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Abstract Jamming/un-jamming, the transition be-

tween solid- and fluid-like behavior in granular matter,

is a ubiquitous phenomenon in need of a sound un-

derstanding. As argued here, in addition to the usual

un-jamming by vanishing pressure and decrease of den-

sity, there is also yield (plastic rearrangements and un-

jamming that occur) if, for given pressure, the shear

stress becomes too large or the density too small. Simi-

lar to the van der Waals transition between vapor and

water, or the critical current in superconductors, we be-

lieve that one mechanism causing yield is by the loss of

the energy’s convexity.

We focus on this mechanism in the context of a sim-

plified version of granular solid hydrodynamics (GSH).

Even though any other energy-based theory would dis-

play similar transitions, only if it would cover granu-

lar gas, fluid, and solid states simultaneously could it

follow the systems evolution into un-jammed, possibly

dynamic/collisional states – and back to elastically sta-

ble ones. We show how the un-jamming dynamics starts

off and unfolds, and propose an approximation scheme

to further simplify its account. It is then employed for

illustration, to qualitatively follow the system through

various deformation modes: transitions, yielding, un-

jamming and jamming, both analytically and numeri-

cally.

Keywords constitutive model · un-jamming · jam-

ming · concave elastic energy · GSH
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Dedication: SL Bob was not only an inspiring re-

searcher and colleague for me, he influenced my re-

search on granular matter so much! Also he became a

good friend over the 25 years I knew him. I will always

remember the great research visits to Duke, but also the

time we spent together on many international confer-

ences, like in Cargese or at several Powders & Grains

events. His passing away was a shock and leaves a big

gap for me.

Dedication: ML It was in the heydays of helium

physics when I, playing with some theories, first met

Bob, the conscientious and meticulous experimenter,

whose results are wise not to doubt, around which you

simply wrap your model. But grains were his real call-

ing. Many decades later, I am again busy fitting my pet

theory to his data, and that of his group – such as shear

jamming. Some things just never change.

1 Introduction

The macroscopic Navier-Stokes equations allow one

to describe Newtonian fluids with constant transport

coefficients (e.g., viscosity). In many non-Newtonian

systems, especially granular matter, the transport

coefficients depend on various state variables such as

the density and the granular temperature. This inter-

dependence and the presence of energy dissipation is at

the origin of many interesting phenomena: clustering,

shear-band formation, jamming/un-jamming, shear-

thickening or shear-jamming, plastic deformations,

related also to creep/relaxation, and many others; see

the chronologically sorted references (which are cited

below, where relevant): [1,2,3,4,5,6,7,8,9,10,11,12,

13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,

30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,
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47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,

64,65], of which a good fraction was inspired by Bob

Behringer.

Some open questions are: How can we understand

those phenomena that originate from the particle- or

meso-scale, which is intermediate between atoms and

the macroscopic, hydrodynamic scale? And how can we

formulate a theoretical framework that takes the place

of the Navier-Stokes equations?

A universal theory must involve all states granular

matter can take, i.e., granular gases, fluids, and solids,

as well as the transitions between those states. What are

the state variables needed for such a theory? And what

are the parameters (that we call transport coefficients)

and how do they depend on the state variables?

Main goal of this paper is to propose a minimalist

candidate for such an universal theory, able to capture

granular solid, fluid, and gas, as well as various modes

of transitions between these states. The model, remark-

ably, involves only four state variables, density, momen-

tum density (vector), elastic strain (tensor), and gran-

ular temperature. It is a boiled down, simplified case

of the more complete theory GSH [66,67,68,69,70,71].

For the sake of transparency and treatability, we also

reduce most transport coefficients and parameters to

constants – without loss of generality.

Each transport coefficient is related to the propa-

gation or evolution of one (or more) of these quanti-

ties that encompass the present state of the system.

For simple fluids [3,72], it is possible to bridge between

the (macroscopic) hydrodynamic and the (microscopic)

atomistic scales; as an example, the diffusion coefficient

quantifies mass-transport mediated by microscopic fluc-

tuations.

In the case of low density gases, the macroscopic

equations and the transport coefficients can be obtained

using the Boltzmann kinetic equation as a starting

point. For moderate densities, the Enskog equation pro-

vides a good, quite accurate description of dense gases

(or fluids) of hard atoms [3] or of particles including the

effects of dissipation [10], reaching out (empirically) to-

wards realistic systems [73], and beyond, see, e.g., [48,

60]. At the limit of granular fluids, other coefficients,

like the viscosity, actually are observed to diverge [48,

74,75] when the granular fluid becomes denser and ap-

proaches jamming to the state that we could call a gran-

ular solid, as related to the classical solid mechanics

[76]. One objective of this paper is to bring together fun-

damental theoretical concepts of continuum mechanics

[77,78,71,79,55] with observations made from particle

simulations for simple granular systems in the gas, fluid,

and solid states, including also the transitions between

those states [73,80,81,82,75,53].

1.1 About states of granular matter

When exposed to external stresses, grains are elastically

deformed at their contacts. In static situations, there is

only elastic energy; in flowing states, some of the elastic

energy is transferred to the kinetic one and back.1

The capability of granular solids to remain quies-

cent, in mechanical equilibrium, under a given finite

stress is precarious. If pressure or shear stress become

too large, the grains will, suddenly, start moving – with

a vanishing elastic stress. This qualitative change in

behavior is an unambiguous phase transition. We shall

refer to the region capable of maintaining the equilib-

rium of static grains as elastic, and its boundary (in

the space spanned by the state variables) as the yield

surface.

Granular systems will also un-jam for vanishing

pressure and a continuous reduction of density, though

we reserve the term yield for the (sudden) loss of elas-

tic stability: Grains un-jam in either case, they yield

only when the elastic stress, in particular the pressure,

is finite.

Starting from the elastic region, decompression (ten-

sion) reduces the density and the elastic deformations of

the grains – until the latter vanish and the system un-

jams. Decompressing further just reduces the density

accordingly. The system is now un-jammed in the sense

that one can change the density without any restoring

force, i.e., the elastic energy remains zero. In reverse,

compression only increases the density, as long as it is

smaller than the jamming density. At jamming both the

elastic deformations and the associated energy start to

increase with density.

In contrast, there is a discontinuity leaving the elas-

tic regime at finite values of elastic stress. It is a sudden

transition from quiescent, enduringly deformed grains

to moving ones oscillatorily deformed. This transition

needs to be explained, to have a model for. And it is

clear that the transition must be encoded in the elastic

1 Flowing states, as defined here, range from dilute granu-
lar gases via inertial, collisional granular fluids, to quasi-static
flows, granular solids, e.g., perturbed by elastic waves, exclud-
ing only static, elastic solids. Granular solids and quasi-static
flows show both solid and fluid features [52], in particular a
considerable permanent elastic energy. The ratio of kinetic
to potential, elastic energy in the system, K = Ekin/Epot,
is one way to characterize its state: gas (K � 1), dense col-
lisional flow (K ∼ 1), quasi-static flow (K � 1), granular
solid (K ≈ 0), static (K = 0) and the extreme, athermal case
(K ≡ 0, maintained at all times), as can be realized by en-
ergy minimization, e.g., see Ref. [82] and references therein.
The contribution of potential energy to the total energy is
thus 1/(1 + K), and the fraction of the total energy that is
exchanged between the kinetic and potential energy is then:
gas (wT /w = 2/(1 +K)� 1), collisional (wT /w ∼ 1), quasi-
static and solid (wT /w = 2K/(1 +K) ≈ 2K � 1).
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energy – the only quantity characterizing the quiescent

state – not in the (inactive) dynamics.

In the elastic region, grains appear solid when at

rest, but they will flow if subject to an imposed shear

rate, and appear liquid. This continuous change in ap-

pearance is well accounted for by any competent dy-

namic theory or rheology, it is not a transition 2 .

Moreover, flowing grains in the elastic region do sport

a macroscopic elastic shear stress, with an associated

elastic energy (even though granular contacts switch

continually), something no Newtonian liquid is capable

of. Also, the shear stress remains finite when the grains

stop flowing, which is not the case in Newtonian fluids.

So there are two different flowing states, either with

finite elastic stress/strain, or with vanishing ones, which

includes granular gases as accounted for by the kinetic

theory, see Ref. [73] and references therein. There is also

a transition between them. We take both transitions, ei-

ther leaving the quiescent state, or the flowing one, as

the same transition, with the same underlying physics.

(In fact, encoding the first transition in the elastic en-

ergy certainly affects the flowing state as well.)

We also assume that the elastic energy possesses

only a single mechanism for yield, irrespective whether

the pressure or the shear stress is too large, or the den-

sity too small, as traditionally encompassed by concepts

like plastic potentials, yield functions, or flow rules [40,

77,78], see Fig. 1 below and textbooks like Ref. [77].

1.2 Relation to other systems in physics

We do not think that the transition is due to spon-

taneously broken translational symmetry – the usual

mechanism giving rise to static shear stresses, as in any

fluid-solid transitions. The quick argument is: Consist-

ing of solid, grains already break translational symme-

try. More importantly, the loss of equilibrium and gran-

ular static is caused by the shear stress or pressure being

too strong. This is an indication of an over-tightening

phenomenon, of which the (pair-breaking) critical cur-

rent is a prime example.

If a superconductor conducts electricity without dis-

sipation, it is in a current-carrying equilibrium state.

If, however, the imposed current exceeds a maximal

value, the system leaves equilibrium and enters a dissi-

pative, resistive state. The superfluid velocity, vs ∼ ∇φ,

2 This is the macroscopic view on a representative volume
much larger than the single particles; whether plastic gran-
ular flow and elastic instability transitions are connected on
a local scale of a few grains is not excluded here, since there
is ample evidence of local instabilities, force-chain buckling,
trimer deformations, etc., see Refs. [4,83,35,84,58,85], on the
particle scale, which is not addressed in this paper.

given by the gradient of a quantum mechanical phase, is

the analogue of the strain. The dissipationless current,

js = ∂w/∂vs, given by the derivative of the energy with

respect to vs, is the analogue of the elastic stress. The

over-tightening transition in superconductivity is well

accounted for by an inflection point, at which the en-

ergy turns from stably convex to concave, see the classic

paper by Bardeen [86]. The close analogy between the

two systems is a good reason to employ the same ap-

proach here, to postulate that the surface of the cone

in Fig 1 is an inflection surface of the elastic energy.

1.3 About elastic granular matter

The granular solid state is contingent on granular mat-

ter capable of being elastic, for which there is am-

ple evidence, see e.g. Refs. [87,6,88,11,89,90,30,81,49]

and references therein. In addition to the material stiff-

ness, many other material properties (including cohe-

sion, friction, surface-roughness, particle-shape) deter-

mine the elastic response of granular matter. For soft

and stiff materials the deformations are, respectively,

considerable and slight, but never zero. Because of their

Hertz-like non-linear contacts, grains are infinitely soft

in the limit of vanishing contact area (deformation).

Therefore, at any given finite force, deformations are

always sufficiently large to display the full spectrum of

elastic behavior, including a considerable static shear

stress (enabling a tilted surface), and elastic waves.

Even the simplest model material, consisting of per-

fectly smooth spheres of isotropic, linearly elastic mate-

rial, displays non-linearity due to their Hertz-type con-

tacts, on-top of the contact network (fabric) and its

re-structuring. Only in computer simulations is it pos-

sible to remove the first and focus on the second, see

e.g. Ref. [53].

Elastic waves propagate in granular media, display-

ing various non-linear features, including anisotropy

and dispersion, see e.g. Ref. [91,92,93] and references

therein. The discreteness and disorder of granular me-

dia add various phenomena – already for tiny ampli-

tudes – such as dispersion, low-pass filtering and atten-

uation [94,93,95]. With increasing amplitudes, a wide

spectrum of further phenomena is unleashed, among

which the beginning of irreversibility and plasticity, see

Ref. [59] in this topical issue, and references therein,

and the loss of mechanical stability [96], what we call

“yield” in the following.
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1.4 Yield: About the limits of elasticity

To envision the yield surface, we consider the space

spanned by three parameters: pressure P , shear stress

σs, and void ratio e = (1− φ)/φ (where ρ = ρpφ, with

material density ρp and volume fraction φ), ignoring the

granular temperature (i.e., fluctuations of kinetic en-

ergy), as discussed in Ref. [97] and so many papers fol-

lowing. Based on the observation of the Coulomb yield

and the virgin consolidation line, we assume that the

yield surface is as rendered in Fig. 1. Elastic, jammed

states, maintained by deformed grains, are stable and

static only inside it 3.

The Coulomb yield line, see Fig. 1(b), can be

reached by increasing the shear stress at given confin-

ing pressure. When the shear stress exceeds a certain

level, the system yields, un-jams and becomes dynamic.

No static, stable elastic state exists above the Coulomb

yield line, as evidenced by a sand pile’s steepest slope.

It is imperative to realize that (what we call) the

Coulomb yield line is conceptually different from the

peak shear stress achieved during the approach to the

critical state at much larger strains. Coulomb yield is

the collapse of static states – such as when one slowly

tilts a plate carrying grains until they start to flow

(max. angle of stability). Its behavior is necessarily en-

coded in the system’s energy, because this phenomenon

does not at all involve the system’s dynamics. The crit-

ical state, including the peak shear stress – though re-

ferred to as “quasi-static” – is a fully dynamic and ir-

reversible effect. It is accounted for by the stationary

solution at given strain rates in GSH. The angle of re-

pose (always smaller than the max. angle of stability)

is in GSH given by the critical friction angle [70,71].

In the absence of shear stresses, the maximally sus-

tainable pressure depends on the void ratio, e, as ren-

dered in Fig. 1-(a). Starting from a given e, slowly in-

creasing P , the grain-structure will collapse and yield at

this pressure, to a smaller value of e, such that the final

state is stable, static, and below the curve of Fig. 1-(a).

This is because when applying a slowly increasing pres-

sure, the point of collapse is (ever so) slightly above the

curve; and the end point below it is typically also close.

This evolution resembles a stair-case, with the granular

medium increasing its density by hugging this curve,

which frequently referred to as the virgin/primary con-

solidation line, or simply the pressure yield line. The

line cuts the e-axis at the random loosest void ratio,

e0, above which no elastic stable states exists.

3 However, this does not exclude the possibility that there
are plastic deformations possible inside (in finite systems) as
evidenced from particle simulations, e.g., in Refs. [22,81].
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Fig. 1 Granular yield surface, or the jamming phase dia-
gram, for Tg = 0, as a function of the pressure P , shear
stress σs, and void ratio e, as rendered by an energy expres-
sion in [69]. Panel (c) is the 3D combination of (a) and (b);
with (b) depicting how the straight Coulomb yield line bends
over, depending on the void ratio e – a behavior usually ac-
counted for by cap models in elasto-plastic theories; while (a)
depicts the maximal void ratio e (equivalent to the density)
plotted against pressure P , or the so-called virgin consolida-
tion line (VCL). In panel (a), the dotted line is an empirical
relation, e = e1−e2 ln(P/P0), with P0 = 0.5 MPa, e1 = 0.679
and e2 = 0.097, approximating the VCL, but not valid for
P → 0. The thick solid line cuts the e-axis at e0, with the in-
tersection being the lowest possible, random loosest packing
value, see Ref. [69] for details, where also the thin solid line is
discussed. Thus e0 also defines the lowest possible jamming
volume fraction, φJ0 = 1/(1 + e0), see Ref. [53], with static,
elastic states possible only below the VCL, as will be shown
in Secs. 5 and 6.

Because of the pressure yield line, the Coulomb yield

curve cannot persist for arbitrarily large P at given

e. Rather, it bends over to form a “cap”, as rendered

in Fig. 1-(b), since an additional shear stress close to

the pressure yield line will also cause the packing to

collapse. (The shape of the cap depends on the inter-

play of isotropic and deviatoric deformations as well

as the probability for irreversible, possibly large-scale

re-structuring events of the micro-structure, or contact

network.)

Merging 1(a) and 1(b) yields the elastic region below

the yield surface, as given in Fig. 1-(c). Although the

e-axis, for P, σs = 0, see Fig.1, is also referred to as the
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Un-jamming: statics to dynamics 5

loci of (isotropic) un-jamming, the elastic stress goes

continuously to zero here, because the grains are suc-

cessively less deformed. There is, as already discussed

above, no phase transition or yield here.

Next, we summarize all different symbols and

nomenclatures, as reference.

1.5 Notation and symbols

This paper is a cooperation of co-authors, whose no-

tational baggage from past publications clash with one

another. In the dire need to compromise, we ask the

readers to suffer – with us – using varying symbols

and notations. Our state-variables are: density, ρ, mo-

mentum density, ρvi, granular temperature, Tg, and the

elastic strain, as summarized here.

1. The bulk density, ρ, is related to the volume frac-

tion, φ = ρ/ρp (with ρp the particles’ material

density), the porosity 1 − φ, and the void ratio

e = (1 − φ)/φ. (Later, we shall choose units such

that ρp = 1, so that volume fraction and bulk den-

sity are identical.)

2. The conserved momentum density gi defines the ve-

locity vi = gi/ρ. The symmetric part of the velocity

gradient is

vij := v(i,j) := 1
2 (∇ivj +∇jvi) = −ε̇ij = Dij

The total strain rate ε̇ij is positive for compression

and negative for tension.

The symbol vij is usual in condensed matter physics,

see [72,76,98]. It is also the one employed in most

previous GSH-publications. The notation Dij is

common in theoretical mechanics [78,55], while ε̇ij ,

or γ̇, are used, e.g., in soil mechanics and related

literature [77].

3. Subscripts, such as i,j,k,l, refer to components of

tensors in the usual index notation, with double-

indices implying summation, the comma indicating

a partial derivative, as in v(i,j); the superscript ∗

denotes the respective traceless (deviatoric) tensor.

Using the summation convention, the volumetric

strain-rate is abbreviated as: ε̇v = ε̇ll = −vll =

−Dll = −trD, where the last term is in symbolic

tensor notation. The deviatoric strain-rate is thus

ε̇∗ij = −v∗ij = −D∗ij , with the norm vs :=
√
v∗ijv

∗
ij =

γ̇ = Ds = (2JD2 )1/2, where JD2 is the second devia-

toric invariant, insensitive to the sign convention.

4. The elastic strain, εeij ≡ −uij , is the tensorial state

variable on which the elastic (potential) energy de-

pends 4. It is always well-defined and unique, in

contrast to the total or plastic strains, which are

not, and thus will not be used as state variables

for (constitutive) modeling. The respective strain

rates, however, are well-defined and thus are used.

The strain rate was already given (see item 2.),

ε̇ij = −vij , so that the plastic strain-rate is defined

as: ε̇pij = ε̇ij − d
dtε

e
ij (see also item 7.).

5. The isotropic elastic strain

∆ := −ull = εell = εev = ln (ρ/ρJ)

is positive for compression. It may be seen as the

true strain relative to a stress-free reference config-

uration – if ∆ > 0. Arriving at ∆ = 0, the system

un-jams and the jamming density ρJ = ρ is the ac-

tual one ρ. 5

6. The norm of the deviatoric elastic strain is, in ac-

cordance to the general scheme, us =
√
u∗iju

∗
ij =

(2Ju2 )1/2.

7. In general, we take ∂
∂t as the partial time deriva-

tive, and d
dt as the total one, including all convec-

tive terms. Hence, with the vorticity tensor given as

Ωij ≡ v[i,j] ≡ 1
2 (∇ivj −∇jvi), one has (as example)

the total time derivative of the elastic strain

d
dtε

e
ij =

(
∂
∂t + vk∇k

)
εeij +Ωikε

e
kj − εeikΩkj . (1)

Being off the focus here, the convective terms are

usually neglected, so that d
dt ≡

∂
∂t . The dots in ε̇pij

and ε̇ij are only a (convention preserving) indication

of rates, but do not represent the mathematical op-

eration above.

8. The total stress is not an independent state vari-

able, but rather given by the energy density and en-

tropy production, as discussed in the classical GSH

4 Note the different signs in the last two terms, i.e., the
isotropic elastic strain, ∆ = εev, is positive for compression,
whereas u∗ij is negative (if eigenvalues are considered).
5 Generalizing GSH, we allow negative elastic strains ∆ =

εev here, interpreting it as the separation distance between
particles – or their mean free path – in order to catch both
jammed and un-jammed situations. Note that the elastic en-
ergy of a negative ∆ is identically zero, and that a negative
∆ is not independent of the density ρ. Compressing from an
un-jammed state, the system jams at ∆ = 0, towards ∆ > 0
and ρ > ρJ . In isochoric situations (constant density), an
evolution of the state variable, ∆, the isotropic elastic strain,
implies an evolution of the (enslaved, dependent) jamming
density, ρJ = ρ exp(−∆), as proposed and studied in de-
tail in Ref. [53]. The physics clearly changes between posi-
tive (jammed) and negative (un-jammed) states, but for the
sake of brevity, below jamming, we limit ρJ ≥ ρJ0 and thus
∆(ρ) = ln(ρ/ρJ0), in cases where it would drop below its
absolute limit, ρJ0, which can be seen as the random loosest
packing density.
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6 S. Luding, Y. Jiang, and M. Liu

literature. In the simplified version, it may be writ-

ten as σij = πij + PT δij + σvisc.
ij , with elastic, ki-

netic/granular temperature and viscous contribu-

tions. The isotropic stress is referred to as pressure,

P = 1
3σkk, and the elastic pressure is P∆ = 1

3πkk,

for three dimensions D = 3.

9. The symbols B and G are used in the definition

of the isotropic and deviatoric (shear) elastic en-

ergy density. In previous GSH-papers [69,70,71], the

symbol A was used for G, the classical symbol, but

since A is referred to as the anisotropy modulus in

other studies, see Ref. [53], we stick to G here 6.

10. The granular temperature used in GSH is Tg, that

in kinetic theory and DEM is denoted as TG or TK .

Comparing GSH-formulas in the gas limit to that of

the kinetic theory [1,10,73,34], one should remem-

ber

T 2
g ∼ TG , (2)

but we will only use Tg here. (In this paper, Tg has

the units of velocity scaled by the particle diameter,

i.e., that of an inverse time, or a rate.) 7.

1.6 Overview

In what follows, we shall, in Sec. 2, consider the sig-

nificance of an inflection surface, of a convex-concave

transition in the energy, as relevant for classical sys-

tems, transiently elastic systems and granular matter.

We then present review of and a minimalist version of

GSH in Sec. 3, allowing for analytic solutions in Sec. 4,

and numeric calculations in Sec. 5, before we conclude

in Sec. 6.

6 Note that (calligraphic) symbols B 6= B, G 6= G, and
A, in general, are the (tangent) moduli, representing the sec-
ond derivatives of the elastic energy density with respect to
isotropic and deviatoric strain, or mixed, respectively; sym-
bols B∆, G∆ are again different and are the secant moduli;
for more details see subsection 3.2.1.
7 The two temperatures Tg and TG are different in the

following sense. In thermal equilibrium of a static granular
solid, Tg becomes equal to the true temperature, Tg = T . In
granular gases, if thermal equilibrium could ever be reached,
we have TG = T – a relevant condition if one starts to con-
sider the dissipation and heating of the grains. By ignoring
TG’s role as a “temperature” of the granular degrees of free-
dom, taking it only as a measure of the velocity fluctuation
squared, TG ∼ |δvi|2, one may go on using TG in denser en-
sembles. Conversely, one may use Tg in granular gases, taking
it as Tg ∼ |δvi|. However, while Tg = T does hold in granular
static equilibrium, TG = T can never be reached, as any fi-
nite TG, for finite sized particles, translated into temperature,
leads to values of order of the inner temperature of the sun.
Only in the atomic/molecular limit of “particles” one has TG
analogous to kBT . It is therefore more sensible to employ Tg
throughout.

2 Equilibrium conditions and dissipative terms

In this section, we first revisit the reason for thermo-

dynamic energy’s convexity, and derive the equilibrium

conditions for three systems: elastic, transiently elastic

and granular media. There is one equilibrium condition

for each state variable, that maximizes its contribution

to entropy or, equivalently, minimizes its contribution

to energy. Examples for equilibrium conditions are uni-

form temperatures and uniform stresses. As these con-

ditions represent extremal points, the energy needs to

be convex to be minimal, for the system to be stable.

Then we make the general point that every equilib-

rium condition, if not satisfied, is a dissipative channel

that gives rise to a negative/dissipative term in the evo-

lution equation of the associated state variable. As a

result, the state variable relaxes, towards satisfying the

condition. In a closed system, all variables will eventu-

ally satisfy all their respective conditions, which is the

state we called equilibrium.

If the energy is concave, equilibrium conditions rep-

resent maxima of the energy with respect to variation

of a state-variable. The dissipative terms will thus drive

the system away from equilibrium, producing, e.g., non-

uniformity in temperature and stress fields. When this

happens, what micro-mechanical mechanisms it origi-

nates from, is necessarily more specific. How the dy-

namics further evolves depends on the system one con-

siders. In the classical van der Waals theory of the gas-

liquid transition, droplet formation is the basic mech-

anism. In granular media, we propose the following

mechanism.

In the stable region, within the cone of Fig 1, the

dissipative term in the equation for the elastic strain

serves to maintain stress uniformity. It remains incon-

spicuous as long as one studies the evolution of uniform

stresses. Outside the yield surface, it forces the system

to leave stress uniformity. Non-uniform stresses acceler-

ate grains in varying directions, producing jiggling and

thus granular temperature which, in turn, allows the

stress to relax, pushing the system back into the con-

vex region.

This is what we believe happens in grains at yield

and beyond the transition. Setting up a dynamical

model for following the system through the transition

to different states is the main purpose of this paper.

2.1 Elasticity

Consider an elastic system characterized by two state

variables, the entropy density, s, and the elastic strain,
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Un-jamming: statics to dynamics 7

−εeij ≡ uij = 1
2 (∇iUj +∇jUi), (3)

with a thermodynamic energy density that is a function

of both, w = w(s, uij) [76].

A textbook proof of energy convexity considers only

the entropy as a variable, and involves an elastic system

connected to a heat bath. A temperature fluctuation

(associated to entropy fluctuations) vanishes only if the

energy is larger with it than without, which is shown

to imply convexity [99]

In a more general consideration, we start with the

assumption that the system is stable and has an equi-

librium for given values of s and uij . Since the elastic

stress, πij ≡ −∂w/∂uij is symmetric, πij = πji, we may

write the total differential of the energy density as:

dw = Tds− πijduij = Tds− πijd∇jUi , (4)

with temperature T = ∂w/∂s. We varied this energy

by (i) keeping
∫
sdV = const., or δ

∫
(w − TLs) dV = 0

with TL = const. a Lagrange parameter; (ii) forbidding

external work
∮
πijδUi dAj = 0; and (iii) using Gauss’

theorem 8, the result is

0 =

∫
[Tδs−πijδ∇jUi − TLδs] dV

=

∫
[(T − TL) δs+ (∇jπij) δUi] dV. (5)

With δs and δUi varying independently, and TL =

const., the equilibrium conditions may be written as

∇iT = 0, ∇jπij = 0. (6)

These are extremal conditions. They represent an en-

ergy minimum and stable equilibrium, only if deviations

from them yield an energy increase. Therefore, insert-

ing T = T eq + δT , πij = πeqij + δπij , with ∇iT eq = 0

and ∇jπeqij = 0, we require

δ2w = δTδs− δπijδuij > 0. (7)

Assuming first δuij ≡ 0, we may write δ2w = δTδs =

(∂T/∂s)(δs)2 > 0, implying

∂2w

∂s2
=
∂T

∂s
> 0,

8 According to Gauss’ theorem, the surface inte-
gral transforms as:

∮
πijδUi dAj =

∫
∇j(πijδUi)dV =∫

[(∇jπij)δUi + πijδ∇jUi] dV = 0. Using the definition of
the stress or traction vector, ti = πij n̂j , the surface inte-
gral can be rephrased,

∮
πijδUi dAj =

∮
tiδUi dA, allowing

to add tractions (or point/contact forces) at the surface of V ,
which would pop up on the right hand side of Eq. (5) but are
not used here.

or that the energy w is a convex function of s. As a

result, temperature fluctuations will diminish, and the

state characterized by a uniform temperature is a sta-

ble equilibrium. Conversely, if the energy is concave,

∂2w/∂s2 < 0, the condition ∇iT = 0 represents a max-

imum of energy, and the system is unstable. Any fluctu-

ations in entropy will move it away from uniform tem-

perature. In the case of the van der Waals transition

between gas and liquid, a uniform single-phase system

is moved to the coexistence of two phases, with different

entropy densities, but the same temperature.

Next, as used explicitly below, in subsection 3.2.1,

assuming δs ≡ 0, we order the six components of πij
and uij each as a 6-tuple vector, denoted by Greek let-

ters, and require

δ2w = −δπijδuij = −δπαδuα =
∂πα
∂uβ

δuαδuβ > 0. (8)

This implies that the 6x6 Hessian matrix

∂2we
∂uα∂uβ

= −∂πα
∂uβ

has only positive eigenvalues, (9)

implying that the energy w is a convex function of the

elastic strain uij . If there is at least one negative eigen-

value, the condition ∇jπij = 0 no longer represents a

stable state, because along the associated eigenvector,

the energy is a maximum. The system can and will

escape, initially by violating ∇jπij = 0, typically ren-

dering the stress non-uniform.

To obtain static elastic solutions, we solve∇iπij = 0

for given boundary conditions. This is equivalent to

looking for minima of the elastic energy. The solutions

are stable if the elastic energy is convex. They are un-

stable otherwise, and devoid of physical significance.

The more general consideration, including both δs

and δuij , leads to a 7x7 matrix that, for stable equilib-

ria, must possess seven positive eigenvalues.

A complete consideration for elasticity requires also

the inclusion of the density, ρ, and momentum den-

sity ρvi as the energy’s variables. This, being somewhat

more lengthy, would distract from the present concern.

The associated equilibrium conditions, with the grav-

itational acceleration, gi, and the chemical potential

given as µ = ∂w/∂ρ (as derived in Refs. [100,79]) are:

∇iµ = −gi, (10)

−ε̇ij ≡ vij ≡ 1
2 (∇ivj +∇jvi) = 0, (11)

∇iP = s∇iT + ρ∇iµ = −ρgi . (12)

The force equilibrium ∇iP = −ρgi is a direct result of

∇iT = 0 and ∇iµ = −gi. All three equations express

minimal energy, or maximal entropy.
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8 S. Luding, Y. Jiang, and M. Liu

If any of the equilibrium conditions are not satis-

fied, dissipative currents appear to counteract: 9 heat

diffusion ∼ ∇iT in the evolution equation for s, viscous

stress ∼ vij in the evolution equation for ρvi, and a

term ∼ ∇kπik, in the equation for the displacement,

∂
∂t
Ui − vi = −β∇kπik. (13)

(Analogous to heat-conductivity, β quantifies the

strength of the dissipation. Taking it as a scalar is

an approximation.) All these terms serve the sole pur-

pose of restoring the respective equilibrium conditions:

∇iT, vij ,∇kπik = 0.

The dissipative “displacement rate” ∼ ∇kπik, as a

necessary result of thermodynamics, has been first rec-

ognized in the classical 1972-paper: “The unified hydro-

dynamic theory for crystals, liquid crystals, and normal

fluids”, by Martin, Paraodi and Pershan [98]. It drives

the system, boundary conditions permitting, toward a

constant stress. If the stress is not constant, such as in

elastic waves, it contributes to wave damping. If one

concentrates on the evolution of constant stresses, this

term vanishes and is irrelevant. However, if the energy is

concave, this term wracks havoc by driving the system

away from uniform stresses. Writing it in the notation

of the 6x6 matrix, Eq. (9), as:

∇kπjk → ∇kπα = ∂πα/∂uβ∇kuβ , (14)

we see that, if the matrix ∂πα/∂uβ has a negative eigen-

value, the corresponding term will its flip sign. Instead

of keeping the stress uniform, it drives the stress to-

wards non-uniformity. This in turn accelerates mass

points, possibly leading to non-uniform velocities vi and

thus finite strain rates, vij ≡ −ε̇ij . Initially, the stress

perturbation will grow along the direction associated

with the negative eigenvalue, but for finite times, this

is by no means true, as the system will try to move to-

wards a stable equilibrium state, whatever that is. See

the next two sections what happens in granular matter.

Eq. (13), in term of the elastic strain, Eq. (3), reads

∂
∂tuij − vij ≡ −

∂
∂t
εeij + ε̇ij (15)

= −∇i[β∇kπjk]− (i↔ j) ≡ pij ,

where the double-arrow indicates the (non-symmetric)

counterpart of the preceding term. Eq. (15) seems to

suggest that the dissipative term pij is simply the plas-

tic strain rate, pij = ε̇pij , which apparently exists even

in solid if the stress is nonuniform. This would be a

9 Deviations from ∇iµ = −gi do not lead to a dissipa-
tive mass current, because the mass current is necessarily
given by the momentum density ρvi. The underlying reason
is Galilean invariance, implying the local conservation of the
booster [100,79].

confusing nomenclature, as none of the typically plas-

tic phenomena such as connected to concepts of plas-

tic potentials or flow functions (see Refs. [77,78]) are

addressed here, in the context of elasticity. The term

plastic strain rate is more appropriate for the dissipa-

tive contributions discussed in the next two sections, on

transient elasticity and granular media.

Note that heat diffusion and viscous stress exist in

any system, in which entropy and momentum are state

variables: liquids, solids, granular media, irrespective of

the microscopic interaction. Same holds for the dissipa-

tive term pij , which exists in any system in which the

elastic strain is a variable. This is the reason it also

exists in granular media. Generally speaking, every dis-

sipative term strives to satisfy its equilibrium condition

by changing the value or distribution of the associated

state variable. Equilibrium is achieved if all equilibrium

conditions are satisfied, as entropy is then maximal.

2.2 Transient elasticity and plasticity

There are many transiently elastic systems in nature. If

quickly deformed, they are elastic and capable of restor-

ing their original shape. But this does not happen if the

deformation is kept longer; then the deformation is irre-

versible, plastic. One example are polymeric melts that

consist of entangled elastic strands, which elastically de-

form, but disentangle if given enough time. This leads

to a reduction, and eventually vanishing, of the elastic

stress. For such systems, the equilibrium condition is:

πij = 0, or, equivalently uij = 0 . (16)

Consequently, the evolution equation (15) takes the

form:

ε̇pij = ∂
∂tuij − vij ≡ −

∂
∂t
εeij + ε̇ij = −λeuij , (17)

with the plastic strain rate now a relaxation term,

with a positive coefficient λe. Employing essentially this

equation, including the convective terms of Eq. (1), a

wide range of polymer behavior including shear thin-

ning/thickening and the Weissenberg or rod-climbing

effect were reproduced [101,102].

It is noteworthy that the plastic strain rate in the

form ε̇pij = −λeuij is a diagonal Onsager term, hence

off-diagonal ones such as

ε̇pij = ∂
∂tuij − vij = −λTguij − pijklvkl (18)

are also permitted. They will turn out to be useful in

granular physics.

The close link, even identity, between transient elas-

ticity and strain relaxation on one hand, and plastic

behavior of irreversible shape change on the other, is
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Un-jamming: statics to dynamics 9

a useful insight. Similarly useful is the understanding

of the difference between elasticity and transient elas-

ticity. For the latter to be in equilibrium, the elastic

stress has to vanish, while a constant stress suffices for

the former. For verbal clarity, we denote

elastic equilibrium : ∇iπij = 0,

“plastic equilibrium” : uij ≡ −εeij = 0 , (19)

where “plastic equilibrium” is short for “transiently

elastic, long-term equilibrium”.

There is a further subtlety that we must address

here. If the polymer energy depends on both the den-

sity and the elastic strain, there are two contributions

in the stress: the pressure as given by Eq. (12) and the

elastic stress. Then the system may possess an equilib-

rium pressure even when Eq. (19) holds. However, if the

density is not an independent state variable, implying

P ≡ 0, an equilibrium pressure needs a finite ∆ ≡ −ull
to be sustained, and uij = 0 cannot be the equilibrium

condition. Rather, it is given as

u∗ij ≡ −εe∗ij = 0, implying ε̇pij = −λeu∗ij , (20)

the vanishing of the deviatoric part, while the trace ∆,

not independent from the density, simply follows the

dynamics of the density. It does not relax.

Note that the relaxation time of ∆ and us need not

be the same. If that of ∆ is especially long, it may be

neglected for certain phenomena, for which the dynam-

ics is governed by ε̇pij = −λeu∗ij alone.

When the system is crossing an inflection surface,

the term −λeuij , in Eq. (17) is not affected, and con-

tinues to push the elastic strain toward uij = 0.

2.3 Granular matter

GSH was set up in compliance with thermodynamics

and conservation laws. Here, we discuss its structural

part, necessary if one is to be consistent with the general

principles of physics. In Sec. 3, a reduced complete ver-

sion of GSH, including only some constitutive choices,

is presented, which will be employed later to study the

jamming and un-jamming dynamics.

Two basic pieces of physics characterize granular

media: (1) They have two entropies: sg for the granular

degrees of freedom and s for the much more numer-

ous microscopic ones. (2) Depending on circumstances,

granular media may be elastic or transiently elastic.

Both elastic and plastic equilibria of Eqs. (19) are there-

fore relevant. However, note that the equilibrium (limit)

state is not necessarily ever reached, neither under per-

manent deformation, nor under free relaxation. In the

former case, the system is permanently pulled away

from the equilibrium (steady state is not equal to equi-

librium), while in the latter, if Tg relaxes fast enough,

the equilibrium cannot be realized by the other state

variables either.

Including sg as an extra state-variable, with Tg ≡
∂w/∂sg, the equilibrium condition is T = Tg, obtained

by maximizing
∫

(s + sg)dV ≈
∫
sdV , where sg � s

may be ignored. The equilibrium condition implies that

all degrees of freedom, microscopic as well as granular

ones, will eventually equilibrate with one another. Fur-

thermore, since for particles of grain size, one typically

has Tg � T by many orders of magnitude, ∼ 1010, we

may set the equilibrium granular temperature to zero,

Tg = T ≈ 0 . (21)

In analogy to the relaxation terms discussed above, the

evolution equation for sg must therefore possess a re-

laxation term ∼ Tg, pushing sg towards sg ∝ Tg = 0.

This dissipation/relaxation takes place due to colli-

sions, with rate ∼ Tg, or due to elasticity, with rate

∼ Te, or both. In addition, analogous to the viscous

heating term in the hydrodynamic theory of Newto-

nian fluids, which transfers kinetic energy into heat, via

ηv∗ijv
∗
ij ≡ ηv2s → T ∂

∂ts, there is a term that transfers

kinetic energy into “granular heat”, ηgv
2
s → Tg

∂
∂tsg.

Therefore, assuming ∇iTg = 0, and ignoring gradients,

the evolution equation for granular energy reads

Tg
d
dtsg = −γT 2

g + ηgv
2
s , (22)

with coefficient γ = γ(Tg) dependent on Tg, and the

compressional viscosity neglected, like convective and

diffusive terms, for the sake of brevity. To be used in the

following, after some re-writing 10 the evolution equa-

tion for granular temperature reads:

bρ ∂∂tTg = −γ1T ∗g Tg + η1v
2
s . (23)

The effective temperature T ∗g = Tg + Te is discussed in

more detail below in Secs. 3.1 and 4.

For given deviatoric (shear) strain rate, vs = |v∗ij | =
| − ε̇∗ij |, the steady state solution is given and discussed

in section 4.5 with the limit case for γ0 � γ1Tg, or

Te � Tg:

Tg = T (ss)
g = vs

√
ηg
γ

= vs

√
η1
γ1
,

10 Preempting the discussion in Sec. 3, to write down the
final evolution equation for Tg, for reasons detailed in [69,70,
71], and partially in Sec. 3, we use:

sg = ρbTg, ηg = η1Tg, γ = γ0 + γ1Tg, or, equivalently

γ = γ1(Tg + γ0/γ1) ≡ γ1(Tg + Te) ≡ γ1T∗g ,

in order to work with parameters that do not depend on Tg
anymore.
When inserting ρb into Eq. (22) for energy, the time derivative
of this variable is neglected.
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10 S. Luding, Y. Jiang, and M. Liu

a result known to hold in granular gases 11, up to mod-

erate densities [10,73]. In this case, the system is in the

rate-independent elasto-plastic regime, where the gran-

ular temperature is proportional to the strain rate. For

diminishing Tg � Te and γ0 � γ1Tg, we have an expo-

nential and much faster decay, ∂
∂tTg ∝ −Tg, however,

also here the steady state granular temperature persists

and remains relevant, as T
(e)
g ≈ (T

(ss)
g )2/Te, see section

4.5.

Returning to the elastic strain uij , we note that

granular media are elastic for quiescent grains, Tg = 0,

as slopes of sand-piles demonstrate. If the particles “jig-

gle”, Tg 6= 0, the elastic shear strain and stress will

diminish, and eventually vanish: Tapping a vessel of

grains (with a finite number) long (and strong) enough

results in a flattened granular surface, like in transient

elasticity. Combining both conditions of Eqs. (19), the

evolution equation for the elastic strain contains both

types of plastic strain rates, see also Eqs. (15,18),

ε̇pij = ∂
∂tuij − vij = −λTguij − pijklvkl + pij , (24)

where the first term on the right, pushing uij towards

the plastic minimum uij = 0, operates only for Tg 6= 0.

The second term represents strain- or stress-driven

plastic deformations – occuring well within the macro-

scopic, elastically stable regime, involving possibly lo-

cal events, on the particle scale – and will be split up

into an isotropic (volumetric) and a deviatoric (shear)

contribution, pv and ps, with the respective plastic de-

formation probabilities, see subsection 4.1. The micro-

mechanical origins of these probabilities, are not ad-

dressed here, rather see Refs. [22,53,59,84,103,85] and

references therein, where it is shown that (finite) granu-

lar systems can remain elastic for tiny strain, then have

localized plastic events at larger strain, with probability

increasing, before (global) yield takes place with partic-

ular probabilities as cast into a meso-scale, stochastic

master-equation approach, in Refs. [104,105].

The third term depends in particular on the gra-

dient of the elastic stress, see below and Refs. [69,70].

This plastic strain rate, pij , pushes uij towards the elas-

tic equilibrium of uniform stress in the energetically

convex region, and away from it in the concave one,

since the gradient of stress changes sign at the transi-

tion.

2.3.1 Dynamics at constant strain or stress

Equation (24), in addition to the dynamics of Tg, Eq.

(22), render granular behavior rather more complex

than the superposition of behavior from polymers and

11 Note the difference in nomenclature: TG ∼ T 2
g ∝ v2s , see

the text around Eq. (2).

elastic media. Imposing either a constant shear rate or

a constant elastic stress in a polymer melt, Eq. (17),

the steady state result is the same, vs = λeus, in either

case. This symmetry does not hold for granular media

– not even for the simplest case with Te = 0, and p = 0.

This symmetry does not hold in grains. A con-

stant shear rate vs, with the stationary solution Tg =

vs
√
ηg/γ (for Te = 0) inserted into Eq. (24), ignoring

the p-terms on the r.h.s., leads to a rate-independent

evolution equation for uij that possesses the hypoplas-

tic structure [106]. It accounts well for elasto-plastic

motion [107], including the approach to the critical

state and shear jamming [108,109,70,71].

On the other hand, holding the stress/elastic strain

constant, and inserting the stationary limit of Eq. (24),

vs = λTgus, into Eq. (22), yields the relaxation rate:

−γc = (−γ + ηgλ
2u2s), negative if us < ucs =

√
γ/ηg/λ,

we find Tg to relax, pushing the system into a static

state. The relaxation rate vanishes (i.e., the relax-

ation time diverges) as the stress (or elastic strain) ap-

proaches the critical value and, with a further increase,

the rate flips sign to positive above the critical value,

see [70,71], creating an ever increasing strain rate vs.

Accordingly, switching from an imposed shear rate (say

during an approach to the critical state) to an imposed

sub-critical stress will render the system static due to

the relaxation of Tg, whereas a critical or super-critical

stress will create Tg and thus accelerate the flow, since

vs ∝ Tg.

2.3.2 Dynamics in the concave region

Within the cone of Fig. 1, in the energetically con-

vex region, as long as one considers only the evolu-

tion of uniform stresses, the elastic dissipative term

pij = ∇i[β∇kπjk] + (i ↔ j) remains zero. Serving to

maintain stress uniformity, it may simply be neglected.

Yet this term wrecks havoc if the energy is concave.

Perturbing the system by a (local) stress, δπij , from

a static situation, in the convex, stable region, results in

a relaxation of the elastic strain, due to the sign of pij .

In contrast, in the concave region, because of Eq. (14),

this relaxation turns into an explosion, and drives the

stress towards further, stronger non-uniformity.

This accelerates the grains, locally, leading to

nonuniform velocities vi and finite strain rates, vij ≡
−ε̇ij 6= 0. The latter serve as a source for granular

heat, see Eq. (22), and create considerable Tg, which

activates the first plastic term of Eq. (24), which relaxes

the stress back into the stable, convex region. Hence, al-

though the imposed perturbation creates a local stress

response along the direction associated with the nega-

tive eigenvalue initially, it is the stress relaxation back
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Un-jamming: statics to dynamics 11

to the convex region that dominates for finite times. If

not strong/fast enough, the system will yield or un-jam

dynamically. This is one way how GSH accounts for

stability and un-jamming dynamics by instability, both

mediated by the granular temperature

Unfortunately, including the elastic dissipative

terms renders Eq. (24) an unstable partial differential

equation, the solution of which requires increased tech-

nical efforts. This is undesirable in a first, qualitative

study, and an approximation scheme may prove useful.

We suggest to go on neglecting the elastic dissipative

terms, and to add a stress term to Eq. (22), such that

Tg is directly produced by an elastic stress.

The balance equations for s, sg, for the energetically

convex region, are given as

T ∂
∂ts =R = γT 2

g + βijklπijπkl + · · · , (25)

Tg
∂
∂tsg =Rg = −γT 2

g + ηgvijvij . (26)

The equally permissible alternative was not adopted,

T ∂
∂ts = γT 2

g + · · · , (27)

Tg
∂
∂tsg = −γT 2

g + ηgvijvij + β̄ijklπijπkl, (28)

because any static πij would then produce Tg, leading

to its decay. This is not observed. Yet the reasoning is

not valid outside the cone, where static stresses are not

stable. Hence we combine Eq. (25) with (28), noting

β̄ijkl = 0 inside, and βijkl = 0 outside, (29)

the cone. The explicit form for βijkl, β̄ijkl is a constitu-

tive choice that will be given in the next section. In the

notation of Eq(23), we have

bρ ∂∂tTg = −γ1T ∗g Tg + η1v
2
s + β̄ijklπijπkl. (30)

3 Granular solid hydrodynamics (GSH)

GSH is a continuum mechanical theory for granular me-

dia, set up in compliance with thermodynamics and

conservation laws. GSH possesses the state variables:

(i) density, ρ, or volume fraction, φ = ρ/ρp,

(ii) momentum density, ρvi = 0, neglected here,

(iii) elastic isotropic strain ∆ = −ull = εev = ln (ρ/ρJ),

(iv) elastic deviatoric (shear) strain us =
√

2Ju2 ,

(v) granular temperature TG ∝ T 2
g , and

(vi) temperature T , not used in the following,

with conventions and nomenclature given in Sec. 1.5.

The question is now if it is possible to catch the com-

plex phenomenology at yielding, jamming, un-jamming,

elasticity and loss of elasticity with a simple model that

only knows about four state variables: ρ, ∆, us, and Tg.

For the sake of completeness, we first recollect the

more complex, more complete classical GSH, as pub-

lished in the previous years, in Sec. 3.1, before we re-

duce GSH to an over-simplified minimal model in Sec.

3.2, which will allow for a better understanding of the

structure of GSH. Note that the nomenclature of clas-

sical GSH is applied in Sec. 3.1, whereas we switch to

the positive compressive strain convention and nomen-

clature in Sec. 3.2.

3.1 About classical GSH

The complete equations of GSH may be found in

Refs. [69,70], a simplified version in Ref. [71], from

which we boil down to a minimalistic version in sub-

section 3.2, ignoring not only momentum density and

gradients, but also the density dependence of most

transport coefficients and parameters, since those rep-

resent constitutive assumptions, rather than basic the-

ory. First, we discuss a few complications in the classi-

cal GSH nomenclature, that are not necessary for our

present focus, but will become important if a more

quantitative model is the goal, so that we keep them

as reference for the sake of completeness.

3.1.1 The classical GSH constitutive model

The energy density has a thermal and an elastic part:

w = wT + w∆, wT = s2g/(2ρb) ,

w∆ =
√
∆[2B(ρ)∆2/5 +G(ρ)u2s], B,G > 0 , (31)

with P∆ ≡ π``/3. This represents the first constitutive

assumption at the core of classical GSH. In the follow-

ing, we drop the ρ-dependence of B and G for conve-

nience. (In previous GSH-publications, G was denoted

as A.). The elastic stresses are defined as the derivatives

of w with respect to the elastic strain uij :

πij ≡ −∂w/∂uij = P∆δij − πsu∗ij/us , (32)

P∆ =
√
∆(B∆+Gu2s/2∆), πs = 2G

√
∆us , (33)

4P∆/πs = 2(B/G)(∆/us) + us/∆ , (34)

which represents no constitutive assumption, but is just

a consequence of Eq. (31). Like the elastic stress, being

conjugate to the elastic strain, the granular tempera-

ture is conjugate to the granular entropy, which allows

to define the thermal pressure, PT , as the derivative

of the thermal free energy with respect to volume, at

constant Tg, as:

Tg ≡ ∂wT /∂sg = sg/ρb , → wT = ρbT 2
g /2 , (35)

PT ≡ −
∂[(wT − Tgsg)/ρ]

∂[1/ρ]

∣∣∣∣
Tg

= −
ρ2T 2

g

2

∂b

∂ρ
, (36)
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12 S. Luding, Y. Jiang, and M. Liu

where we note that the granular entropy is not needed,

replaced by the density dependent function b = b(ρ).

The elastic energy w∆ has been tested for: (1) static

stress distributions in silos, sand piles, point loads on a

granular sheet [110]; (2) incremental stress-strain rela-

tions from varying static stresses [111]; (3) propagation

of elastic waves at varying stresses [112].

As already observed in Ref. [69], w∆ is convex if:

us/∆ ≤
√

2B/G =: ge, or (37)

πs ≤ P∆
√

2G/B = 2/ge .

Because the macroscopic friction, or yield limit, µ0 :=√
2G/B, is observed to be not (or only weakly) density

dependent, at least for cohesionless granular media, the

next constitutive model assumption used is: G/B =

const., and

B = B0 [(ρ− ρ̄)/(ρcp − ρ)]
0.15

, (38)

where B0 > 0 is a constant, and ρ̄ ≡ 1
9 (20ρ`p − 11ρcp),

with ρcp− ρ`p ≈ ρ`p− ρ̄. (ρcp is the random-close pack-

ing density, the highest one at which grains may re-

main uncompressed, ρ`p is the random-loose packing

density, the lowest one at which grains may stay static.)

The expression for B was empirically constructed to

account for three granular characteristics: (1) It pro-

vides concavity, for any density smaller than ρ < ρ`p,

and convexity between ρ`p and ρcp, ensuring the sta-

bility of elastic solutions in this region. (2) The den-

sity dependence of sound velocities, c (as measured

by Hardin and Richart [113]), is well approximated by

c =
√
B/ρ ≈

√
B∆1/2/ρ. (3) The slow divergence at

ρcp mimicks the fact that the system is much stiffer for
ρ = ρcp than at loose packing B(ρ = ρ`p). Comparing

these constitutive assumptions for G and B with par-

ticle simulations is subject of ongoing work, but goes

beyond the scope of this paper 12.

Finally, the function b was chosen as:

b = b1/ρ+ b0 [1− ρ/ρcp]a , (39)

with another small power law, a ≈ 0.1, such that PT ≈
wT for ρ→ 0, and PT ≈ wT /(ρcp−ρ) for ρ→ ρcp, limits

which reduces b to first or second term, respectively,

12 To account for the un-jamming transition at the random
loose density, ρ`p, a density dependence of B was seen as
necessary in the classical GSH literature. To account for the
virgin consolidation curve, higher order elastic strain terms in
the elastic energy were proposed, with density dependent co-
efficients, see [69,114]. The Coulomb yield could be accounted
for with no density dependence, as in Eq. (37). Since our il-
lustrative examples are focused on the latter, hence B is set
to constant in Secs. 5 and 6. A quantitative comparison with
particle simulation data will show which assumptions or terms
are really needed.

for details see Refs. [73,115]. The thermal pressure is

explicitly given by:

PT =
ρ2T 2

g

2

[
b1
ρ2

+
ab0

ρcp(1− ρ/ρcp)1−a

]
=: ρgpT

2
g , (40)

which defines the abbreviation gp = (ρ/2)∂b/∂ρ, that

also is set to constant in the following sections, which is

only a good approximation for low densities, i.e., gp ≈
b1/2 ≈ 1.

3.1.2 The evolution equations

For completeness, we specify the evolution equations in

the classical GSH nomenclature, where we note the sign

conventions ∆ = εev, uij = −εeij and vij = −ε̇ij , see Sec.

1.5. For the elastic strain one has:

∂
∂tu
∗
ij = v∗ij − λTgu∗ij , (41)

∂
∂t∆+ v`` = α1u

∗
ijv
∗
ij − λ1Tg∆, (42)

with α1 as an off-diagonal Onsager coefficient, account-

ing for the Reynolds dilatancy. Mass and momentum

conservation read:

∂
∂tρ+∇i(ρvi) = 0, (43)

∂
∂t (ρvi) +∇i(σij + ρvivj) = −ρgi, (44)

with the total stress: σij = πij + PT δij − η1Tgv∗ij , with

viscosity, ηg = η1Tg.

Finally, the evolution equation for Tg, with b as

given by Eq. (35) and T ∗g ≡ Tg + γ0/γ1 =: Tg + Te,

is given by Eqs. (30).

The coefficients α1, γ0, γ1, η1, and ρb are all func-

tions of the state variables, especially the density, which

would require many more constitutive assumptions, so

that they are over-simplified and taken as constants in

the following.

3.2 Minimal GSH type model for a material point

At the core of GSH, assuming a homogeneous represen-

tative volume, without convection, ρvi = 0 and gradi-

ents, ∇i(...) = 0, one has a postulated energy density,

w = we + wT , (45)

with an elastic and a dynamic, kinetic/granular con-

tribution. The total stress is thus not an independent

(state) variable, but can be abbreviated as

σij = πij + PT δij + σvisc.
ij (46)

=: P∆δij + π∗ij + ρT 2
g gpδij + χε̇vδij + ηε̇∗ij ,
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Un-jamming: statics to dynamics 13

where the five terms represent isotropic and deviatoric

elastic stresses, kinetic/granular stress (with an over-

simplified gp = 1, which should depend – at least –

on density, see Eq. (40)), and isotropic and deviatoric

viscous stresses, with viscosities χ = ηv and η = ηs,

respectively.

3.2.1 The elastic stress

One can derive the elastic stress πij = ∂w/∂uij , from

the simplest (non-linear) elastic energy density:

we =
√
∆
(
(2/5)B∆2 +Gu2s

)
if ∆ > 0 , (47)

and we = 0 if ∆ ≤ 0, with u2s = εe∗ij ε
e∗
ij , and B, G carry-

ing the units of stress, while their possible dependencies

on other state-variables (like density) are ignored in the

rest of this study, for the sake of simplicity, without loss

of generality. The isotropic elastic pressure (defined in

D dimensions) is:

P∆ =
πll
D

=
∂we
∂εev

= B∆3/2 +
1

2
Gu2s∆

−1/2 =: B∆∆ ,

and the deviatoric elastic stress is:

π∗ij :=
∂we
∂εe∗ij

= 2G∆1/2εe∗ij =: G∆εe∗ij ,

implicitly defining the (∆-dependent) bulk and shear

secant moduli B∆ and G∆, which mimick a linear ∆-

or εe∗ij -dependence of isotropic or deviatoric stress, re-

spectively, not to be confused with the (true) tangent

moduli B, G andA. The notation details and alternative

definitions of the state variables εev = ∆ and εe∗ij = −u∗ij
are given in Sec. 1.5.

3.2.2 Simplest GSH equations and discussion

For a material point, in absence of gradients, using ∂t ∼
∂/∂t ∼ d/dt, the evolution of density with strain rate:

∂tρ = ρε̇v (48)

has no free parameters. Here, positive strain-rate corre-

sponds to compression and negative to extension, i.e.,

density increase and decrease, respectively; density can

also be seen as the volume fraction, related to each other

by the (constant) material density, i.e., φ = ρ/ρp. Later,

units will be chosen, such that ρp = 1.

In the evolution equation for the isotropic elastic

strain:

∂t∆ = ε̇v − λ1Tg∆+ α1ε
e∗
ij ε̇
∗
ij (49)

the first term couples elastic and total strain together,

while the second term is relaxing ∆ towards zero 13 – in

case of finite Tg, with rate λ1Tg. The third term can be

positive (or negative, e.g., at strain reversal) and thus

works against (or with) the relaxation term, with rate

α1vs = α1|ε̇∗ij |. 14

The third equation defines the evolution of the de-

viatoric (shear) elastic strain

∂tε
e∗
ij = ε̇∗ij − λTgεe∗ij , (50)

where the first term creates deviatoric elastic strain,

co-linearly with the strain-rate, while the second term

relaxes the deviatoric elastic strain, with rate λTg. A

dilatancy term analogous to the third in Eq. (49) is not

required by the Onsager relation, but may be added for

symmetry, as was done in Ref. [81].

The fourth equation represents the evolution of the

granular temperature

∂tTg = −RTTgT ∗g + fT (ε̇ij) (51)

= RT0

[
−(1− r2)TgT

∗
g + f2s ε̇

∗
ij ε̇
∗
ij + f2v ε̇v ε̇v

]
with the abbreviation for the dissipation rate RT =

γ1/(ρb) = RT0(1− r2), proportional to the energy dis-

sipation factor (1− r2), where r is the (effective) resti-

tution coefficient. The energy creation terms are con-

densed into the tensor function fT (ε̇ij), independent on

r, so that one could split them off with two energy cre-

ation rates, RT0f
2
s = ηs/(ρb) and RT0f

2
v = ηv/(ρb), for

shear and volumetric strain-rates, respectively.

3.3 Minimal elastic model with two variables

One could decompose the elastic stress and strain ten-

sors into invariants (and their orientations). Under the

assumption of fixed and co-linear tensor-eigensystems,

and ignoring the third invariant for the sake of brevity,

what remains are the isotropic and deviatoric stresses,

σα = {P∆, πs = π∗s}, and elastic strains, uα = {∆,us =

13 Relaxation of ∆→ 0, at fixed density, ρ, implies that the
granular temperature (jiggling) causes the jamming density
to relax as ρJ → ρ, in both jammed and un-jammed states,
increasing and decreasing, respectively. A decrease (an in-
crease) of the elastic strain, ∆, at fixed density, ρ, corresponds
to an increase (a decrease) of the jamming density, ρJ , see
Ref. [53]. On the other hand, at fixed confining pressure, P , a
jammed system, at finite, but small Tg (tapping) will develop
to a state such that the elastic pressure, P∆ = P − PT ≈ P ,
remains constant; relaxation of ∆ then corresponds to an in-
crease of density, i.e., compaction.
14 After large strain, one has a positive product, εe∗ij ε̇

∗
ij > 0,

but at strain reversal the same term can be negative, for a
while, until the elastic deviatoric strain reverts direction.
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14 S. Luding, Y. Jiang, and M. Liu

u∗s}, each as 2-tuple vectors, denoted by Greek indices.

This provides the criteria for energy minima:

δ2w = −δπijδuij = δπαδuα =
∂πα
∂uβ

δuαδuβ > 0. (52)

Using the (positive) invariants yields the simple 2x2

Hessian matrix (for second order elastic work):

∂2we
∂uα∂uβ

=
∂πα
∂uβ

=

(
∂P∆/∂∆ ∂P∆/∂us
∂πs/∂∆ ∂πs/∂us

)
=:

(
B A
A G

)
= C (53)

If it has only positive eigenvalues, the (elastic) energy

we is a convex function of the elastic strain-invariants ∆

and us. With other words, an elastic stability criterion

is det(C) = BG −A2 > 0.

3.3.1 GSH with Hertzian type elasticity

In the special case of a Hertzian type elastic energy

density, see Eq. (47), as typically used in the GSH lit-

erature [70], one has:

B = (3/2)B∆1/2 − (1/4)Gu2s∆
−3/2 6= B∆,

G = 2G∆1/2, and A = G∆−1/2us.

With this, the stability condition, BG −A2 > 0, trans-

lates to

g2e := 2B/G ≥ (us/∆)2 , (54)

as previously shown in Eq. (12) in Ref. [71], and in Eq.

(37) above, for elastic, static systems above jamming,

for ∆ > 0, while we = 0 and thus det(C) = 0 for ∆ ≤ 0.

3.3.2 Eigen-values and -vectors at elastic instability

First, we compute the eigen-values and -vectors from

the matrix C, before we introduce constitutive assump-

tions and discuss those separately in the next sub-

subsections.

Basic linear algebra yields the two eigen-values,

C1,0 = (B + G)/2 ±
√

(B − G)2/4 +A2, as solution of

the quadratic equation 0 = (B − C)(G − C) − A2 =

C2−C(B+G)+BG−A2, with C1 = B+G and C0 = 0,

at the point of instability, where BG = A2.

Using C1, and A =
√
GB, with the two equations

−Gn̂(1)1 + An̂(1)2 = 0 and An̂(1)1 − Bn̂
(1)
2 = 0, results in

the corresponding eigen-vector (with n̂
(1)
2 = n̂

(1)
1 G/A =

n̂
(1)
1 A/B = n̂

(1)
1

√
G/B), which defines the “direction”

(in elastic strain invariants) of maximal stability: n̂(1) =

±(1,
√
G/B)/

√
1 + G/B

Using C0 = 0, and A =
√
GB, with the two equa-

tions Bn̂(0)1 + An̂(0)2 = 0 and An̂(0)1 + Gn̂(0)2 = 0, re-

sults in the corresponding eigen-vector (with n̂
(0)
2 =

−n̂(0)1 B/A = −n̂(0)1 A/G = −n̂(0)1

√
B/G), which gives

the “direction” of instability (in the space of elas-

tic strain-invariants): n̂(0) = ±(−
√
G/B, 1)/

√
1 + G/B,

perpendicular to the direction of maximal stability.

Note the special role the ratio of shear to bulk mod-

ulus takes in this analysis.

More explicitly, incremental changes in the elastic

strain, δuα = (δ∆, δus) = δεe n̂
(0)
α , at the point of elas-

tic instability, can be done without any change of elastic

energy, δ2w = (δεe)2n̂
(0)
α n̂

(0)
β Cαβ = 0, and are thus per-

mitted from energy/thermodynamic arguments. With

other words, any other elastic strain increment will re-

quire energy to be realized. For energy considerations,

see also Ref. [55,58] and references therein.

3.3.3 Hertzian elastic energy instability

The non-zero eigenvalue can be re-written, using the

choice for we in Eq. (47), as: C1 = [B + 2G]∆1/2 =

B[1 + 4/g2e ]∆1/2, with ge =
√

2B/G, while the zero

eigenvalue will be more relevant for understanding the

failure mechanism.

Using we in Eq. (47), this translates to

the eigen-vectors: n̂(1) = ±(ge, 1)/
√

1 + g2e ,

and n̂(0) = ±(1,−ge)/
√

1 + g2e . More explic-

itly, incremental changes in the elastic strain,

δuα = (δ∆, δus) = δεe n̂
(0)
α , at the point of elas-

tic instability, can be done without any change of

elastic energy, δ2w = (δεe)2n̂
(0)
α n̂

(0)
β Cαβ = 0, and are

thus permitted.

In a shear to normal stress space, one could see the limit

of elasticity as one possible definition of the maximal

(elastic) macroscopic (bulk) friction, with bulk friction

defined by the ratio: µe := π∗s/P∆ = G∆us/(B∆∆),

with the limit value taken at the loss of elastic stability:

µ0
e =

√
2G/B = 2/ge.

3.3.4 Anisotropic, linear elastic energy instability

In Ref. [81], the elements of the constitutive matrix

C were directly deduced from particle simulations,

and took a form (slightly simplified here by implying

that the fabric and the elastic strain are proportional):

B = B0φZ (with the product of volume fraction φ and

coordination number Z, which is a non-linear function

of ∆), G/B = G0(∆)(1− u2s), and A/B = us.

From this, the condition for elastic instability trans-

lates to: (ues)
2 = G0(∆)/(1 + G0(∆)), which implies

a very narrow but steep elastic regime for small ∆,

since G0(∆) = (1/2)(1− exp(−∆/∆g)) → (1/2)∆/∆g,

vanishes for ∆ → 0, so that ues ∝
√
∆. For large

∆/∆g � 1, one has instead ues ≈ 1/3, independent of

∆.
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Un-jamming: statics to dynamics 15

The “direction” (in elastic strain invariants) of maximal

stability becomes: n̂(1) = ±(1,
√
G/B)/

√
1 + G/B =

±(1, us)/
√

1 + u2s, and with the perpendicu-

lar “direction” of maximal in-stability: n̂(0) =

±(−
√
G/B, 1)/

√
1 + G/B = ±(−us, 1)/

√
1 + u2s, after

using
√
G/B = A/B = us.

3.4 Special cases

In order to understand what the eigen-vectors mean,

it is instructive to consider a few simple special cases.

Some of these cases are later studied analytically and

numerically. They represent simplifications that boil

down a complicated theoretical framework to a simpler,

possibly even transparent form that allows for better

understanding and sometimes even for analytical solu-

tions. We propose to apply those special cases to any

new theory before one really applies the whole frame-

work. Furthermore, the special cases allow to isolate a

few of the terms and possibly calibrate the model pa-

rameters one by one.

For the rest of this section, we use the results

from the Hertz-like elastic energy density, as discussed

in subsection 3.3.3. Most of the cases are illustrated

schematically in Fig. 2.

Fig. 2 Sketch of the (strain-rate driven) deformation cases
in the space of the elastic strain invariants, i.e., us plotted
against ∆. The numbers at the black arrows indicate the case-
number, where dashed, thin lines are not allowed, continuing
the trends in the permitted zone. The red arrows give the
eigen-vector of instability n̂(0).

Except for the first case 0, the following cases start

from a jammed, elastically stable state with finite

initial elastic strains ∆(0) > 0 and us(0) > 0.

(case 0) Assume the system unjammed, ∆(0) < 0,

and apply a constant compressive strain-rate,

ε̇v = −vll > 0. The density and the elastic strain,

∆ = log(ρ/ρJ), will grow together until the system

jams at ρJ , from which on its evolution equation kicks

in. It was shown in Refs. [116,117], and earlier works

cited therein, that already below jamming, the jam-

ming density (and thus ∆) depends on the procedure

of preparation, in particular on the strain-rate and

on the granular temperature, however, this fact goes

beyond the present focus and is thus ignored here.

(case 1) Assuming a purely isotropic de-compression,

ε̇v = −vll < 0, from a jammed state, one expects

the elastic isotropic strain, ∆, to decrease faster

than its deviatoric (shear) counterpart, us, until at

u2s = (2B/G)∆2, or us = ge∆, the system cannot

sustain the applied shear-stress anymore, so that

un-jamming due to instability with respect to shear

occurs. In order to remain at least marginally stable,

one needs a decrease of us → u0s = ge∆, a situation

that could be referred to as shear-yielding [39,44,53].

(case 1b) In the situation without initial elastic shear

strain, us(0) = 0, the stability criterion is always

true and the system remains stable until isotropic

un-jamming takes place at ∆ = 0.

(case 2) In the case of isotropic compression, the

model remains stable, unless the virgin consolidation

line is reached, where the system restructures to be

able to carry the increasing stress.

(case 3) Assuming a purely deviatoric (volume

conserving) shear strain rate, ε̇∗ij = −v∗ij , from a state

with initial ∆ > 0, one expects the elastic deviatoric

(shear) strain, us, to increase faster than its isotropic

counterpart, ∆, could build up, until at ∆ = us/ge,

the system cannot sustain pressure (isotropic stress)

anymore, so that an instability with respect to volume

change occurs, and one has a consequent increase of

∆ → ∆0 = us/ge, which can be seen as one origin

of dilatancy. However, the evolution of ∆ is changing

qualitatively, when the limit of elastic stability is

reached, as will be studied numerically later on.

(case 3b) Under the same purely deviatoric deforma-

tion, the isotropic elastic strain ∆ could also decrease,

which only leads to instability at smaller elastic strains,

not much changing the considerations in case 3, but

rather leading to compactancy.

Several of the cases discussed above will be now

studied analytically (as far as possible) and numerically.

4 Analytical results for special cases

This section considers first the athermal limit, Tg = 0,

before granular temperature is included into the equa-

tions and various versions of the model are discussed.

Finally, two regularization schemes are proposed, to be
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16 S. Luding, Y. Jiang, and M. Liu

later used for the numerical solutions. But first we sum-

marize the equations that will be used in this section.

The set of model equations is summarised here for

reference, with the colored terms representing exten-

sions from the black terms (representing model 0):

∂tρ = ρε̇v (55)

∂t∆ = ε̇v(1− pv)− λ1Tg∆pg + α1ε
e∗
ij ε̇
∗
ij(1− ps) (56)

∂tε
e∗
ij = ε̇∗ij(1− ps)− λTgεe∗ij +αd (57)

∂tTg = −RTT 2
g (T ∗g /Tg) + fT (ε̇ij) + fg(g

∗) , (58)

before some meaningful special cases (isotropic and de-

viatoric loading) are discussed below, for which analyti-

cal solutions are provided, if possible. The colored terms

are not present in the original Eqs. (48)-(51), which is

referred to as model 0, having thus no valid athermal

limit.

The blue terms pg and αd are introduced here as

place-holders for elements discussed below, in subsec-

tion 4.6, or to be added in future, introduced in Refs.

[118,81,53]. The rate of cooling is modified in the elas-

tic, jammed state (∆ > 0) by adding an “elastic dis-

sipation rate” Te, referred to as model e, as T ∗g /Tg =

1 + Te/Tg = 1 + Te0∆
h/Tg where only the special case

h = 0, i.e., Te = Te0, will be treated below 15. The pres-

ence of Te does not affect the dynamics too much for

large Tg (for more details, see below), but in the limit

of very small Tg → 0, for elastic, jammed systems, this

(phonon/wave-driven) dissipation becomes important,

providing an exponential decay of Tg → 0 in absence of

other driving mechanisms (and constant ∆ > 0).

The new magenta term fg(g
∗) = f2g (g∗)2θ(g∗), in

Eq. (58), is only active if the system is outside of the

elastically stable regime, where g∗ = us/∆ − ge > 0,

with the limit of elastic stability ge, and the step-

function θ(x ≥ 0) = 1, or θ(x < 0) = 0. This term

generates more granular temperature, jiggling, due to

concavity of the elastic energy, the more the system gets

elastically unstable.

The terms (1− pv) and (1− ps) represent the prob-

abilities for elastic deformations, with pv and ps the

probabilities for isotropic/deviatoric plastic deforma-

tions, respectively, see Ref. [53], as specified in Sec. 2.1,

and discussed next, in section 4.1.

15 For a Hertzian type bulk modulus, the time-scale of mo-
mentum (wave) propagation, for us = 0, can be estimated as

te = 1/Te = d/ve ∝ d/
√
B∆/ρ = d

√
ρ/B∆1/2 ∝ ∆−1/4,

i.e., an exponent h = 1/4. This estimate, together with a
Hertzian elastic pressure, P∆ ∝ ∆3/2, yields an estimated

wave speed ve ∝ P 1/6
∆ or moduli B ∝ P 1/3

∆ .

4.1 The granular athermal limit Tg = 0

Enforcing the athermal case, Tg = 0, the system of

equations reduces to:

∂t∆ = ε̇v(1− pv) + α1ε
e∗
ij ε̇
∗
ij(1− ps) , (59)

∂tε
e∗
ij = ε̇∗ij(1− ps) , (60)

where the off-diagonal Onsager coefficients pv and ps
were introduced in Ref. [69] and taken equal to α1. Al-

ternatively, they were interpreted in Refs. [53,118] as

the probabilities for (isotropic and deviatoric) plastic

(re-structuring) events in the packing. Note that in Eqs.

(59) and (60), the probabilites for isotropic and devia-

toric plastic deformations are attached to isotropic and

deviatoric strain-rates, respectively.

4.1.1 Athermal isotropic loading

For isotropic loading (ε̇∗ij = 0), the system reduces

even further to ε̇pv := ε̇v − ∂t∆ = ε̇vpv, or 16 one has:

∂t ln(ρJ) = ε̇vpv. In the elastic limit, with probability

pv = 0, this translates to constant ∆, whereas the fully

plastic limit, pv = 1, translates to ε̇pv = ρ̇/ρ = ε̇v. In

all other cases, the probability for plastic deformations

should be a function of the state-variables and the sign

of deformation rate (i.e., compression or tension).

A simple constitutive assumption, pv ε̇v = −λ1Te∆,

could be directly merged into the relaxation term as

−λ1T ∗g∆, with T ∗g = Tg + Te, and solved analytically
17. This model displays the transient elastic behavior of

polymer melts or glasses for which (in absence of any

isotropic strain rate) ∆→ 0. However, since the reality

of granular matter, as measured from particle simula-

tions in Ref. [53], is somewhat more complex, already

for frictionless spheres – and even more for realistic fric-

tional non-spherical particles – we have to come up with

a better relation for the probability for isotropic plastic

rearrangements.

The probability for plastic deformations was re-

ported in Ref. [53], as p∆v ∝ ∆/∆∞, with the limit

elastic strain, ∆∞ = ln (ρ/ρ∞), expected to be reached

after infinitely many isotropic loading/un-loading cy-

cles up to density ρ, with the corresponding density:

ρ∞ = ρJ0 + b∞

[
ρ

ρJ0
− 1

]β∞
+

, (61)

with the half-sided linear function [x > 0]+ = x, and

[x ≤ 0]+ = 0, otherwise, guaranteeing ρ∞ = ρJ0 for

16 By using the chain rule, one has: ∂t∆ = (∂tρ)/ρ −
(∂tρJ )/ρJ = ε̇v − ∂t ln(ρJ ) , as input.
17 Inserting the expression from above, this yields the ather-
mal evolution of the elastic strain: ∆̇ = vll − λ1Te0∆1+h.
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Un-jamming: statics to dynamics 17

ρ < ρJ0. The density ρJ0 represents the random loose

packing density, i.e., the lowest possible isotropic jam-

ming density, related to e0, as discussed in section 1.

The density ρ∞ is the density for which the system

would isotropically jam/un-jam, where the subscript in-

dicates infinitely long relaxation. 18

Fig. 3 Jamming density ρJ = ρ exp(−∆), plotted against
density, ρ, during loading up to ρmax = 0.62, 0.64, 0.66, and
0.68, with subsequent un-/re-loading cycles with amplitude,
δρ = 0.01. The horizontal blue lines on top correspond to
ρmax = 0.68 and δρ = 0.08. The solid red line represents
ρ∞ in Eq. (61), with ρJ0 = 0.6, and coefficients pv0 = 1,
b∞ = 0.05, β∞ = 0.30. Note the flat blue lines for un-loading
and for ρJ < ρ∞, i.e., cases where one has pv = 0.

For the sake of simplicity, in the numerical solution

of the evolution equations, we implemented the simpler

plastic deformation rate: ε̇vpv = pv0 max(ε̇v, 0)(ρ∞ −
ρJ)/(ρ∞−ρJ0), with pv0 = 1, according to Kumar and

Luding, 2016 [53], idealized to be active for compression

only, which yields qualitatively similar results, with a

rather rapid approach to the maximal jamming density

ρ∞, while the above model ε̇vp
∆
v , with a much slower

approach (stretched exponential) to ρ∞, will be detailed

elsewhere. The evolution of the jamming density and of

pressure with density during initial loading and cyclic

un-/re-loading are plotted in Figs. 3 and 4, to illustrate

the phenomenology, including un-jamming/jamming,

with details of the (numerical) model given in the next

Sec. 5.

18 Thus, ρ∞ takes the place of the random close packing
density, ρcp, but continuously grows with density. The high
densities could be achieved (by over-compression) of soft par-
ticles (rubber, gel, etc.), whereas hard particles (metal, glass,
etc.) would break (not considered here). For hard particles,
one could replace Eq. (61) with a step function equal to ρcp
for ∆ > 0.

Fig. 4 Pressure plotted against density, from the same
model solution as in Fig. 3. The lower curve represents the
initial loading, up to ρmax (green dots), with six cyclic un-
/re-loading cycles, ending at the magenta dots. Note that the
lowermost case with ρmax = 0.62 is un-jamming and jam-
ming during the cycles for several times. The upper curve
represents the elastic limit case, with pv = 0, i.e., with no
plastic rearrangements and the analytical pressure state-line:
P∆ = B∆3/2, with B = 1, for details see Sec. 5. The lower-
most curves represent cyclic un-/re-loading from ρmax = 0.68
with amplitude δρ = 0.08, well below the jamming-point. The
inset represents the void fraction e plotted against (logarith-
mic) P , similar to Fig. 1-a.

4.1.2 Athermal deviatoric loading

For purely deviatoric (isochoric) shear, ε̇v = 0, the

elastic shear strain develops as ∂tε
e∗
ij = ε̇∗ij(1− ps) or,

equivalently, for the plastic strain rate ε̇pij = ε̇∗ij −
∂tε

e∗
ij = ε̇∗ijps. Postulating the existence of a constant

“critical” steady state for the stress ratio µc0 := µc(vs →
0) = Gcucs/(Bc∆∆c) 19, this allows to express the prob-

ability for plastic (shear) events as:

ps =
µ

µc0
=

[
εe∗ij ε̇

∗
ij

]
+

ucsvs
≈ us
ucs

, (62)

where the last approximation is only valid after suf-

ficiently long steady shear, close to the critical state,

but not for strain reversal. The term in brackets is lim-

ited to keep it a probability, i.e., [x > 0]+ = x, and

[x ≤ 0]+=0, and thus also valid for strain-reversal, as

done similarly in Ref. [53,118,81] and references therein

– based on, and in quantitative agreement with, DEM

simulations 20. The probability for plastic events in Eq.

19 This implies a relation Gc∆/Bc∆ = µc0∆
c/ucs = 2G/[B +

(1/2)G(ucs/∆
c)2] = 4/[g2e + (ucs/∆

c)2] between shear and
bulk modulus, and allows to determine from the quadratic
equation: µc0(ucs/∆

c)2 − 4ucs/∆
c + µc0g

2
e = 0 the shear to

isotropic elastic strain ratio ucs/∆
c = 2/µc0±

√
(2/µc0)2 − g2e ,

with real solutions for µc0 ≤ 2/ge, as realized in cases mod-
elled here (data not shown).
20 If one can assume: ∆ ≈ ∆c, i.e., that the isotropic elas-
tic strain is almost constant, close to its critical state limit
already, Eq. (60) can be solved analytically, yielding an ex-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18 S. Luding, Y. Jiang, and M. Liu

(60) is finite, but very small, at the beginning of shear

with build-up of elastic shear strain, us, but asymptoti-

cally approaches ps = 1 for large strain in the perfectly

plastic, critical state. At reversal of shear, the argument

of the bracket-function becomes negative, i.e., the sys-

tem is elastic with ps = 0, until the shear strain is built

up sufficiently in the new direction 21.

Fig. 5 Shear stress, σdev := σs, plotted against pres-
sure, P , from simulations compressed up to ρmax = 0.61,
0.63, 0.65, 0.67, and 0.69 (green dots), and subsequent cyclic
pure shear with amplitude, δγ ∼ 0.28, where the magenta
dots represent the end-situation after six forward-backward
shear cycles. The dashed line indicates the pre-set slope
µc0 = σcdev/P

c = 0.5. The only other parameter active in
this model is α1 = 2, where the case ρmax = 0.65 was sim-
ulated with two other values of α1 = 0.5 and 8, to display
the enhancing effect on pressure-dilatancy of this parameter.
Note that the imposed maximal macroscopic friction, here, is
chosen smaller than the elastic stability limit, µc0 < 2/ge = 1,
such that the latter is never reached.

Noting the similarity between ps and the α1-
term, one can rewrite the evolution equation for the

isotropic elastic strain as: ∆̇ = α1u
c
svsps(1− ps) ≈

α1usvs(1− ps) = α1usu̇s, for constant vs (not valid

for strain-reversal). This equation has a critical state

solution, ∆c, due to the term (1− ps), as well as a sta-

ble elastic solution with ∆̇ = 0 for ps ≈ 0, see the

infinite slopes in Fig. 5 for small shear strain and thus

small shear stress. The deviatoric elastic strain evolves

as u̇s = vs(1− ps) ≈ vs(1 − us/u
c
s), with analytical

solution:

us(t) = ucs − [ucs − us(0)] exp(−vst/ucs) , (63)

with ucs = ∆
[
2/µc0 −

√
(2/µc0)2 − g2e

]
, as plotted in the

inset of Fig. 5 as shear stress evolution π∗s = 2G∆1/2us.

ponential approach of us to its critical state limit, see Ref.
[53].
21 Like for pv, this could be merged into the relaxation
term −λT∗g u∗ij , if one would assume: −v∗ijps = −λTeu∗ij , the
discussion of which goes far beyond this paper.

Fig. 6 Pressure plotted against density, from the same
model solution as in Fig. 5. The lower curve represents the ini-
tial loading, up to ρmax (green dots), with six cyclic forward-
backward shear cycles, ending at the magenta dots, displaying
the pressure-dilatancy caused by shear. The upper curve rep-
resents the elastic limit compression, with pv = 0. The inset
represents the shear stress evolution with strain, during the
cyclic forward-backward shearing, where the higher density
cases reach larger stress levels, and the dashed lines represent
the analytical solutions from Eq. (63).

This analytical solutions are very similar in form to

those used in Refs. [53,118], however, further discussion

is beyond the scope of this paper 22.

4.2 The granular thermal limit Ṫg = 0

Assume that one could maintain a constant granular

temperature, which would result in the set of equations:

∂t∆ = ε̇v(1− pv)− λ1Tg∆pg + α1ε
e∗
ij ε̇
∗
ij(1− ps) (64)

∂tε
e∗
ij = ε̇∗ij(1− ps)− λTgεe∗ij . (65)

For vanishing strain-rate ε̇ij = 0, the equations decou-

ple and only the relaxation terms survive, This corre-

sponds to the “plastic equilibrium” limit case ∆ = 0,

εe∗ij = 0, which is approached exponentially fast, with

rates λ1Tg and λTg. The term pg = 1 allows to choose

the plastic equilibrium of transiently elastic systems,

for which ∆ → 0, or in a form pg = 1 − ∆∞/∆, the

granular plastic limit with ∆ > 0, see subsection 4.6.

For finite ε̇ij , the system will establish thermal,

elasto-plastic dynamic states that are not discussed fur-

ther for the sake of brevity.

Strictly controlling density, i.e., fixing e, the situa-

tion is interesting again for granular matter. Any per-

turbation, as tapping or small-amplitude cyclic shear,

will typically result in a decrease of both the elastic

strain, ∆, and consequently the pressure, P∆ = B∆∆,

22 Note that since ucs depends (weakly) on ∆, the system of
equations is still coupled and the analytical solution is only
approximate.
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Un-jamming: statics to dynamics 19

with elastic bulk-modulus B∆ = B∆3/2. In this sit-

uation, the pressure curve shifts to smaller densities

(larger e), and changes slope, both moving it away fur-

ther from the elastic state-line (not shown here). On

the other hand, large strain shear results in (pressure)

dilatancy, shifting the state-line to the right, towards

the VCL (but not beyond), defining the critical state

line (CS) – see Fig. 6.

4.3 Isotropic jamming in a minimal GSH

The model equations for isotropic compression/tension,

with strain rates ∂tρ = ε̇v 6= 0, and ε̇∗ij = 0, reduce to:

∂t∆ = ε̇v(1− pv)− λ1Tg∆ (66)

∂tε
e∗
ij = −λTgεe∗ij (67)

∂tTg = −RTT 2
g (T ∗g /Tg) + fT (ε̇ij) + fg(g

∗) (68)

The density is coupled to strain-rate directly, while the

second equation (67) is decoupled (just relaxing an ex-

isting elastic shear strain to zero). From the coupled

evolution equations (66) and (68) for ∆ and Tg, we ob-

serve that the situation at the end of an isotropic com-

pression is independent of the density reached if pv = 0.

of the evolution of ∆ and could be (quantitatively) cal-

ibrated to the numerical data in Ref. [53] in a future

study. The energy production term due to elastic in-

stability in Eq. (68) would become active for finite us,

when ∆ < geus, but is ignored here, assuming us = 0

(which is not strictly true in real systems, where there

can be some small, random elastic deviatoric strain).

The evolution equation for Tg, abbreviating γ =

RT = RT0(1 − r2), and assuming Te = 0, results in

an algebraic evolution:

Tg
T 0
g

=
1

1 +RTT 0
g t

, (69)

in the free, homogeneous cooling state, as relevant

for systems below jamming in the granular gas state.

On the other hand, assuming the simplest model for

T ∗g ≈ Te, with h = 0 (or for constant ∆), for a small

perturbation from an elastic base state, one has

Tg
T 0
g

= exp (−RTTet) , (70)

as relevant for elastically stable systems, well above the

jamming density, for which small perturbations decay

exponentially fast.

For finite positive (compressive) strain-rate, the in-

homogeneous solution leads to a divergent increase of

Tg with time due to the continuous energy input. For

negative (expansive) strain-rate, the same is true, how-

ever, as soon as the system isotropically un-jams, the

behavior should qualitatively change – which is not ac-

counted for in the present version with constant param-

eters, in particular fv and RT0; more details are beyond

the scope of this study.

4.4 Pure shear from an isotropic state

This case was studied in detail by particle simula-

tions in Refs. [81,53], and should be studied analyti-

cally too with respect to questions about the build-up

of anisotropy, and the degradation of moduli, but is

skipped for the sake of brevity.

4.5 Steady state pure shear (model 0 and e)

In case of deviatoric pure shear, the density equation

vanishes, since vll = 0 the density is conserved, ∂tρ = 0,

and the terms with isotropic strain rate in the equations

drop out. The remaining equations yield the steady

state solution for the granular temperature:

∂tTg = 0 = RT0

[
−(1− r2)TgT

∗
g + f2s ε̇

∗
ij ε̇
∗
ij

]
with T ∗g = Te + Tg, so that (for Te = 0):

(T
(ss)
g0 )2 =

f2s (ε̇∗ij ε̇
∗
ij)

(1− r2)
=

f2s v
2
s

(1− r2)
, (71)

or (for T ∗g = Tg + Te):

(T (ss)
g )2 + T (ss)

g Te − (T
(ss)
g0 )2 = 0 ,

yields

T (ss)
g = ±

√
(Te/2)2 + (T

(ss)
g0 )2 − Te/2 , (72)

where only the positive solution is reasonable.

In the “collisional” limit Tg � Te, one has the

dynamic steady state: T
(ss)
g ≈ T

(ss)
g0 ∝ vs, while for

Tg � Te, the steady state temperature in the “elas-

tic” steady state is: T
(ss)
ge ≈ (T

(ss)
g0 )2/Te ∝ v2s , i.e., it

vanishes quadratically for vs → 0.

For the deviatoric elastic strain one has:

∂tε
e∗
ij = 0 = ε̇∗ij − λTgεe∗ij ,

so that:

u(ss)s = vs/(λT
(ss)
g ) and u

(ss)
s0 =

√
1− r2/(λfs) , (73)

while for the isotropic elastic strain one has:

∂t∆ = 0 = −λ1Tg∆+ α1ε
e∗
ij ε̇
∗
ij ,
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so that inserting Eqs. (71) and (73) yields the isotropic

elastic strain in steady state:

∆(ss) =
α1v

2
s

λ1λ(T
(ss)
g )2

and ∆
(ss)
0 =

α1(1− r2)

λ1λf2s
, (74)

the former valid for model e, the latter for the simplest

model 0, where the subscript 0 indicates Te = 0; model

e is not indicated since it represents the default case.

In the “elastic” limit Tg � Te, for vs → 0, the

other two state variables, in model 0, behave as: u
(ss)
s →

v−1s , ∆(ss) → v−2s , and thus g(ss) = us/∆ → vs, i.e., a

leading order linear increase with (shear) strain rate.

4.6 Steady state pure shear (model 1)

In model 1, only the evolution equation of the isotropic

elastic strain has to be modified:

d

dt
∆ = 0 = −λ1Tg∆pg + α1u

∗
ijv
∗
ij

so that inserting Eqs. (71) and (73) yields the isotropic

elastic strain in steady state:

∆
(ss)
1 =

α1v
2
s

λλ1(T
(ss)
g )2pg

=
∆(ss)

pg
, (75)

for model 1 for constant or ∆-indepdendent pg.

In some of the numerical implementations, we used

pg = ∆−∆∞, in order to make ∆ relax towards a finite

value, with ∆∞ = log(ρ∞/ρ), as defined in Eq. (61).

This allows to re-write pg = log(ρJ/ρ∞), which makes

the relaxation term vanish for ρJ = ρ∞, negative for

larger values and increasingly positive for smaller jam-

ming densities. Unfortunately, it also requires to solve

a quadratic equation, resulting in

∆(ss) = (1/2)∆∞[1 +
√

1 + 4∆(ss)/∆∞] ,

i.e., an increased steady state elastic strain, represent-

ing strain-dilatancy. Note that this approach to achieve

finite ∆ under steady state shear, increasing with den-

sity – as to be expected – is different in philosophy than

making the bulk modulus factor B density dependent.

In other of the numerical implementations, we used

pg = 1−∆∞/∆, in order to make ∆ relax towards a

finite value, resulting in the simpler steady state ex-

pression:

∆
(ss)
1 = ∆(ss) −∆∞ = log(ρ∞/ρ

(ss)
J ) ,

with ∆∞ < 0 for ρ > ρ∞, which even can change

sign dependent on the relative magnitudes of ∆(ss) and

∆∞. Note that this approach to achieve finite ∆ under

steady state shear, increasing with density – as to be

expected – is different in philosophy than making the

bulk modulus factor B density dependent.

4.7 Discussion of the steady state

Dividing Eq. (73) by (74) yields the deviatoric to elastic

strain ratio in steady state (in order to evaluate whether

the system is elastically stable or not):

g(ss) :=
u
(ss)
s

∆(ss)
=
λ1T

(ss)
g

α1vs
, (76)

If the ratio of elastic strains in Eq. (76) is smaller than

the elastic stability limit g(ss) ≤ ge =
√

2B/G the

system remains in a possibly stable (elastic, jammed)

state, while it looses stability if the ratio reaches and/or

exceeds the limit value.

Solving numerically the system of equations, includ-

ing the transient evolution, confirms that the steady

state is independent of the density, for model 0, see

Sec. 5, as ρ does not appear in the steady state solu-

tions above.

The elastic strain ratio, Eq. (76), which deter-

mines whether the system becomes elastically instable

in steady state, is not the same as the macroscopic fric-

tion at which the material flows plastically. Dividing the

steady state shear stress by pressure defines the macro-

scopic (bulk) “friction”: µ = σ∗ij/P , which results in the

steady state bulk friction:

µ(ss) =
σ∗ij
P

=
π∗ij

(ss) + ηv∗ij
P∆ + PT

=
G∆u(ss)ij + ηv∗ij
B∆∆(ss) + PT

. (77)

In the slow strain-rate limit, ε̇ij → 0, of Eq. (77),

above jamming, ∆ > 0, the second terms in nomina-

tor and denominator vanish, linearly and quadratically

with Tg → 0, respectively, and one has

µ
(ss)
0 =

G∆u(ss)s

B∆∆(ss)

=
2(G/B)(∆(ss))−1u

(ss)
s

1 + (1/2)(G/B)(u
(ss)
s )2(∆(ss))−2

=
4(G/2B)g(ss)

1 + (G/2B)(g(ss))2
=

4g(ss)

g2e + (g(ss))2
. (78)

For the special case g(ss) = ge, when the elastic limit

of stability and the steady state ratio of elastic strains

coincide, this translates to: µ
(ss)
0 = 2/ge.

4.8 Temperature regularization (model g)

In order to regularize the elastic instability, we intro-

duce a measure for the distance from the elastic limit

gs = (g − ge) = (us/∆ −
√

2B/G), which can be used

to regularize the temperature evolution

d

dt
Tg = RT

[
−T 2

g

]
+ fT (ε̇ij) + fgθ(gs)gs , (79)
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with the step-function θ(gs > 0) = 1, and 0 else, so that

one has for steady-state pure shear (with model 0):

(T (ss)
g )2 =

f2s v
2
s + fgθ(gs)gs
(1− r2)

, (80)

i.e., just an elevated granular temperature that affects,

in turn, the other state-variables (elastic strains) via

their respective relaxation terms, as will be shown in

the next section 5.

5 Numerical solutions

In order to better understand GSH, we solve the system

of equations numerically (with matlab, using ode45)

and discuss the features of the simplest GSH type model

without any constitutive assumption other than the

form of the energy density in Eq. (47), but rather keep-

ing all parameters constant, see table 1.

Units are chosen as ρu = ρp = mp/Vp =

2000 kg m−3, with mass, mp, and volume, Vp, of a

single particle, so that the dimensionless density is:

ρ = (ρp/ρu)φ = φ, while time is measured in units

of micro-seconds, tu = 1µs, and length in units of par-

ticle diameters du = dp = 10−4m. With these choices,

the unit of mass is mu = mp = ρpVp = (π/6)ρpd
3
p =

(π/3)10−9 kg, while stress and moduli have units of

σu = mu/du/t
2
u = (π/3)107 kg m−1 s−2 ≈ 10 MPa.

The boundary conditions of the numerical solutions

are first a preparation by isotropic compression, fol-

lowed by pure deviatoric (volume-conserving) shear for

large strain to approach the critical state, and finally a

relaxation without any strain-rate.

5.1 Effect of density and dynamics

Next goal is to understand the behavior of the model at

different densities and the effects of the elastic dissipa-

tion parameter Te and the temperature regularization

fg.

The initial preparation starts from an un-jammed

state at ρ(0) = 0.58, and is applied up to different target

densities ρ = 0.61, 0.62, 0.63, 0.68, 0.74, and 0.80 during

tp = 1000. From this point on, pure shear is applied

for ts = 5000 and the final relaxation is applied for

tr = 4000.

First, the effect of Te on the system is studied in

Figs. 7 and 8. In order to understand the behavior,

shear stress is plotted against pressure and the ratio

of the deviatoric-to-isotropic elastic strains is plotted

against time. In the former Fig. 7, Te is practically zero

and has no effect at all, whereas in the latter Fig. 8, the

finite Te causes a reduced Tg in steady state, as well as a

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time
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Fig. 7 Case A (model 0): Shear stress plotted against pres-
sure (top) and deviatoric-to-isotropic elastic strain ratio plot-
ted against time (bottom). The green lines (on the horizontal)
represent the isotropic preparation, the magenta lines (over-
lapping), the final relaxation, with the big solid dots as the-

oretically predicted steady state σdev = µ
(ss)
0 p. The dashed

horizontal lines represent ge (upper) and g(ss) (lower), for
Te = 10−6.

much more rapid (exponential) relaxation to the static

state (shorter magenta lines). Due the decreased Tg, the

other state variables ∆ and us are increased, whereas

their ratio is also decreased, see Eq. (76).

The effect of the new temperature production term

with fg = 4.10−4 is then tested in Fig. 9, with other-

wise the same settings as in case B. Only those cases

that overshoot ge are affected. One of them, the low-

ermost density case, is completely destabilized by the

increase in Tg, while the other (second lowest density)

remains above, but moves closer to ge and remains there

for some longer time. This proofs that the production

of Tg due to the elastic instability allows to regular-

ize the systems’ behavior by dynamic means, i.e., by

generation of more Tg keeps the system closer to the

elastic instability. However, if too much Tg is produced,

this destabilizes the system and allows it to explore the

plastic, collisional steady state with very large Tg and

– at the same time – small us and ∆.

Finally, we study the effect of different fg on a sys-

tem at low density ρ = 0.62 using model 1 (case E) in

Fig. 10, plotting again shear against normal stress in
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m. Te fg B G λ λ1 α1 RT0 r RT fs fv ηs χ ge g(ss) µ0

A 0 10−6 0 1 0.5 3 1 2 50 0.6 32 2 1 1 0.1 2 1.250 0.90
B 0e 2.10−4 0 1 0.5 3 1 2 50 0.6 32 2 1 1 0.1 2 1.165 0.87
C 0eg 2.10−4 4.10−4 1 0.5 3 1 2 50 0.6 32 2 1 1 0.1 2 1.165 0.87
D1 0 0 0 1 0.5 3 1 ... 50 0.6 32 2 1 0.1 0.1 2 ... 1
D2 0g 0 5.10−5 1 0.5 3 1 ... 50 0.6 32 2 1 0.1 0.1 2 ... 1
D3 0eg 2.10−4 5.10−5 1 0.5 3 1 ... 50 0.6 32 2 1 0.1 0.1 2 ... 1
E 1eg 2.10−4 ... 1 0.5 10 5 2 50 0.6 32 2 1 0.1 0.1 2 ... 1

Table 1 Summary of parameters used for the numerical solutions of GSH, where m. indicates the model used and dots replace
values that are varied in this case.
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Fig. 8 Case B (model 0e with Te = 2.10−4): Shear stress
plotted against pressure (top) and deviatoric-to-isotropic
elastic strain ratio plotted against time (bottom). The green
lines (on the horizontal) represent the isotropic preparation,
the magenta lines (overlapping), the final relaxation, with
the big solid dots as theoretically predicted steady state

σdev = µ
(ss)
0 p. The dashed-dotted horizontal lines represent

ge (upper) and g(ss) (lower), for finite Te, while the dashed
lines correspond to the critical state limits.

the upper panel and elastic shear to normal strain in

the lower.

The data are complemented by two more simula-

tions, one with model 0, using the same density, and

one with the same model 1 (with fg = 0), but com-

pressed up to density ρ = 0.64. The former is behaving

very different, reaching the highest steady state level

of us/∆ in steady state and also relaxing to a large

value, g > ge, because fg = 0. The compression to

higher density shows that this system, in steady state,

is not reaching the elastic stability limit (upper diag-
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Fig. 9 Case C (model 0eg with Te = 2.10−4 and fg =
4.10−4): Shear stress plotted against pressure (top) and
deviatoric-to-isotropic elastic strain ratio plotted against time
(bottom). The green lines (on the horizontal) represent the
isotropic preparation, the magenta lines (overlapping), the
final relaxation, with the big solid dots as theoretically pre-

dicted steady state σdev = µ
(ss)
0 p. The dashed-dotted hori-

zontal lines represent ge (upper) and g(ss) (lower), while the
dashed lines correspond to the critical state limits.

onal) and, at the end of shear, is just relaxing deeper

into the elastic cone (magenta line).

From the lower plot it is clear that all data reach

their respective steady state and relax after shear is

stopped. The four simulations with model 1 correspond

to the four in-between curves, where the largest value

of fg provides the curve that is closest to ge, i.e., the

temperature regularization succeeds to keep the system

very close to the elastic stability limit, just by adding

considerable temperature.

From the upper panel, we further learn that the

model g does not affect the system much if fg is close
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to zero, but that the increased level of Tg, created by

the increasing fg values, keeps the system very close to

the stability limit (yellow curve) and allows the system

to relax to much smaller values stress, closely embrac-

ing the cricial state line µ0. In contrast to model 0, the

modified model 1 with large enough fg thus reaches a

very much relaxed final state, at rather small values of

stress, within the elastic stability cone.

This system thus has yielded when reaching the elas-

tic limit, ge, there the temperature production kicks in,

proportional to fg, and keeps the system close to ge,

but pushing it towards the plastic equilibrium π = 0.

In the steady state the system is not reaching its de-

sired equilbrium, and also during relaxation it is not

just getting there, but rather jamming and becoming

elastic again.
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Fig. 10 Case E (model 1) with Te = 2.10−4 and different
fg = 0, 10−4, 10−3, and 10−2: Shear stress plotted against
pressure (top) and deviatoric-to-isotropic elastic strain ratio
plotted against time (bottom). The single simulation with
model 0 corresponds to the uppermost curve in the lower
panel and the big solid dot is its theoretically predicted steady
state. The single simulation compressed towards larger den-
sity is the lowermost curve in the lower panel, and the right-
most curve in the upper panel. There, the green lines (on the
horizontal) represent the isotropic preparation, while the ma-
genta lines show the final relaxation after shear stops. The
slopes in the upper panel represent µ0 = 2/ge = 1 and
µ = 0.5 (to guide the eye), while the dashed-dotted hori-
zontal lines in the lower panel represent ge (lower) and g(ss)

(upper, for model 0).

5.2 Effect of dilatancy and dynamics

Next goal is to understand the behavior of the model at

constant density, with different dilatancy parameters,

α1, and the effects of the elastic dissipation parameter

Te and the temperature regularization fg.

The initial preparation starts from an un-jammed

state at ρ(0) = 0.58, and is applied up to target density

ρ = 0.65, during tp = 1000. From this point on, pure

shear is applied for ts = 5000 and the final relaxation

is applied for tr = 4000, like before.

The values of α1 are chosen such that a few of the

data remain within the elastic instability limit us/∆ <

ge, but a few overshoot, as can be seen in the lower

panels of Figs. 11, 12, and 13.
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Fig. 11 Case D1 (model 0): Shear stress plotted against pres-
sure (top) and deviatoric-to-isotropic elastic strain ratio plot-
ted against time (bottom), for the same density, ρ = 0.65,
and different values of α1 = 0.75, 1, 1.25, 1.5, 2 (from top
to bottom). The green lines (on the horizontal) represent the
isotropic preparation, the curves the evolution during pure
shear up to the dots, representing the steady state solution,

σdev = µ
(ss)
0 P , see Eq. (78) while the magenta lines show

the final relaxation, with Te = 0. The slopes in the top panel

correspond to µ
(ss)
0 = 1 and µc = 0.5, to guide the eye, and

the dashed horizontal lines in the lower panel represent the
analytical values ge = 2 and various g(ss), see Eq. (76).

First, the effect of fg on the system is studied in

Figs. 11, 12, and later the effect of Te in Fig. 13. Again,

shear stress is plotted against pressure and the ratio

of the deviatoric-to-isotropic elastic strains is plotted
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Fig. 12 Case D2 (model 0): with Te = 0 and fg = 5.10−5.
All parameters are the same as in Fig. 11, except for fg =
5.10−5, which causes the steady state granular temperature
in Eq. (80) - not shown explicitly - which causes the different
behavior of the upper curves.

against time. In the former, Fig. 11, Te and fg are prac-

tically zero and have no effect at all, but an increasing

dilatancy parameter, α1 causes the system into decreas-

ing levels of g = us/∆ during shear. The two lowermost

curves remain within the elastic instability limit, the in-

termediate value α1 = 1.25 displays a slight overshoot

but hits ge = 2 in the steady state, while the upper two

curves are clearly beyond the elastically stable regime

g > ge. In the shear stress to normal stress plot, the

different α1 values lead to different steady states (thick

dots) and a slow relaxation (magenta lines).

When temperature regularization is active in Fig.

12, the curves in the stable regime are not affected, the

intermediate case is slightly modified and the upper two

curves (smaller two α1) are, again, considerably affected

by the generation of Tg, i.e., the much larger Tg causes

both elastic strains to relax towards the plastic limit

– see the curves in the lower left plot of the shear to

normal stress plot.

In the last Fig. 13, the finite Te causes a reduced Tg

in steady state, which results also in smaller u
(ss)
s /∆,

see Eq. (76). During final relaxation, Te is also causing a

much more rapid (exponential) relaxation to the static

state (shorter magenta lines).

Note that Te has an effect within and outside,

whereas fg is only active outside the elastically stable

regime.
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Fig. 13 Case D3 (model 0): with Te = 2.10−4 and fg =
5.10−5. All other parameters are the same as in Fig. 11, ex-
cept for fg = 5.10−5, which causes the steady state granular
temperature in Eq. (80) - not shown explicitly - which causes
the different behavior of the upper curves.

6 Conclusion and Outlook

The focus of this paper was on yielding and un-

jamming/jamming of granular matter, which was in-

spired by the late Bob Behringer, to whom this work is

dedicated. In an attempt to combine theoretical con-

siderations with numerical/experimental observations

on granular matter, the authors propose a minimalist

macroscopic model to capture qualitatively all states of

granular matter, and which even can be solved analyt-

ically in several special, limit cases.

The system considered was a representative volume

element of granular matter, without gradients and no

walls. The granular material was considered in fluid-

like and solid-like states, as well as during continuous

changes across the states as well as during and after

the transition from elastically stable to instable, which

is the novel contribution, since the latter states can be

highly dynamic – something that is not possible, e.g.,
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in standard elasto-plastic approaches or critical state

theory.

Based on the rather complex, but versatile granular

solid hydrodynamics (GSH), a much simplified quali-

tative model that includes un-jammed, fluid-like states

as well as jammed solid-like states (elastically stable)

was proposed and studied – analytically as well as nu-

merically. Furthermore, various transitions and inter-

mediate states could be identified and better under-

stood in the framework of the simplemost GSH type

model, which has only three state-variables, density,

elastic strain (isotropic and deviatoric) and granular

temperature, unifying all the states of granular matter

we could imagine. In order to keep this universal mod-

eling attempts transparent, the model equations were

much simplified by making most parameters constant,

so that the structure of the model equations rather than

the constitutive assumptions could be tested.

This over-simplified model – even though not quan-

titatively calibrated, neither with experiments nor with

particle simulations – nevertheless, is capable of follow-

ing the granular system from very low (dilute granu-

lar gas) to very high densities (dense jammed granu-

lar solid), including various transients and transitions.

Furthermore, the model was generalized to include soft

particle phenomenology, as inspired by recent soft par-

ticle simulations, as well as a strictly non-thermal limit

(removing the granular temperature), as well as per-

fectly plastic, elastic or intermediate states – involving

a critical state and an elastic instability, which was ac-

tually the main focus and reason to start this research.

The first mode of isotropic un-jamming appears

trivial; decompression of the system makes the den-

sity decrease and un-jamming takes place when the

elastic strain vanishes. However, the density at which

un-jamming takes place depends on the history of the

packing. Perturbations by tapping or over-compression

both can result in (un-)jamming densities considerably

larger than the lowest possible one, the random loose

packing density. The longer/stronger the system is per-

turbed, the larger the jamming density will be, but the

approach to this upper limit is realized very slowly.

Whether there are well defined random loose and ran-

dom close packing densities, below/above which the sys-

tem cannot jam/un-jam anymore – or if not – is an

important open question: both limit densities are very

sensible to the protocol one uses to approach and real-

ize/measure them.

The second mode of un-jamming is by plastic

yielding, which involves irreversible deformations/re-

structuring of the solid granular matter, but does not

involve dynamics or granular temperature – at least

not in the classical picture. Plastic events occur with

a certain probability, see Ref. [53], which is larger the

closer the system is to un-jamming or the larger the

elastic shear strain (stress) is which was previously ac-

cumulated. This mode involves the more classical world

of elasto-plastic continuum mechanics and rheology for

example see Refs. [119,40,60]. The evident lack of a

dynamic state variable is at the origin of many diffi-

culties with those elasto-plastic concepts, in particular

when the deformation rates become larger and larger.

Modern concepts like fluidity or non-local models have

been proposed during the last years to overcome this

problem [119,120,41,43].

The third mode of un-jamming is a transition oc-

curing via an elastic instability, i.e., the loss of convex-

ity, and then involves deformations of the solid granu-

lar matter that can occur without penalty, at the on-

set of concavity (elastic instability) or, are even acti-

vated/pushed by the external stresses (in the concave

regime). This mode is different from plastic yielding,

since it allows for dynamics (granular temperature) to

build up, grow, and eventually push back the system

into a mechanically stable elastic state before/while it

is dissipated. How much different – if at all – plastic and

elastic yielding really are has to be seen, and is subject

of current ongoing research.

Outlook: Many remaining challenges, besides the

quantitative calibration of the universal model for gran-

ular matter, involve the understanding of all the dif-

ferent mechanisms of relaxation, creation and destruc-

tion of energy in the elastic strain degrees of freedom

as well as the dynamic, kinetic, granular ones. Related

open questions are: What is the relaxation/evolution

dynamics of the state-variables below, above and during

un-jamming/jamming? What are the differences and
similarities of the driving forces/mechanisms? And, can

they all be combined in a single universal model as at-

tempted in this study?
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