Wolf, private communication],
and requires either electro- or magneto-dynamic forces in order to couple the
rotational degrees of freedom. Such a situation could correspond, for example,
to a gas of rough magnetic particles subject to a rapidly varying, homoge-
neous, magnetic field. Besides a possible experimental application, we believe
that this study is interesting in itself. We examine the case of isolated rota-
tional driving, since the correct modeling of the driving mechanism is of great
importance for a theory of granular gases to describe realistic experimental
situations. In the future, translational and rotational driving can also be com-
bined, however, we focus only on the isolated cases here because this allows
at least partially for analytical solutions.

The paper is organized as follows. Section II introduces and describes the
model, and in section III we the mean field (MF) equations for the model
with multiplicative translational driving and homogeneous rotational driving
are provided. In section IV we present numerical simulations for translation-
ally driven smooth particles, and compare numerical results with analytical
predictions. Section V is devoted to the comparison of simulations of rotation-
ally driven particles with theory. A study of the velocity distributions, and in
particular of its high energy tail follows in section VI, and in section VII we
draw the conclusions of our study and outline future research directions.

As a remark to our nomenclature. When we write steady state in the
following, this has to be understood as non-equilibrium steady state (NESS)
[36]. Furthermore, the word equilibrium means a state of the system, where
energy-input and dissipation cancel each other so that energy-loss and energy-
input rates are in “equilibrium”; we do not have an equilibrium in the classical
sense here.

2 The model

In this section the numerical model is introduced and a few typical examples
of the simulation are presented in Fig. 1.

A system of N three-dimensional spheres with radius a and mass m is
considered, interacting via a hard-core potential and confined to a 2D plane of
linear extension L, with periodic boundary conditions. The degrees of freedom
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(a) (b)

(c) (d)

Fig. 1. Snapshots of the particle distribution in the steady state for a system of
N = 11025 smooth (rt = −1) particles, δ = 1, ν = 0.34, and Hdr = 1.0 s−1, with
r = 0.999 (a), r = 0.97 (b), and r = 0.6 (c). In panel (d), a snapshot of the particle
distribution in the steady state for a rotationally driven system of N = 11025
particles, ν = 0.34, rt = 1, and r = 0.1 is shown for J = 1.0 s−1.

are the positions ~ri(t), the translational velocities ~vi(t), and the rotational
velocities ~ωi(t) for each sphere numbered by i = 1, . . . , N .

2.1 Dissipation on collisions

The dissipation at a collision (in normal direction) is quantified by a con-
stant normal restitution r. From the momentum conservation law and the rule
~v ′(n)c = −r~v (n)c , where the prime denotes the value after the collision, one can

derive the change of linear momentum −(m/2)(1+ r)~v
(n)
c of particle i, which
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collides with particle j. The normal relative velocity is ~v
(n)
c = [(~vi − ~vj) · ~n]~n,

and the unit vector in normal direction is ~n = (~ri−~rj)/|~ri−~rj |. The dissipation
in tangential direction is quantified by the (constant) tangential restitution

rt, such that ~v ′(t)c = −rt~v (t)c .
The magnitude of dissipation is proportional to 1− r2 (normal) and 1− r2t

(tangential), while the strength of the coupling between rotational and trans-
lational motion is connected to 1+rt, where the (constant) normal restitution
r can vary between 1 (elastic) and 0 (inelastic) and the tangential restitution rt
varies between −1 (smooth) and +1 (rough), corresponding to zero and max-
imum coupling, respectively [6, 9, 22, 48]. The details of more realistic contact
models are discussed in other chapters in this book [31, 49].

2.2 Translational, multiplicative driving

The system is agitated each time interval ∆t = f−1dr , with a driving rate
fdr (in the experiment this is according to the frequency of the vibrating
bottom). For homogeneous driving, it is costumary to assume fdr À t−1n ,
where t−1n is the collision frequency of the granular gas. This, however, does
not correspond to the experiments, were fdr can be rather small [15, 19, 20].
In our simulations we will use driving frequencies around 100 s−1 comparable
to those used experimentally [15, 19]. We did numerical checks with strongly
different values of fdr and found a similar behavior of the system even for
driving frequencies lower than, but of the same order as t−1n , provided that a
stationary state is reached.

Every time interval ∆t, the velocity of particle i is changed:

v′xi (t) = vxi (t) + rxi |~vi(t)|δv1−δr

v′yi (t) = vyi (t) + ryi |~vi(t)|δv1−δr , (1)

where the driving occurs at time t and the prime on the left hand side in-
dicates the value after the driving event. vr is a reference velocity (in this
study we use vr = 1ms−1) which allows to define the dimensionless transla-

tional particle temperature T = E/(NTr), with E = (m/2)
∑N
i=1v

2
i and the

reference temperature Tr = mv2r . The variance of the uncorrelated Gaussian
random numbers rxi and ryi (with zero mean) can now be interpreted as a
dimensionless driving temperature Tdr.

The power δ is a parameter that takes into account the type of driving.
In the special case of δ = 0, one has random driving, as typically used in
the literature. The random numbers are dimensionless and vr provides the
dimension and scale of the driving velocity. For δ > 0, particles with large
velocities obtain overproportional energy input, whereas in the case δ < 0
slow particles obtain stronger energy input as compared to fast particles. The
former case resembles the experimental situation in so far that particles with
slow relative velocities presumably move in phase and thus obtain less energy
input than particles that move out of phase.
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The stochastic driving rule in Eq. (1) leads thus to an average rate of
change of temperature

∆T/∆t = HdrT
δ with Hdr = fdrTdr . (2)

In the next section we introduce this driving rate in the MF equation for the
evolution of T [6], but first the case of rotational driving is discussed.

2.3 Rotational driving

In the case of a rotational driving event, with frequency fdr, see above, the
translational velocity remains unchanged, but the angular velocity ωi of par-
ticle i is modified at each time of agitation t so that

ω′i(t) = ωi(t) + rωi ω0, (3)

where the prime on the left hand side indicates the value after the driving
event. Due to the two-dimensionality of the system, we apply the driving
force only to the z-direction, so that the scalar ω is to be understood as the
z-component of ~ω.

The reference angular velocity, ω0, allows to define the dimensionless trans-
lational and rotational particle temperatures

Ttr = Etr/(NT0) , (4)

and
Trot = 2Erot/(NT0) , (5)

with the translational energy Etr = (m/2)
∑N
i=1 ~v

2
i , the rotational energy

Erot = (qma2/2)
∑N
i=1 ~ω

2
i (with the moment of inertia prefactor q = 2/5 for

3D spheres), and the reference temperature T0 = mv20 , with v0 = aω0. The
variance of the uncorrelated Gaussian random numbers rωi (with zero mean)
can now be interpreted as a dimensionless driving temperature T ωdr [13]. The
stochastic driving leads thus to an average rate of change of temperature

∆Trot/∆t = Jdr , with Jdr = fdrT
ω
dr . (6)

In the case of driving of the translational degrees of freedom, the reference
temperature Tr will be used, whereas in the case of rotational driving, the
reference T0 will be used for scaling.

3 Mean field evolution equations

The starting point for our mean-field analysis is the theory of Huthmann and
Zippelius [9], for a freely cooling gas of infinitely rough particles, which was
recently complemented by event driven (ED) simulations in 2D and 3D [6]



Driven Granular Gases 293

and by studies of driven systems as well [12, 13]. The main outcome of this
approach is a set of coupled evolution equations for the translational and rota-
tional MF temperatures Ttr and Trot [6, 9], which can be extended to describe
arbitrary energy input (driving) [12, 13]. The equations were derived assuming
uncorrelated collisions and a Maxwellian velocity distribution, together with
the contact model assumptions as described above.

In the present study, given the random driving temperatures Tdr or Tωdr
and an energy input rate fdr, as defined above, one just has to add the positive
rate of change of translational energy Hdr and rotational energy Jdr to the
system of equations:

d

dt
Ttr(t) = G

[
−AT 3/2tr +BT

1/2
tr Trot

]
+HdrT

δ , (7)

d

dt
Trot(t) = 2G

[
BT

3/2
tr − CT

1/2
tr Trot

]
+ Jdr , (8)

with

G =
8νg(ν)

a
√
πm

, (9)

and the pair correlation function at contact g(ν) = (1 − 7ν/16)/(1 − ν)2

in the approximation proposed by Henderson and Verlet&Levesque [50, 51],
dependent only on the volume fraction of the granular gas ν = πa2N/V . The
constant coefficients in Eqs. (7) and (8) are

A = (1− r2)/4 + η(1− η)/2 ,
B = η2/(2q) , and (10)

C = η (1− η/q) /(2q) , (11)

with the abbreviation η = η(rt) = q(1 + rt)/(2q + 2), as derived and used in
Refs. [6, 9].

Typical steady-state configurations for translational driving for different r
values are shown in Fig. 1(a-c), and a snapshot for rotational driving is shown
in Fig. 1(d).

3.1 Smooth particles – no rotation

The time evolution equation of T = Ttr was derived for the case of a freely
cooling granular gas by means of a pseudo-Liouville operator formalism [6, 9].
We adopt the nomenclature and account for the driving by adding Eq. (2) to
the mean field (MF) equation for the translational degree of freedom

d

dt
T(t) = −GrAT 3/2 +HdrT

δ . (12)

For our case of a homogeneous monolayer of smooth spheres, one has Gr =
8an

√
πTr/mg(ν), and A = (1−r2)/4, with the number density n = N/V , the



294 S. Luding, R. Cafiero, and H. J. Herrmann

pair correlation function at contact g(ν), and the area fraction ν covered by
particles [6, 9, 12]. For δ = 0 the driving is homogeneous and independent of
the local granular temperature (or velocity), and one can identify our energy
input rate with the term mξ20 in Ref. [47]. In the case δ 6= 0 the driving is a
function of T. Imposing d

dtT(t) = 0 one gets from Eq. (12) the MF temperature
in the steady state

Tmf =

(
Hdr

GrA

)2/(3−2δ)
, (13)

the generalization of the Enskog equilibrium solution for a homogeneously
driven granular gas [47]. The scaling exponent of Tmf in Eq. (13) is 2/3 for
δ = 0, while it is 2 for δ = 1. For δ ≥ 3/2 the MF theory does not admit
a stable equilibrium state. If δ > 3/2 the driving rate grows faster than the
dissipation rate. δ = 3/2 is a limiting case for which the equilibrium state is
unstable against density fluctuations. A more detailed stability analysis is far
from the scope of this paper, since the typical perturbation around the steady
state often also relies on a Maxwellian velocity distribution, which we do not
find numerically.

The final approach to the steady state can be obtained by linearizing Eq.
(12) around Tmf , what leads to an exponentially fast approach to equilibrium

Tmf − T(t+ t0) = T(t0) exp{−[3At−1n + δHdr(T
mf)δ−1]t} , (14)

where t−1n = Gr
√
Tmf/2 is the Enskog collision frequency for elastic particles

with temperature Tmf , and T(t0) is the initial temperature at time t0. By
inserting Eq. (13) in the expression for t−1n , one can express the characteristic
relaxation time trelax = [. . .]−1 as a function of the model parameters, which
reduces for δ = 1 to t−1relax = (5/2)Hdr. Thus, for δ = 1 the characteristic time
trelax = [3At−1n + δHdr(T

mf)δ−1]−1 for the evolution of T towards its equilib-
rium value does not depend on A which contains all the information about
the inelasticity. This characteristics is confirmed by numerical simulations (see
Fig. 3 below).

3.2 Rough particles with translational driving

Setting to zero the temporal derivatives in Eqs. (7) and (8), one obtains the
steady state properties of the driven system with Jdr = 0 and, for the sake of
simplicity, δ = 0:

Tmfrot =

(
Hdr

GΓtr

)2/3
, and Tmftr = Tmfrot/R , (15)

with Γtr =
(
C/B3

)1/2 (
CA−B2

)
, and R = B/C.

Starting from this mean field result for both translational and rotational
degrees of freedom, an analysis similar to the one in the previous subsection is
possible. Since this did not lead to dramatically new insights, we do not discuss
it further. Note, however, that the relaxation times for the translational and
rotational degrees of freedom can be strongly different from each other [6].
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3.3 Rough particles with rotational driving

Setting to zero the temporal derivatives in Eqs. (7) and (8), one obtains the
steady state properties of the rotationally driven system with Hdr = 0:

Tmfrot =

(
Jdr
GΓrot

)2/3
, and Tmftr = Tmfrot/R , (16)

with Γrot = 2
(
B/A3

)1/2 (
CA−B2

)
, and R = A/B. A more detailed analysis

of this quasi steady state mean field solution, the approach to the steady state,
the parameter dependencies, and the velocity distributions is to be published
elsewhere.

4 Numerical simulations

Most of our event driven (ED) molecular dynamics simulations, see [6, 9, 12,
13] for details, with the driving specified above, are first equilibrated with-
out driving and with elastic interactions (r = 1, and rt = −1), until the
velocity distribution is close to a Maxwellian. Then, dissipation and driv-
ing are switched on. However, we checked that the steady state does not
depend on the initial conditions. The simulations are performed at a vol-
ume fraction ν = 0.34 with N = 1089 (fdr = 133 s−1) or N = 11025
(fdr = 67 s−1), and different values of r and rt. (In our simulations with
translational driving, we have chosen a = 10−3m and Hdr = 1.0 s−1 so that,
for example, Gr = 8νvr/

√
πag(ν) = 3.1 × 103 s−1, Tmf = 0.0358 and thus

t−1n = 2.9 × 102 s−1, if r = 0.90 is used.) With these typical values and a
homogeneous driving (δ = 0), the model of a driven granular gas is very close
to a homogeneous state; no clusters are observed and the velocity distribution
is almost Maxwellian. This is in contradiction to the experimental findings
[15, 19], and suggests that the correct representation of the driving in those
experiments is not the homogeneous white noise usually implemented.

4.1 Approach to steady state

In Figs. 2a-d we compare the solution of the MF equation (13) for a mul-
tiplicative driving with δ = 1 to numerical simulations with N = 11025,
ν = 0.34, and different r = 0.99, 0.995, 0.997, 0.998. As one can see, the
transient dynamics is quite well reproduced by the MF theory, in the limit
of low dissipation (quasi-elastic) considered in the simulations. In the steady
state, intermittent behavior is evidenced, however, we do not present a more
detailed statistical analysis here.
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Fig. 2. (a)-(d) Comparison between the solution of the MF equation (13) and
numerical simulations for N = 11025, ν = 0.34, δ = 1 and r = 0.99 (a), r = 0.995
(b), r = 0.997 (c) r = 0.998 (d).

4.2 Relaxation time

In Fig. 3 we check another prediction of the MF theory, i.e. the independence
of the characteristic time trelax of the near-to-equilibrium relaxation to the
steady state, from the parameter A = (1 − r2)/4 which contains inelasticity.
In the figure we compare the normalized MF temperature T(t)/Tmf and the
normalized numerical temperature T(t)/T eq computed for r = 0.99, 0.995,
0.997, 0.998. Because of noise in the initial conditions and dynamics with
respect to the MF steady state, the simulation time t has to be translated
by an offset time t0 (with a different value of t0 for each simulation) in order
to collapse the data. The fact that the numerical data collapse onto the MF
curve, supports the MF prediction of the independence of the characteristic
time from inelasticity in the case δ = 1.

4.3 Steady state temperature

In Fig. 4 we plot the ratio between the numerical results for long times T eq and
the theoretical equilibrium temperatures Tmf as function of r for different δ.
The agreement of the simulations with the MF prediction is optimal for r → 1.
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5 15 25 35 45
t−t0
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0.5

1

T
(t

)/
T

eq

MF theory
simulation, r=0.99
simulation, r=0.995
simulation, r=0.997
simulation, r=0.998

Fig. 3. Comparison between the approach to equilibrium of the normalized MF
Temperature T(t)/Tmf and the normalized numerical values T(t)/T eq for N =
11025, ν = 0.34, δ = 1 and r = 0.99, 0.995, 0.997, 0.998. The numerical data col-
lapse onto the MF curve, supporting the MF previsions of the independence of the
characteristic time trelax from inelasticity in the case δ = 1.

For δ < 0, the range of agreement extends to much smaller r values, i.e. to
stronger dissipation, as in the case of δ = 1 and even in the case δ = 0. One
could naively think that the more negative is δ the more favorized should be
the homogeneous state. In fact, this is not true. We have performed simulations
with δ = −1, and found that the driving is very singular in the low velocity
limit, since an excessive amount of energy is given to slow particles.
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Fig. 4. Rescaled translational temperature T eq/Tmf plotted against the restitution
coefficient r for N = 11025 and different values of δ as given in the insets. Note the
different axis scaling in (a) and (b).
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4.4 System size dependence

In Fig. 5, the ratio between equilibrium temperature from simulations and MF
temperature from the theory, T eq/Tmf , is plotted against r for two system sizes
N = 11025 and 5476. The deviation from unity, i.e. the discrepancy between
theoretical prediction and numerical simulation of the model, is somewhat
larger for the smaller system. For both system sizes, the quality of the theory
is perfect in the limit r → 1, within the statistical fluctuations.

0.2 0.4 0.6 0.8 1
r

0.9

1

1.1

1.2

1.3

T
eq

/ T
m

f
N=5476
N=11025

Fig. 5. Rescaled translational temperature T eq/Tmf plotted against the restitution
coefficient r for two values N = 11025, 5476, and δ = −0.25.

4.5 Steady state clustering

In Fig. 1(a-c) snapshots of the system’s steady state were shown for r = 0.999
(a) r = 0.97 (b) and r = 0.6 (c), for the more interesting case δ = 1, rather
than for the classical δ = 0. Different regimes are observed: A homogeneous
state exists for very weak dissipation (r = 0.999, Fig. 1(a), whereas dense,
persistent clusters with a crystalline structure, domain boundaries, and va-
cancies are found for higher dissipation (r = 0.97). The region between these
clusters appears rather homogeneous and dilute (gas-like), very similar to the
structures observed in experiments [15, 19]. For higher dissipation (r = 0.6)
the clusters appear less symmetric, are smaller, and evolve more dynamically.

Note that the clustering in the case δ = 1 is qualitatively different from the
case of homogeneous driving, and it appears already for quite high values of r
(see Fig. 1). Homogeneous driving, in fact, leads to transient clusters, i.e. they
appear and disappear continuously, while in the experiments [15, 19] and in the
case of multiplicative driving, the individual clusters are in equilibrium with
a gas phase and are stable for rather long times. Simulations with negative
δ, (we used δ = −0.5 and δ = −0.25) give a behavior qualitatively similar to
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the case of homogeneous driving (δ = 0). For δ = 1, the particles inside the
cluster, with rather small relative velocities, are much less agitated than the
particles in the surrounding gas phase, so that a cluster is stable. For δ ≤ 0,
the particles in the cluster are driven comparatively strong, what leads to less
stable, dynamic clusters.

5 Simulations with rotation

In Fig. 6 we present the stationary (steady-state) values of Trot, normalized
by the MF value Tmf

rot (r = 0), and of the ratios R = Trot/Ttr, as obtained
from numerical simulations and theory for a system of N = 11025 particles,
with volume fraction ν = 0.34, rt = 1, and r ranging from 0.99 to 10−4.
Surprisingly, the agreement with the MF prediction is very good, even for the
lowest value r = 10−4 of the normal restitution, which corresponds to very
strong dissipation, where the deviation from MF theory is of the order of only
10%.

To give an example, if the system is driven on the translational degrees
of freedom, the stationary temperatures show deviations of 30 − 40% from
MF predictions already for r = 0.6, see [12] and the previous section. The
snapshot in Fig. 1(d) shows the particle distribution for r = 0.1 and appears
spatially homogeneous – apart from small density fluctuations not quantified
here. Thus, rotational velocities are characterized by good homogenization
at low r; however, also the translational velocity distribution shows strong
deviations from a Maxwellian as will be quantified in the next section. This
deviation is due to the rather high dissipation. Numerical simulations with
r = 0.99 give a Maxwellian distribution for both rotational and translational
velocities.

In order to check the role of the tangential restitution, we show in Fig. 7
the stationary values of R with r = 0.1 and rt ∈ [−1, 1]. While for positive
rt there is still good agreement with MF theory, strong deviations appear as
rt → −1. Note that many realistic materials obey the relation rt ≈ 0.4 [52],
what renders our mean field approach still acceptable.

Our conclusions are that the driving on the rotational degrees of freedom
is able to keep the spatial homogeneity of the system up to very high dissi-
pation rates, for positive values of rt. This leads to a very good agreement
of the stationary temperatures with the MF predictions. There are two pos-
sible reasons for this. First, the driving acts on rotations. Then, it cannot
favorize collisions, since it does not increase the normal component of the
relative velocity of the colliding particles. Second, the increase of rotational
energy triggered by the driving leads to a shearing force between particles,
which reduces density fluctuations and should destroy the translational ve-
locity correlations - but astonishingly does not. When rt → −1, i.e. in the
smooth limit, the agreement with the MF is lost. To explain this result one
has to remember that 1+rt is a measure for the strength of the coupling. Not
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Fig. 6. Simulation (points) and theory (lines) for the parameters ν = 0.34, N =
11025, and rt = 1, plotted against r. (a) Stationary rotational temperature Trot,
normalized by the MF value Tmf

rot (r = 0) at r = 0. (b) Ratio of stationary rotational
and translational temperature R = Trot/Ttr.

enough rotational energy is transferred to the translational degree, so that
the randomization on collisions does not take place. Thus, it is not surprising
that MF is no more valid in this very singular limit. Snapshots of the particle
distribution for r = 0.1 and rt near to −1 (not displayed here) show indeed
stronger density fluctuations in the system as reported in Fig. 1(d).

6 Analytical study of the velocity distribution

In order to study analytically the shape of the velocity distribution function,
we extend the approach used by van Noije et al. [36, 37] in the special case
δ = 0 to arbitrary δ. The Enskog-Boltzmann equation for the freely cooling
gas of spheres, with the standard collision integral I(f, f), has to be extended
by the multiplicative driving term proportional to the particle velocity. The
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Enskog-Boltzmann equation, see Eq. (26) in [36, 37], corrected by a Fokker-
Planck diffusion term, is

∂

∂t
f(~v1, t) = g(ν)I(f, f) +

Hdr

2m

∂2

∂~v 21

[
v2δ1 f(~v1, t)

]
. (17)

Considering the stationary limit ∂f(~v1, t)/∂t = 0, and introducing a scaled
distribution function, f(~v) = (n/v20) f̃(c), with the dimensionless velocity c =
v/v0 and the mean thermal velocity v0, one obtains a dimensionless evolution
equation for the scaled f(~v), as in [36, 37]. Multiplied by cp1 and integrated
over ~c1, this leads to the following set of equations which couple the moment
〈cp−2+2δ〉 to the p-th moment µp of the collision term:

Hdr

2v30g(ν)na
p2
〈
cp−2+2δ

〉
= µp . (18)

In the special case δ = 1 and p = 2, one obtains (for dimensions d = 2)

H1−δ
dr

2v30g(ν)na
2〈c2〉 = µ2. (19)

and observing that 〈c2〉 = v20 we obtain the stationary value of the thermal
velocity in terms of µ2.

v0 = Hdr/(g(ν)µ2an). (20)

For δ 6= 1 and δ 6= 0 the MF thermal velocity can be obtained by assuming

〈c2δ〉 = [〈c2〉]δ = v2δ0 . (21)

This step is certainly valid for δ = 0 and δ = 1. For real values of δ, we see a
posteriori that the step leads to the correct MF theory (see previous section),
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but we have no clear justification for it. If this assumption, as it seems, turns
out to be true, it could probably have interesting implications.

For high c, the rescaled collision term can be approximated by

Ĩ(f̃ , f̃) ≈ −β1c1f̃(c1), (22)

with β1 = π1/2 in 2D and the equation for f(c) becomes

−β1cf̃(c) +
µ2
2d

(
d2

dc2
+
d− 1

c

d

dc

)
[c2δ f̃(c)] = 0 . (23)

Inserting a solution of the form f̃(c) ∝ exp(−Bcα), we obtain the large c
solution α = 3−2δ

2 and B = 2
3−2δ

√
2dβ1/µ2. In particular, for δ = 1 we find

α = 1/2 what corresponds to the exponent α = 0.49(3) we find in the low r
limit (see Fig. 8). Our explanation is that there is a crossover velocity c∗ above
which the tail with exponent 1/2 appears, which decreases as r decreases.
Such a tail is not observed numerically for high r values, since c∗ is outside
the velocity range we can examine within reasonable averaging time.

6.1 Translational driving with δ = 1

In the following, we focus on the steady state velocity distribution. Therefore,
we performed a large series of simulations for different values of r, with ν =
0.34, δ = 1, and both N = 1089 and N = 11025. For each value of r we
performed about 103 simulations for N = 1089 and about 200 simulations
for N = 11025, each with different initial configurations. The distribution of
velocity is symmetric and isotropic so that we present only the data for the x
component.

For data analysis, a Gaussian with the width obtained from the numerical
simulations can be superposed to the velocity distribution function f(vx) in
order to visualize the differences. Furthermore, as a more quantitative ap-
proach, a three parameter fit function fα(vx) = f0 exp(−B|vx − 〈vx〉|α) is
used to estimate the exponent α of the tail of the distribution. The results are
reported in Fig. 8, where a representative velocity distribution is shown in the
inset. The main outcome of our simulations is that the velocity distribution
is not Gaussian for high inelasticity and that the exponent α in the stretched
exponential depends on the normal restitution r. The non-Gaussian behavior
is limited to the tail for large r, but seems to extend over the whole range of
velocities if r is small enough.

In Fig. 8, the exponent α, for multiplicative driving with δ = 1, varies
continuously between 0.49(3) and 1.99(3) and, in particular, for N = 1089
and r = 0.9 we get α = 1.05(4), while for N = 11025 and r = 0.95 we observe
α = 1.02(3). Such an almost exponential velocity distribution has recently
been observed in experiments on a vibrated monolayer of spheres, together
with the cluster structure discussed above [15, 19, 20].
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Fig. 8. Plot of the exponent α as a function of r, for δ = 1 and system sizes
N = 1089 (solid triangles) and N = 11025 (open squares). In the inset, the dots
give the averaged, normalized velocity distribution from simulations with N = 1089
and r = 0.9, the solid line is a fit according to fα(vx) with f0 = 7.6, B = 18.9 and
α = 1.05(9), and the dashed line is a Gaussian with the same standard deviation as
the data.

6.2 Multiplicative driving with non-integer values of δ

In Fig. 9, for comparison with the results obtained with δ = 1 we show
the values of the exponent α, for multiplicative driving with δ = 0.5. The
exponent α, in this case, varies continuously between 1.08(3) and 1.99(3)
and to get exponents similar to those observed in experiments we have to
go down to r = 0.6, which is far too small than typical experimental values
(r ∼ 0.9). The value δ = 1 for multiplicative driving, seems then to best fit
the experimental findings.

Finally, in Fig. 10 the values of the exponent α, for multiplicative driving
with δ = −0.25 and −0.5 are plotted. We see that the velocity distribution
is very near to a Gaussian even for strong dissipation, as one would expect
from the good agreement of mean field theory and simulations even for small
r. For δ = −0.5 the distribution is Gaussian for all value of r.

Simulations with δ = −0.5, −0.25, and 0.5 (see Figs. 9 and 10) and small
r (r = 0.05 for δ = −0.5, −0.25 and r = 0.2 for δ = 0.5) give 1.99(3),
1.77(3), and 1.08(3), quite near to the values 2.0, 7/4, and 1, given by the
large c analysis. It interesting to note that for δ = −0.5 the theory predicts
α = 2.0 for all values of r, i.e. some Gaussian distribution. Our numerical
simulations support this result. This does not mean, however, that MF is
valid everywere. In fact, we observe both for δ = −0.5 and for δ = −0.25 that
the velocity distribution has an anomalously large variance for very low r, so
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N = 1089 (solid triangles) and N = 11025 (open squares). In the inset, the dots
give the averaged, normalized velocity distribution from simulations with N = 1089
and r = 0.6, the solid line is a fit according to fα(vx) with f0 = 3.1, B = 1.1 and
α = 1.12(5), and the dashed line is a Gaussian with the same standard deviation as
the data.

for δ = −0.5 the distribution is a Gaussian, in the sense that is it quadratic
in the velocity, but it is not a Maxwellian, since it has anomalously large
fluctuation, which do not correspond to the MF predictions. This explains
the small, but not negligible, deviations from MF the one observes for low
r in Fig. 4(a). Furthermore, we see from Fig. 4 that a discrepancy between
simulations and MF exists even for δ = −0.5. Our explanation is that the
driving with δ = −0.5 is such that it preserves the Gaussian shape of the
velocity distribution but not its parameters. The velocity fluctuations, i.e. the
temperature fluctuations, are anomalously large with respect to the mean.

The behavior at low and intermediate velocity and the effect of spatial
inhomogeneities are more difficult to analyze theoretically. In fact, one should
solve the Fokker-Planck equation with the full collision integral taking into
account the inhomogeneities – maybe an unachievable task. However the fol-
lowing heuristic argument can give an insight in the origin of the non-universal
behavior of the velocity distribution at intermediate velocities. Since the driv-
ing depends on the velocity, it acts on all the velocity scales, affecting the
shape of f(v) in a more complex way than in the case of homogeneous driv-
ing. Moreover, when inhomogeneities are present, the driving will depend on
the local thermal velocity v0(~x) and on the local density n(~x), while homoge-
neous driving is identical everywhere. Since inhomogeneities are generated by
the dissipation, a feed-back between driving and dissipation could be at the
origin of the non-universal behavior of f(v).
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6.3 Rotations and their distribution

In Fig. 11, we show the stationary rotational and translational velocity dis-
tributions for r = 0.1, with the other parameters as above. The rotational
velocity distribution is very near to a Maxwellian. A three parameter fit

f(x) = A exp(−B|(x− 〈x〉)/σ|α), where σ =
(
〈(x− 〈x〉)2〉

)1/2
, and x either

equals ω or v, is plotted as dashed line in Fig. 11. The parameters 〈ω〉, 〈v〉
and σ are taken from the simulations, and the fit gives α = 1.92(6) for ω,
while we obtain α = 1.41(6) for v. This last value is quite near to the value
3/2 obtained theoretically in Ref. [36]. The applicability of the approach of
[12, 36] to the present case, however, has to be discussed since originally a
translationally driven, granular gas of smooth particles was considered.
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Fig. 11. Steady state rotational (a) and translational (b) velocity distributions for
N = 11025, ν = 0.34, rt = 1.0 and r = 0.1. A power law fit (dashed line) gives
an exponent α = 1.92(6) for the rotational distribution and α = 1.41(6) for the
translational distribution (see text for details). For comparison, a Maxwellian (solid
line) is plotted in (b).

7 Summary and Conclusions

We presented a study of a granular gas subject to both translational driving
proportional to a power δ of the local velocity and to rotational driving (in-
dependent of the angular velocity). Numerical simulations and a theoretical
analysis of this model for positive values of δ reproduce qualitatively some
experimental findings of [15, 19], which could not be accounted for by homo-
geneous driving (δ = 0). Furthermore, numerical simulations and theory for
negative values of δ and for rotational driving show good homogeneization
of the system up to very low values of the restitution coefficient, r, i.e. very
strong dissipation.

A microscopic justification for the multiplicative driving is still lacking
and requires more detailed experiments or three-dimensional simulation [38]
studies. However, as suggested in [12], there is a possible experimental check
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of our ideas. From MF theory the scaling of the equilibrium temperature
of the vertically vibrated gas with the area fraction ν is given by Tmf ∝
[νg(ν)]−2/(3−2δ). Experimental measurement of the equilibrium temperature
of the vertically vibrated monolayer for different values of ν could allow to
estimate the value of δ and to verify the hypothesis of a multiplicative effective
driving.

Another result of the present study is that both the driving of the rota-
tional degrees of freedom and a multiplicative driving with negative δ are able
to keep the spatial homogeneity of the system up to very high dissipation rates
– at least for positive values of rt, i.e. strong coupling between rotational and
translational degrees of freedom. This leads to a very good agreement of the
stationary temperatures with the MF predictions.

Given the good agreement between MF prediction and simulations, this
indicates that deviations from a Maxwellian are not necessarily related to
clustering. Moreover, one can have a good agreement of the second moment
(the temperature) of the velocity distribution with MF theory together with
a non Maxwellian velocity distribution. This poses a theoretical challenge,
since some theories for translationally driven granular gases, relate clustering
to fat tails in the velocity distribution. The reason why clusters do not occur
in our situation, possibly due to the fact that vortices in their early stage are
destroyed by the rotational driving, is another issue for future studies.

A possible setup for an experiment with rotational driving is the follow-
ing: Each extremely rough granular sphere contains a small magnetic bar (to
reduce the effect of dipole-dipole interaction at collision). The plane on which
the spheres move should be extremely smooth, in order to avoid energy dis-
sipation. Then, spatially homogeneous magnetic pulses periodically spaced in
time can be applied in the horizontal directions. This would be the magnetic
analogon of the oscillating plane. If the magnetic field is really spatially homo-
geneous, the magnetic dipoles of the spheres will receive angular momentum
from the field, so only rotations are driven, and this angular momentum will be
“randomized” by the collisions, if they are frequent enough. To reach a steady-
state, it is necessary to give an initial translational velocity to the particles.
We are aware that such an experiment is extremely difficult to realize, but
a similar setup seems already operational in Dortmund [M. Markus, private
communication]. Another reason to look at rotational driving via magnetic
forces is the recent interest in electrostatically driven granular media [53] and
in magnetic particles with dipolar interactions [A. Kudrolli, private commu-
nication, D. Wolf, private communication].
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liantov [54], page 37.

33. Y. L. Duparcmeur, H. J. Herrmann, and J. P. Troadec. Spontaneous formation
of vortex in a system of self motorised particles. J. Phys. I France, 5:1119–1128,
1995.

34. A. Puglisi, V. Loreto, U. M. B. Marconi, and A. Vulpiani. Clustering and non-
gaussian behavior in granular matter. Phys. Rev. Lett., 81:3848, 1998.

35. C. Bizon, M. D. Shattuck, and J. B. Swift. Linear stability analysis of a vertically
oscillated granular layer. Phys. Rev. E, 60:7210–7216, 1999.

36. T. P. C. van Noije and M. H. Ernst. Velocity distributions in homogeneously
cooling and heated granular fluids. Granular Matter, 1(2):57–64, 1998.

37. T. P. C. van Noije and M. H. Ernst. Velocity distributions in homogeneous
granular fluids: the free and the heated case. cond-mat/9803042, 1998.

38. X. Nie, E. Ben-Naim, and S. Y. Chen. Dynamics of vibrated granular monolay-
ers. Europhys. Lett., 51(6):679–648, 2000. cond-mat/9910371.

39. I. Pagonabarraga and E. Trizac. Kinetics of fragmenting freely evolving granular
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