
Noname manuscript No.
(will be inserted by the editor)

Un-jamming due to energetic instability: statics to dynamics

Stefan Luding · Yimin Jiang · Mario Liu

Received: date / Accepted: date

Abstract Jamming/un-jamming, the transition be-

tween solid- and fluid-like behavior in granular matter,

is an ubiquitous phenomenon in need of a sound un-

derstanding. As argued here, in addition to the usual

un-jamming by vanishing pressure due to a decrease

of density, there is also yield (plastic rearrangements

and un-jamming that occur) if, e.g., for given pressure,

the shear stress becomes too large. Similar to the van

der Waals transition between vapor and water, or the

critical current in superconductors, we believe that one

mechanism causing yield is by the loss of the energy’s

convexity (causing irreversible re-arrangements of the

micro-structure, either locally or globally).

We focus on this mechanism in the context of

granular solid hydrodynamics (GSH), employing it in

an over-simplified (bottom-up) fashion by setting as

many parameters as possible to constant. Also, we

complemented/completed GSH by using various in-

sights/observations from particle simulations and cal-

ibrating some of the theoretical parameters – both con-

tinuum and particle points of view are reviewed in the

context of the research developments during the last

few years. Any other energy-based elastic-plastic theory

that is properly calibrated (top-down), by experimen-

tal or numerical data, would describe granular solids.

But only if it would cover granular gas, fluid, and solid

states simultaneously (as GSH does) could it follow the

systems evolution through all states into un-jammed,

possibly dynamic/collisional states – and back to elas-
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tically stable ones. We show how the un-jamming dy-

namics starts off, unfolds, develops, and ends. We follow

the system through various deformation modes: transi-

tions, yielding, un-jamming and jamming, both analyti-

cally and numerically and bring together the continuum

model with particle simulations, quantitatively.
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Dedication: SL Bob was not only an inspiring re-

searcher and colleague for me, he influenced my re-

search on granular matter so much! Also he became a

good friend over the 25 years I knew him. I will always

remember the great research visits to Duke, but also the

time we spent together on many international confer-

ences, like in Cargese or at several Powders & Grains

events. His passing away was a shock and leaves a big

gap for me.

Dedication: ML It was in the heydays of helium

physics when I, playing with some theories, first met

Bob, the conscientious and meticulous experimenter,

whose results are wise not to doubt, around which you

simply wrap your model. But grains were his real call-

ing. Many decades later, I am again busy fitting my pet

theory to his data, and that of his group – such as shear

jamming. Some things just never change.

1 Introduction

The macroscopic Navier-Stokes equations allow one to

describe Newtonian fluids with constant transport co-

efficients (e.g., viscosity). In many non-Newtonian sys-

tems, complex fluids [1], colloidal suspensions, review

[2,3,4], and especially granular matter [5] in its flowing

state [6], the transport coefficients depend on various
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state variables such as the density and the granular

temperature [7]. This interdependence and the pres-

ence of energy dissipation is at the origin of many

interesting phenomena: clustering [8], shear-band for-

mation [9], jamming/un-jamming [10], dilatancy [11],

shear-thickening [12,13,3,4] or shear-jamming [10,14],

plastic deformations [15,16,17,18,19,20], related also

to creep/relaxation [21,22,11,23,24], and many others.

The research on granular matter in the last decades –

to a good fraction inspired by works of Bob Behringer

and co-workers – will be briefly reviewed next.

1.1 A brief history of granular research

In order to describe solid-like granular matter on the

macroscopic scale, concepts from elasto- and visco-

plastic theories were used [25,26,15,27,28,16,29,30,31,

32,33] including instabilities, yield and failure [34,35,

36,37,38,28,39,40,41,42]. Recently, statistical mechan-

ics/physics concepts [43], helped to better understand

the probabilities for plastic deformations [17,44,45,

18,19,46,20,33], force network change/growth [47,48],

stress-based meso ensembles [49], or stress-relaxation

[21,22,11,23]. A traditional subject of research are

stress-fluctuations [50,51,52,53], and the quest for the

“effective temperature” [54,55,44,45] of thermal or a-

thermal granular packings [56,49,45]. Most recently,

universal scaling laws [57] were reported, and compres-

sion and shear in particularly small systems [58] could

be understood. Considering granular solids, their stiff-

ness, and the elastic moduli [59,30,60] have to be con-

sidered in the presence of non-affine deformations [60].

For this, over-compression and shear [59,46,61,62,57]

cyclic loading [63] or even thermal cyclic loading [64]

were applied.

When sheared granular matter starts to flow and (for

large enough strain) reaches a steady state, or criti-

cal state [65,66,67,13], the nowadays widely accepted

“classical” µ(I)-rheology [68] holds. It was recently ex-

tended to include friction, softness and cohesion [2,65,

66,69,12,70], but it does not have a fully tensorial form

[71,72], and doubts about its well-posed-ness are still

discussed [73,74,75].

Modern experimental techniques [67,76,77,24], also

with focus on low confining stress [78], shed new light

on classical works on the response to local perturba-

tions [79], jamming and un-jamming [80,81,79,22,82],

in particular by shear [10,83,46,84,57,62,85], and tran-

sients, fabric/micro-structure evolution [52,86,87,30,

46,88,89]. One of the classical experimental techniques

involves photoelastic materials that allow to visualize

stress [90,91,92], as complemented by a huge amount

of particle simulations, e.g., see Ref. [9], or for a most

recent example, see Ref. [93] and references therein.

One important success of granular research was to bring

solid-like and flowing behavior of granular matter to-

gether, e.g., in a continuum theory with fluidity [94,

44,18,45], and to understand anisotropy [86,66,88,89],

also shape induced [95,96], as well as involving the rota-

tional degrees of freedom and micro-polar models [2,97,

98,99,100,101], not to forget wet particle systems [3,4],

for which a thermodynamically consistent theory [102]

and numerical solutions [103] were recently proposed.

1.2 Open challenges

Some open questions are: How can we understand

phenomena that originate from the particle- or meso-

scale, which is intermediate between atoms and the

macroscopic, hydrodynamic scale? And how can we for-

mulate a theoretical framework that takes the place of

the Navier-Stokes equations?

A universal theory must involve all states granular

matter can take, i.e., granular gases, fluids, and solids,

as well as the transitions between those states. What are

the state variables needed for such a theory? And what

are the parameters (that we call transport coefficients)

and how do they depend on the state variables?

Main goal of this paper is to propose a minimalist

candidate for such an universal theory, able to capture

granular solid, fluid, and gas, as well as various modes

of transitions between these states. The model, remark-

ably, involves only four state variables, density, momen-

tum density (vector), elastic strain (tensor), and gran-

ular temperature. It is a boiled down, simplified case

of the more complete theory GSH [104,105,106,107,

44,45], but complemented by insights based on DEM,

see Ref. [46] and references therein, and modified such

that it works below, above and during transitions. For

the sake of transparency and treatability, we reduce

most transport coefficients and parameters to constants

whenever possible – without loss of generality.

Each transport coefficient is related to the propa-

gation or evolution of one (or more) of the state vari-

ables that encompass the present state of the system.

For simple fluids [1,108], it is possible to bridge between

the (macroscopic) hydrodynamic and the (microscopic)

atomistic scales; as an example, the diffusion coefficient

quantifies mass-transport mediated by microscopic fluc-

tuations.

In the case of low density gases, the macroscopic

equations and the transport coefficients can be ob-

tained using the Boltzmann kinetic equation as a

starting point. For moderate densities, the Enskog
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equations provide a good, quite accurate description of

dense gases (or fluids) of hard atoms [1], or of particles

including the effects of dissipation, which results in

what is nowadays referred to as standard kinetic theory

(SKT) [109,7]. Beyond SKT one can only reach out

(empirically) towards realistic systems [110,8,111],

and beyond, see, e.g., [12,4]. The limit of granular

fluids is where other coefficients, like the viscosity,

actually begin to deviate from SKT. This takes place

well below jamming, and lead to a divergence [12,

112,113] when the granular fluid becomes denser [8,

114,111], approaching jamming, i.e., the state that we

could call a granular solid, as described by classical

solid mechanics [115]. Recent research also considers

soft particles [113,70,116] for which jamming changes

from a sharp to a rather smooth transition. One

objective of this paper is to bring together funda-

mental theoretical concepts of continuum mechanics

[117,31,45,118,102] with observations made from

particle simulations for simple granular systems in the

gas, fluid, and solid states, including also the transi-

tions between those states [8,119,120,121,113,46,111].

1.3 About states of granular matter

When exposed to external stresses, grains are elasti-

cally deformed at their contacts. In static situations,

there is only elastic energy; in flowing states, some of

the elastic energy is transferred to kinetic energy and

back1, as sketched in Fig. 1 for the example of slow

1 As definition of states, flowing states range from dilute
granular gases via inertial, collisional granular fluids, to quasi-
static flows and plastically (irreversibly) deforming granular
solids, excluding only perfectly static, elastic granular solids
(e.g., probed by elastic waves). The most interesting regime is
around quasi-static flows where both solid and fluid features
are important [83], with considerable permanent and fluctu-
ating energy densities, we and wT , respectively, summing up
to the total w = we + wT . Note that wT contains all kinetic
energy, Ekin, and also the fluctuating part of the potential
energy, Efpot, i.e., we = (Epot−Efpot)/V , as discussed next.
The density (equivalent to the volume fraction, ρ ∼ φ) alone
is not sufficient to characterize the state of a particle sys-
tem, even though “magic” densities like random close or lose,
φRCP and φRLP, respectively, are often used, but being highly
material dependent they are not unique state descriptors. In
addition to density, the ratio of kinetic to potential, elastic
energy in the system, K = Ekin/Epot, is one more possi-
bility to characterize its state: gas (φ � 1, K � 1), fluid
(φ < φRLP, K > 1) dense collisional flow (φ ∼ φRLP, K ∼ 1),
quasi-static flow (φ ∼ φRCP > φRLP, K � 1), granular solid
(K ≈ 0), static (K = 0), and the extreme, athermal case
(K ≡ 0, maintained at all times), as can be realized by en-
ergy minimization, e.g., see Ref. [121] and references therein.
The contribution of potential energy to the total energy is
1/(1 +K), but using the fluctuating fraction of total energy
defines the states as: gas (wT /w = 2/(1 + K) � 1, due to

Epot = Efpot), collisional (wT /w ∼ 1), intermediate quasi-

isotropic jamming, and – after an overcompression cy-

cle – eventually un-jamming. Note that the jamming

transition at very small (yet finite) compression rate

appears smooth/continuous, whereas the un-jamming

transition is rather sharp/discontinuous.

Grains yield differently for vanishing or finite Tg. In

motion, for Tg 6= 0, yield is a continuous phenomenon,

i.e., state variables vary continuously. If the grains are

at rest initially, Tg = 0, yield is discontinuous – as ev-

idenced by a layer of grains on a tilted plane. Discon-

tinuity is mainly in the equilibrium value of the elastic

stress. It is finite in the convex region and zero in the

concave one, as it always relaxes away there. Any dis-

continuity of a phase transition is always in the equi-

librium values of some quantities.

The behavior of very slowly compressed particles in

Fig. 1 shows that even such little dynamics allows for a

rich phenomenology below and above jamming, where

the yellow area corresponds to a dense fluid with solid

features – just below jamming, while the cyan area cor-

responds to a solid with fluid-like features – jammed,

but strongly unstable (see the steps and wiggles in pres-

sure and coordination number).

The capability of granular solids to remain quies-

cent, in mechanical equilibrium, under a given finite

stress is precarious. For small perturbations they will

return to their original state. If pressure or shear stress

become too large, the grains will, suddenly, start mov-

ing – either locally or globally [17] – with a decaying

elastic stress. This qualitative change in behavior is an

unambiguous phase transition. We shall refer to the re-

gion capable of maintaining the global, overall equilib-

rium of static grains as elastic, and its boundary (in the
space spanned by the state variables) as the yield sur-

face. For local loss of elasticity we rather use the term

plastic, irreversible events, see Refs. [19,58].

Granular systems will also un-jam for vanishing

pressure and a continuous reduction of density, though

we reserve the term yield for the (sudden) loss of elas-

tic stability: Grains un-jam in either case, they yield

only when the elastic stress, in particular the pressure,

is finite.

static and solid-like (wT /w = 2K/(1 + K) ≈ 2K � 1, due

to equipartition Ekin = Efpot), static, solid (wT /w = 0), and
crystalline ordered, possibly at φ� φRCP.
Main message of this paper is that, besides density, only two
additional scalar state-variables are sufficient to encompass
all possible (isotropic) states and transitions of a system,
namely the isotropic elastic strain – encompassing the jam-
ming density, φJ , itself [46] – and a granular temperature
Tg ∝ δv ∝ √wT , encompassing the velocity fluctuations, δv
[18]. For anisotropic (sheared) states at least one more state
variable is needed.
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Fig. 1 Sketch of isotropic jamming and un-jamming, with
dimensionless compression rate Iv < Iv(φ0

J = 0.6608) =

ε̇vdp/
√
P∆ρp = 1.2× 10−5, of frictionless, polydisperse par-

ticles, from simulations in Ref. [46], with reversal at max-
imal density φmax = 0.9, so that unjamming occurs at
φ1
J = 0.666. Displayed are the coordination number Z (green)

that defines dynamic initial jamming at Z(φ0
J ) = Z0, the

scaled dimensionless elastic pressure P = P∆dp/kn (blue),
with P (φ0

J ) = 4 × 10−5, and the fraction of kinetic energy
K/(1 +K) (red), as discussed in footnote 1: For initial jam-
ming, the yellow area designates the dense collisional flow
state (K ∼ 1), while the cyan area designates the quasi-static
(isotropic) flow state (K � 1). The thin magenta line is a fit
to Eq. (11) in Ref. [46] of all solid-like high-pressure data (us-
ing K < 5× 10−4, i.e., φ ≥ 0.665), on the initial compression
branch (data out of this plot, well above the rather unstable
cyan area, up to much larger φmax), yielding an extrapolated
jamming density of φPJ = 0.66125 (around which the cyan
area is centered), and a dimensionless modulus p0 = 0.06272
(note that p0 → p0/φPJ in Ref. [46]), and the nonlinear
coefficient γp = 0.179 that accounts for the large overlaps
of particles in the simulation, for more details see Ref. [46].
Note that this full-range fitting perfectly collapses with the
unloading branch (not visible), but that it is fundamentally
different from the calibrated comparison between simulation
and model solution, as presented in Sec. 6.

Starting from the elastic region, decompression (ten-

sion) reduces the density and the elastic deformations of
the grains – until the latter vanish and the system un-

jams. Decompressing further just reduces the density

accordingly. The system is now un-jammed in the sense

that one can change the density without any restor-

ing force, i.e., the elastic energy remains zero. In re-

verse, compression only increases the density, as long

as it is smaller than the jamming density. At jamming

both the elastic deformations and the associated energy

start to increase with density. In contrast, there is a dis-

continuity leaving the elastic regime at finite values of

elastic stress. It is a sudden transition from quiescent,

enduringly deformed grains, to moving ones oscillato-

rily deformed due to “jiggling” particle motions. This

transition needs to be explained, to have a model for.

And it is clear that the transition must be encoded in

the elastic energy – the only quantity characterizing the

quiescent state – not in the dynamic/fluctuating con-

tributions to energy.

In the elastic region, grains appear solid when at

rest, but they will flow if subject to an imposed shear

rate, and appear liquid. This continuous change in ap-

pearance is well accounted for by any competent dy-

namic theory or rheology, it is not a transition 2 .

Moreover, flowing grains in the elastic region do feature

a macroscopic elastic shear stress, with an associated

elastic energy (even though granular contacts switch

continually), something no Newtonian liquid is capable

of. Also, the shear stress remains finite when the grains

stop flowing, which is not the case in Newtonian fluids.

So there are two different flowing states, either with

finite elastic stress/strain, or with vanishing ones, which

includes granular gases as accounted for by the kinetic

theory, see Refs. [8,111] and references therein. There

is also a transition between them, as possibly related

to (dry) liquefaction [35], but not to be confused with

liquefaction due to a fluid between the particles, which

is completely disregarded in this study of dry granular

matter (even though the fluid stress can be consider-

able in wet system). We take both transitions, either

leaving the quiescent state, or the flowing one, as the

same transition, with the same underlying physics. In

fact, encoding the transition in the elastic energy cer-

tainly affects the flowing state as well. The mechanism

for yield is here related to elastic energy (irrespective

whether the pressure or the shear stress is too large, or

the density too small), as traditionally encompassed by

concepts like plastic potentials, yield functions, or flow

rules [29,117,31,33,101], see Fig. 2 below and textbooks

like Ref. [117].

1.4 Relation to other systems in physics

We do not think that the transition is due to spon-

taneously broken translational symmetry – the usual

mechanism giving rise to static shear stresses, as in

any fluid-solid transitions. The quick argument is: Con-

sisting of solid, grains already break translational sym-

metry. More importantly, the loss of equilibrium and

granular static is caused by the shear stress or pressure

being too strong.

This is an indication of an over-tightening phe-

nomenon, of which the (pair-breaking) critical current

is a prime example. If a superconductor conducts elec-

tricity without dissipation, it is in a current-carrying

equilibrium state. If, however, the imposed current ex-

ceeds a maximal value, the system leaves equilibrium

2 This is the macroscopic view on a representative volume
much larger than the single particles; whether plastic gran-
ular flow and elastic instability transitions are connected on
a local scale of a few grains is not excluded here, since there
is ample evidence of local instabilities, force-chain buckling,
trimer deformations, etc., see Refs. [34,122,39,123,42,14], on
the particle scale, which is not addressed in this paper.
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and enters a dissipative, resistive state. The super-

fluid velocity, vsf ∼ ∇Ψ , given by the gradient of a

quantum mechanical phase, Ψ , is the analogue of the

strain. The dissipationless current, jsf = ∂w/∂vsf ,

given by the derivative of the energy with respect to

vsf , is the analogue of the elastic stress. The over-

tightening transition in superconductivity is well ac-

counted for by an inflection point, at which the energy

turns from stably convex to concave, see the classic pa-

per by Bardeen [124]. The close analogy between the

two systems is a good reason to employ the same ap-

proach here, to postulate that the surface of the cone

in Fig 2 can be related to an inflection surface of the

elastic energy.

1.5 About elastic granular matter

The granular solid state is contingent on granular mat-

ter capable of being elastic, for which there is ample

evidence, see e.g. Refs. [125,6,126,79,127,128,49,120,

90] and references therein. In addition to the material

stiffness, many other material properties (including co-

hesion, friction, surface-roughness, particle-shape) de-

termine the elastic response of granular matter. For

soft and stiff materials the deformations are, respec-

tively, considerable and slight, but never zero. Because

of their Hertz-like non-linear contacts, grains are in-

finitely soft in the limit of vanishing contact area (de-

formation). Therefore, at any given finite force, defor-

mations are always sufficiently large to display the full

spectrum of elastic behavior, including a considerable

static shear stress (enabling a tilted surface), and elas-

tic waves. Even the simplest model material, consisting

of perfectly smooth spheres of isotropic, linearly elastic

material, displays non-linearity due to their Hertz-type

contacts, on-top of the contact network (fabric) and its

re-structuring. Only in computer simulations is it pos-

sible to remove the first and focus on the second, see

e.g. Ref. [46].

Elastic waves propagate in granular media, display-

ing various non-linear features, including anisotropy,

dispersion and rotations, see e.g. Ref. [129,130,131,99,

132,133,100,134,101] and references therein. The dis-

creteness and disorder of granular media add various

phenomena – already for tiny amplitudes – such as dis-

persion, low-pass filtering and attenuation [135,99,136,

134]. With increasing amplitudes, a wide spectrum of

further phenomena is unleashed, among which the be-

ginning of irreversibility and plasticity, see Ref. [20] in

this topical issue, and references therein, and the loss of

mechanical stability [137], what we call “yield” in the

following.

1.6 Yield: About the limits of elasticity

To envision the yield surface, we consider the space

spanned by three parameters: pressure P , shear stress

σs, and void ratio e = (1− φ)/φ (where ρ = ρpφ, with

material density ρp and volume fraction φ), ignoring the

granular temperature (i.e., fluctuations of kinetic en-

ergy), as discussed in Ref. [138] and so many papers fol-

lowing. Based on the observation of the Coulomb yield

and the virgin consolidation line, we assume that the

yield surface is as rendered in Fig. 2. Elastic, jammed

states, maintained by deformed grains, are stable and

static only inside it 3.

The Coulomb yield line, see Fig. 2(b), can be

reached by increasing the shear stress at given confin-

ing pressure. When the shear stress exceeds a certain

level, the system yields, un-jams and becomes dynamic.

No static, stable elastic state exists above the Coulomb

yield line, as evidenced by a sand pile’s steepest slope.

It is imperative to realize that (what we call) the

Coulomb yield line is conceptually different from the

peak shear stress achieved during the approach to the

critical state at much larger strains. Coulomb yield is

the collapse of static states – such as when one slowly

tilts a plate carrying grains until they start to flow

(max. angle of stability). Its behavior is necessarily en-

coded in the system’s energy, because this phenomenon

does not at all involve the system’s dynamics. The crit-

ical state, including the peak shear stress – though re-

ferred to as “quasi-static” – is a fully dynamic and ir-

reversible effect. It is accounted for by the stationary

solution at given strain rates in GSH. The angle of re-

pose (always smaller than the max. angle of stability)

is in GSH given by the critical friction angle [44,45].

In the absence of shear stresses, the maximally sus-

tainable pressure depends on the void ratio, e, as ren-

dered in Fig. 2(a). Starting from a given e, slowly in-

creasing P , the grain-structure will collapse and yield at

this pressure, to a smaller value of e, such that the final

state is stable, static, and below the curve of Fig. 2(a).

This is because when applying a slowly increasing pres-

sure, the point of collapse is (ever so) slightly above the

curve; and the end point below it is typically also close.

This evolution resembles a stair-case, with the granular

medium increasing its density by hugging this curve,

which frequently referred to as the virgin/primary con-

solidation line, or simply the pressure yield line. The

line cuts the e-axis at the random loosest void ratio,

e0, above which no elastic stable states exists.

3 However, this does not exclude the possibility that there
are plastic deformations possible inside (in finite systems) as
evidenced from particle simulations, e.g., in Refs. [27,120].
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Fig. 2 Granular yield surface, or the jamming phase dia-
gram, for Tg = 0, as a function of the pressure P , shear
stress σs, and void ratio e, as rendered by an energy expres-
sion in [107]. Panel (c) is the 3D combination of (a) and
(b); with (b) depicting how the straight Coulomb yield line
bends over, depending on the void ratio e – a behavior usu-
ally accounted for by cap models in elasto-plastic theories;
while (a) depicts the maximal void ratio e (equivalent to the
density) plotted against pressure P , or the so-called virgin
consolidation line (VCL). In panel (a), the dotted line is an
empirical relation, e = e1−e2 log(P/P0), with P0 = 0.5 MPa,
e1 = 0.679 and e2 = 0.097, approximating the VCL, but not
valid for P → 0. The thick solid line cuts the e-axis at e0,
with the intersection being the lowest possible, random loos-
est packing value, see Ref. [107] for details, where also the
thin solid line is discussed. Thus e0 also defines the lowest
possible jamming volume fraction, φJ0 = 1/(1 + e0), see Ref.
[46], with static, elastic states possible only below the VCL,
as will be shown in Secs. 5 and 6.

Because of the pressure yield line, the Coulomb yield

curve cannot persist for arbitrarily large P at given

e. Rather, it bends over to form a “cap”, as rendered

in Fig. 2(b), since an additional shear stress close to

the pressure yield line will also cause the packing to

collapse. (The shape of the cap depends on the inter-

play of isotropic and deviatoric deformations as well as

the probability for irreversible, possibly large-scale re-

structuring events of the micro-structure, i.e., the con-

tact network, including also the sliding of contacts, but

also breakage of particles, which is, however, excluded

from this study. Whether the picture sketched here is

sound without breakage remains an open question.)

Merging 1(a) and 1(b) yields the elastic region below

the yield surface, as given in Fig. 2(c). Although the e-

axis, for P, σs = 0, see Fig. 2, is also referred to as the

loci of (isotropic) un-jamming, the elastic stress goes

continuously to zero here, because the grains are suc-

cessively less deformed. There is, as already discussed

above in subsection 1.3, no discontinuous phase transi-

tion or yield here, except for the coordination number,

see Fig. 1. Point is, concerning only this one point of

the plot, if the elastic stresses vanish, both in the con-

vex and concave region, nothing much resembling a dis-

continuous transition happens there. Isotropic jamming

and un-jamming, as well as the discontinuity in the co-

ordination number on the isotropic e-axis is discussed

in detail at various spots in this paper, see subsections

1.3, 3.2.3, and 4.1.1.

Next, we summarize all different symbols and nomen-

clatures.

1.7 Notation and symbols

This paper is a cooperation of co-authors, whose no-

tational baggage from past publications clash with one

another. In the dire need to compromise, we ask the

readers to suffer – with us – using varying symbols

and notations. Our state-variables are: density, ρ, mo-

mentum density, ρvi, granular temperature, Tg, and the

elastic strain, as summarized here.

1. The bulk density, ρ, is related to the volume frac-

tion, φ = ρ/ρp (with ρp the particles’ material

density), the porosity 1 − φ, and the void ratio

e = (1 − φ)/φ. (Later, we shall choose units such

that ρp = 1, so that volume fraction and bulk den-

sity are identical 4.)

2. The conserved momentum density gi defines the ve-

locity vi = gi/ρ. The symmetric part of the velocity

gradient is

vij := v(i,j) := 1
2 (∇ivj +∇jvi) = −ε̇ij = Dij

The total strain rate ε̇ij is positive for compression

and negative for tension.

The symbol vij is usual in condensed matter physics,

see [108,115,139]. It is also the one employed in

most previous GSH-publications. The notation Dij

is common in theoretical mechanics [31,102], while

ε̇ij , or γ̇, are used, e.g., in soil mechanics and related

literature [117,101].

4 This choice requires a constant ρp as true for rather stiff
materials or, e.g., for soft gel particles, however, for materials
like soft foams and agglomerates, or under thermal expansion,
ρp will become an independent state variable and the non-
dimensionalization will work only with a reference density
ρp(P = 0, T = T0).



Un-jamming: statics to dynamics 7

3. Subscripts, such as i,j,k,l, refer to components of

tensors in the usual index notation, with double-

indices implying summation, the comma indicating

a partial derivative, as in v(i,j); the superscript ∗

denotes the respective traceless (deviatoric) tensor.

Using the summation convention, the volumetric

strain rate is abbreviated as: ε̇v = ε̇ll = −vll =

−Dll = −trD, where the last term is in symbolic

tensor notation. The deviatoric strain rate is thus

ε̇∗ij = −v∗ij = −D∗ij , with the norm vs :=
√
v∗ijv

∗
ij =

γ̇ = Ds = (2JD2 )1/2, where JD2 is the second devia-

toric invariant, insensitive to the sign convention.

4. The elastic strain, εeij ≡ −uij , is the tensorial state

variable on which the elastic (potential) energy de-

pends 5. It is always well-defined and unique, in

contrast to the total or plastic strains, which are

not, and thus will not be used as state variables

for (constitutive) modeling. The respective strain

rates, however, are well-defined and thus are used.

The strain rate was already given (see item 2.),

ε̇ij = −vij , so that the plastic strain rate is defined

as: ε̇pij = ε̇ij − d
dtε

e
ij (see also item 7.).

5. The isotropic elastic strain

∆ := −ull = εell = εev = log (ρ/ρJ)

is positive for compression. It may be seen as the

true strain relative to a stress-free reference config-

uration – if ∆ > 0. Arriving at ∆ = 0, the system

un-jams at ρuJ = ρ and the jamming density remains

the actual one. 6

6. The norm of the deviatoric elastic strain is, in ac-

cordance to the general scheme, us =
√
u∗iju

∗
ij =

(2Ju2 )1/2.
7. In general, we take ∂

∂t as the partial time deriva-

tive, and d
dt as the total one, including all convec-

tive terms. Hence, with the vorticity tensor given as

5 Note the different signs in the last two terms, i.e., the
isotropic elastic strain, ∆ = εev, is positive for compression,
whereas u∗ij is negative (if eigenvalues are considered).
6 Generalizing GSH, we allow negative elastic strains ∆ =

εev here, interpreting those as the separation distance between
particles – or their mean free path – in order to catch both
jammed and un-jammed situations. Note that the elastic en-
ergy of a negative ∆ is identically zero, and that a negative
∆ is not independent of the density ρ. Compressing from an
un-jammed state, the system jams at ∆ = 0, towards ∆ > 0
and ρ > ρJ . In isochoric situations (constant density), an
evolution of the state variable, ∆, the isotropic elastic strain,
implies an evolution of the (enslaved, dependent) jamming
density, ρJ = ρ exp(−∆), as proposed and studied in de-
tail in Ref. [46]. The physics clearly changes between posi-
tive (jammed) and negative (un-jammed) states, but for the
sake of brevity, below jamming, we limit ρJ ≥ ρJ0 and thus
∆(ρ) = log(ρ/ρJ0), in cases where it would drop below its
absolute limit, ρJ0, which can be seen as the random loosest
packing density.

Ωij ≡ v[i,j] ≡ 1
2 (∇ivj −∇jvi), one has (as example)

the total time derivative of the elastic strain

d
dtε

e
ij =

(
∂
∂t + vk∇k

)
εeij +Ωikε

e
kj − εeikΩkj . (1)

Being off the focus here, the convective and vortic-

ity terms are neglected, so that d
dt ≡

∂
∂t . The dots in

ε̇pij and ε̇ij are only a (convention preserving) indica-

tion of rates, but do not represent the mathematical

operation above.

8. The total stress is not an independent state vari-

able, but rather given by the energy density and en-

tropy production, as discussed in the classical GSH

literature. In the simplified version, it may be writ-

ten as σij = πij + PT δij + σvisc.
ij , with elastic, ki-

netic/granular temperature and viscous contribu-

tions. The isotropic stress is referred to as pressure,

P = 1
3σkk, and the elastic pressure is P∆ = 1

3πkk,

for three dimensions D = 3.

9. The symbols B and G are used in the definition

of the isotropic and deviatoric (shear) elastic en-

ergy density. In previous GSH-papers [107,44,45],

the symbol A was used for G, the classical symbol,

but since A is referred to as the anisotropy modulus

in other studies, see Ref. [46], we stick to G here 7.

10. The granular temperature used in GSH is Tg ∝√
wT , encompassing both kinetic and potential fluc-

tuating energy contributions. The granular temper-

ature used in kinetic theory and DEM is different,

denoted as TG = TK = 2Ekin/MD, with total mass

of all particles, M , in dimension D, ignoring the

potential part. Comparing GSH-formulas in the gas

limit to that of the kinetic theory [109,7,8,114,111],

one should remember

T 2
g ∼ TG . (2)

In the following, we will only use Tg, which has the

units of velocity scaled by the particle diameter, i.e.,

that of an inverse time, or a rate, very similar to the

fluidity, g, studied and discussed in Ref. [18], and

references therein.) 8.

7 Note that (calligraphic) symbols B 6= B, G 6= G, and
A, in general, are the (tangent) moduli, representing the sec-
ond derivatives of the elastic energy density with respect to
isotropic and deviatoric elastic strains, or mixed, respectively;
symbols B∆, G∆ are again different and are the secant mod-
uli; for more details see subsections 3.2.2 and 3.2.3.
8 The two temperatures Tg and TG are different in the

following sense. In thermal equilibrium of a static granular
solid, one has TG = 0, but Tg = T , since it is defined as equal
to the true temperature in equilibrium, see Eq. (21) and Refs.
[107,44,45]. In granular gases, if thermal equilibrium could
ever be reached, one would have TG = T , a relevant situa-
tion if one starts to consider dissipation and the consequent
heating of the grains. By not claiming that TG is a “temper-
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1.8 Overview

In what follows, we shall, in Sec. 2, consider the sig-

nificance of an inflection surface, of a convex-concave

transition in the energy, as relevant for classical sys-

tems, transiently elastic systems and granular matter.

We then present a review of GSH and new constitu-

tive relations based on particle simulations, as well as

a minimalist version, in Sec. 3, allowing for analytic so-

lutions in Sec. 4, and numeric calculations to catch the

transients in Sec. 5. A quantitative comparison and cal-

ibration with particle simulations is carried out in Sec.

6, before we conclude in Sec. 7.

2 Equilibrium conditions and dissipative terms

In this section, we first revisit the reason for thermo-

dynamic energy’s convexity, and derive the equilibrium

conditions for three systems: elastic, transiently elastic

and granular media. There is one equilibrium condition

for each state variable, that maximizes its contribution

to entropy or, equivalently, minimizes its contribution

to energy. Examples for equilibrium conditions are uni-

form temperatures and uniform stresses. As these con-

ditions represent extremal points, the energy needs to

be convex to be minimal, for the system to be stable.

Then we make the general point that every equilib-

rium condition, if not satisfied, is a dissipative channel

that gives rise to a negative/dissipative term in the evo-

lution equation of the associated state variable. As a

result, the state variable relaxes, towards satisfying the

condition. In a closed system, all variables will eventu-

ally satisfy all their respective conditions, which is the

state we called equilibrium.

If the energy is concave, equilibrium conditions rep-

resent maxima of the energy with respect to variation of

a state-variable 9. The dissipative terms will thus drive

ature” of the granular degrees of freedom, taking it only as a
measure of the velocity fluctuation squared, TG ∼ |δvi|2, one
may go on using TG in denser ensembles too, ignoring the
fluctuations of potential energy it has lost the meaning of a
temperature. Conversely, one may use Tg in granular gases,
anyway, taking it as Tg ∼ |δvi| � T .
While Tg = T does hold in granular static equilibrium,
TG = T can never be reached, as any finite TG, for finite
sized particles, translated into temperature, leads to values
of order of the inner temperature of the sun. Only in the
atomic/molecular limit of “particles” one has TG analogous
to kBT . It is therefore more sensible to employ Tg through-
out.
9 Note that non-local terms in the sense of diffusion of

granular temperature are very similar to the “non-local” dif-
fusive evolution equation for fluidity, see the discussion in sub-
section 3.1. An essential difference here is that our particles
are (strongly) deformable, which is not contained/considered
in many other works; we do exclude breakage, however.

the system away from equilibrium, producing, e.g., non-

uniformity in temperature and stress fields. When this

happens, what micro-mechanical mechanisms it origi-

nates from, is necessarily more specific. How the dy-

namics further evolves depends on the system one con-

siders. In the classical van der Waals theory of the gas-

liquid transition, droplet formation is the basic mech-

anism. In granular media, we propose the following

mechanism.

In the stable region, within the cone of Fig 2, the

dissipative term in the equation for the elastic strain

serves to maintain stress uniformity. It remains incon-

spicuous as long as one studies the evolution of uniform

stresses. Outside the yield surface, it forces the system

to leave stress uniformity. Non-uniform stresses acceler-

ate grains in varying directions, producing jiggling and

thus granular temperature which, in turn, allows the

stress to relax, pushing the system back into the con-

vex region.

This is what we believe happens in grains at yield

and beyond the transition. Setting up a dynamical

model for following the system through the transition

to different states is the main purpose of this paper.

2.1 Elasticity

Consider an elastic system characterized by two state

variables, the entropy density, s, and the elastic strain,

−εeij ≡ uij = 1
2 (∇iUj +∇jUi), (3)

with a thermodynamic energy density that is a function

of both, w = w(s, uij) [115].

A textbook proof of energy convexity considers only

the entropy as a variable, and involves an elastic system

connected to a heat bath. A temperature fluctuation

(associated to entropy fluctuations) vanishes only if the

energy is larger with it than without, which is shown

to imply convexity [140]

In a more general consideration, we start with the

assumption that the system is stable and has an equi-

librium for given values of s and uij . Since the elastic

stress, πij ≡ −∂w/∂uij is symmetric, πij = πji, we may

write the total differential of the energy density as:

dw = Tds− πijduij = Tds− πijd∇jUi , (4)

with temperature T = ∂w/∂s. We varied this energy by

(i) keeping
∫
sdV = const., or δ

∫
(w − TLs) dV = 0,

with Lagrange parameter TL = const.; (ii) forbid-

ding external work, i.e., assuming a closed system:
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πijδUi dAj = 0; and (iii) using Gauss’ theorem 10,

the result is

0 =

∫
[Tδs−πijδ∇jUi − TLδs] dV

=

∫
[(T − TL) δs+ (∇jπij) δUi] dV. (5)

With δs and δUi varying independently, and TL =

const., the equilibrium conditions may be written as

∇iT = 0, ∇jπij = 0. (6)

These are extremal conditions. They represent an en-

ergy minimum and stable equilibrium, only if deviations

from them yield an energy increase. Therefore, insert-

ing T = T eq + δT , πij = πeqij + δπij , with ∇iT eq = 0

and ∇jπeqij = 0, we require

δ2w = δTδs− δπijδuij > 0. (7)

Assuming first δuij ≡ 0, we may write δ2w = δTδs =

(∂T/∂s)(δs)2 > 0, implying

∂2w

∂s2
=
∂T

∂s
> 0,

or that the energy w is a convex function of s. As a

result, temperature fluctuations will diminish, and the

state characterized by a uniform temperature is a sta-

ble equilibrium. Conversely, if the energy is concave,

∂2w/∂s2 < 0, the condition ∇iT = 0 represents a max-

imum of energy, and the system is unstable. Any fluctu-

ations in entropy will move it away from uniform tem-

perature. In the case of the van der Waals transition

between gas and liquid, a uniform single-phase system
is moved to the coexistence of two phases, with different

entropy densities, but the same temperature.

Next, as used explicitly below, in subsections 3.2.2

and 3.2.3, assuming δs ≡ 0, we order the six compo-

nents of πij and uij each as a 6-tuple vector, denoted

by Greek letters, and require

δ2w = −δπijδuij = −δπαδuα =
∂πα
∂uβ

δuαδuβ > 0. (8)

This implies that the 6x6 Hessian matrix

∂2we
∂uα∂uβ

= −∂πα
∂uβ

has only positive eigenvalues, (9)

10 According to Gauss’ theorem, the surface inte-
gral transforms as:

∮
πijδUi dAj =

∫
∇j(πijδUi)dV =∫

[(∇jπij)δUi + πijδ∇jUi] dV = 0. Using the definition of
the stress or traction vector, ti = πij n̂j , the surface inte-
gral can be rephrased,

∮
πijδUi dAj =

∮
tiδUi dA, allowing

to add tractions (or point/contact forces) at the surface of V ,
which would pop up on the right hand side of Eq. (5) but are
not used here.

implying that the energy w is a convex function of the

elastic strain uij . If there is at least one negative eigen-

value, the condition ∇jπij = 0 no longer represents

a stable state, because along the associated eigenvec-

tor, the energy is a maximum. The system can and

will depart from its previously elastic state, initially by

violating ∇jπij = 0, typically rendering the stress non-

uniform.

To obtain static elastic solutions, we solve∇iπij = 0

for given boundary conditions. This is equivalent to

looking for minima of the elastic energy. The solutions

are stable if the elastic energy is convex. They are un-

stable otherwise, and devoid of physical significance.

The more general consideration, including both δs

and δuij , leads to a 7x7 matrix that, for stable equilib-

ria, must possess seven positive eigenvalues.

A complete consideration for elasticity requires also

the inclusion of the density, ρ, and momentum den-

sity ρvi as the energy’s variables. This, being somewhat

more lengthy, would distract from the present concern.

The associated equilibrium conditions, with the grav-

itational acceleration, gi, and the chemical potential

given as µ = ∂w/∂ρ (as derived in Refs. [141,118]) are:

∇iµ = −gi, (10)

−ε̇ij ≡ vij ≡ 1
2 (∇ivj +∇jvi) = 0, (11)

∇iP = s∇iT + ρ∇iµ = −ρgi . (12)

The force equilibrium ∇iP = −ρgi is a direct result of

∇iT = 0 and ∇iµ = −gi. All three equations express

minimal energy, or maximal entropy.

If any of the equilibrium conditions 11 are not sat-

isfied, dissipative currents appear to counteract: heat

diffusion ∼ ∇iT in the evolution equation for s, viscous
stress ∼ vij in the evolution equation for ρvi, and a

term ∼ ∇kπik, in the equation for the displacement,

∂
∂t
Ui − vi = −β∇kπik. (13)

(Analogous to heat-conductivity, β quantifies the

strength of the dissipation. Taking it as a scalar is

an approximation.) All these terms serve the sole pur-

pose of restoring the respective equilibrium conditions:

∇iT, vij ,∇kπik = 0.

The dissipative “displacement rate” ∼ ∇kπik, as a

necessary result of thermodynamics, has been first rec-

ognized in the classical 1972-paper: “The unified hydro-

dynamic theory for crystals, liquid crystals, and normal

fluids”, by Martin, Paraodi and Pershan [139]. It drives

11 Deviations from ∇iµ = −gi do not lead to a dissipa-
tive mass current, because the mass current is necessarily
given by the momentum density ρvi. The underlying reason
is Galilean invariance, implying the local conservation of the
booster [141,118].
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the system, boundary conditions permitting, toward a

constant stress. If the stress is not constant, such as in

elastic waves, it contributes to wave damping. If one

concentrates on the evolution of constant stresses, this

term vanishes and is irrelevant. However, if the energy

is concave, this term can drive the system away from

uniform stresses and even will result in instabilities (nu-

merical as well as physical). Writing the stress gradient

in the notation of the 6x6 matrix, see Eq. (9), as:

∇kπjk → ∇kπα = ∂πα/∂uβ∇kuβ , (14)

we see that, if the matrix ∂πα/∂uβ has a negative eigen-

value, the corresponding term will its flip sign. Instead

of keeping the stress uniform, it drives the stress to-

wards non-uniformity. This in turn accelerates mass

points, possibly leading to non-uniform velocities vi and

thus finite strain rates, vij ≡ −ε̇ij . Initially, the stress

perturbation will grow along the direction associated

with the negative eigenvalue, but for finite times, this

is by no means true, as the system will try to move to-

wards a stable equilibrium state, whatever that is. See

the next sections 4 and 5 about what happens in granu-

lar matter without gradients. Discussing the possibility

of a relation to gradient plasticity is beyond the scope

of this paper.

Inserting Eq. (13) in the definition of the elastic

strain, Eq. (3), reads

∂
∂tuij − vij ≡ −

∂
∂t
εeij + ε̇ij =: ε̇pij (15)

= −∇i[β∇kπjk]−∇j [β∇kπik] ≡ ψij ,

which seems to suggest that the dissipative current

term, ψij , is simply the plastic strain rate, ψij = ε̇pij ,

which apparently exists even in classical solids if the

stress is nonuniform. This could be confusing, as it is

not related to typical plastic phenomena, such as con-

nected to concepts of plastic potentials or flow functions

(see Refs. [117,31,33]). The term plastic strain rate is

more appropriate for the other dissipative contributions

discussed in the next two sections, on transient elastic-

ity and granular media.

Note that heat diffusion and viscous stress exist in

any system, in which entropy and momentum are state

variables: liquids, solids, granular media, irrespective of

the microscopic interaction. Same holds for the dissipa-

tive term ψij , which exists in any system in which the

elastic strain is a variable. This is the reason it also

exists in granular media. Generally speaking, every dis-

sipative term strives to satisfy its equilibrium condition

by changing the value or distribution of the associated

state variable. Equilibrium is achieved if all equilibrium

conditions are satisfied, as entropy is then maximal.

2.2 Transient elasticity and plasticity

There are many transiently elastic systems in nature. If

quickly deformed, they are elastic and capable of restor-

ing their original shape. But this does not happen if the

deformation is kept longer; then the deformation is irre-

versible, plastic. One example are polymeric melts that

consist of entangled elastic strands, which elastically de-

form, but disentangle if given enough time. This leads

to a reduction, and eventually vanishing, of the elastic

stress. For such systems, the equilibrium condition is:

πij = 0, or, equivalently uij = 0 . (16)

Consequently, the evolution equation (15) takes the

form:

ε̇pij = ∂
∂tuij − vij ≡ −

∂
∂t
εeij + ε̇ij = −λeuij , (17)

with the plastic strain rate now a relaxation term,

with a positive coefficient λe. Employing essentially this

equation, including the convective terms of Eq. (1), a

wide range of polymer behavior including shear thin-

ning/thickening and the Weissenberg or rod-climbing

effect were reproduced [142,143].

It is noteworthy that the plastic strain rate in the

form ε̇pij = −λeuij is a diagonal Onsager term, hence

off-diagonal ones such as

ε̇pij = ∂
∂tuij − vij = −λTguij − pijklvkl (18)

are also permitted. They will turn out to be useful in

granular physics.

The close link, even identity, between transient elas-

ticity and strain relaxation on one hand, and plastic

behavior of irreversible shape change on the other, is

a useful insight. Similarly useful is the understanding

of the difference between elasticity and transient elas-

ticity. For the latter to be in equilibrium, the elastic

stress has to vanish, while a constant stress suffices for

the former. For verbal clarity, we denote

elastic equilibrium : ∇iπij = 0,

“plastic equilibrium” : uij ≡ −εeij = 0 , (19)

where “plastic equilibrium” is short for “transiently

elastic, long-term equilibrium”.

There is a further subtlety that we must address

here. If the polymer energy depends on both the den-

sity and the elastic strain, there are two contributions

in the stress: the pressure as given by Eq. (12) and the

elastic stress. Then the system may possess an equilib-

rium pressure even when Eq. (19) holds. However, if the

density is not an independent state variable, implying

P ≡ 0, an equilibrium pressure needs a finite ∆ ≡ −ull
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to be sustained, and uij = 0 cannot be the equilibrium

condition. Rather, it is given as

u∗ij ≡ −εe∗ij = 0, implying ε̇pij = −λeu∗ij , (20)

the vanishing of the deviatoric part, while the trace ∆,

not independent from the density, simply follows the

dynamics of the density. It does not relax.

Note that the relaxation time of ∆ and us need not

be the same. If that of ∆ is especially long, it may be

neglected for certain phenomena, for which the dynam-

ics is governed by ε̇pij = −λeu∗ij alone.

When the system is crossing an inflection surface,

the term −λeuij , in Eq. (17) is not affected, and con-

tinues to push the elastic strain toward uij = 0.

2.3 Granular matter

GSH was set up in compliance with thermodynamics

and conservation laws. Here, we discuss its structural

part, necessary if one is to be consistent with the gen-

eral principles of physics. In Sec. 3, a reduced complete

version of GSH is presented, including a few, as simple

as possible constitutive choices, which will be employed

later to study the jamming and un-jamming dynamics.

Two basic pieces of physics characterize granular

media: (1) They have two entropies: sg for the granular

degrees of freedom and s for the much more numer-

ous microscopic ones. (2) Depending on circumstances,

granular media may be elastic or transiently elastic.

Both elastic and plastic equilibria of Eqs. (19) are there-

fore relevant. However, note that the equilibrium (limit)

state is not necessarily ever reached, neither under per-

manent deformation, nor under free relaxation. In the

former case, the system is permanently pulled away

from the equilibrium (steady state is not equal to equi-

librium), while in the latter, if Tg relaxes fast enough,

the equilibrium cannot be realized by the other state

variables either.

Including sg as an extra state-variable, with Tg ≡
∂w/∂sg, the equilibrium condition is T = Tg, obtained

by maximizing
∫

(s + sg)dV ≈
∫
sdV , where sg � s

may be ignored. The equilibrium condition implies that

all degrees of freedom, microscopic as well as granular

ones, will eventually equilibrate with one another. Fur-

thermore, since for particles of grain size well above

molecular size, already for tiny velocity fluctuations

(jiggling), one typically has Tg � T by many orders

of magnitude, ∼ 1010, see item 10. in subsection 1.7,

we may set the equilibrium granular temperature to

zero,

Tg = T ≈ 0 . (21)

In analogy to the relaxation terms discussed above, the

evolution equation for sg must therefore possess a relax-

ation term ∼ Tg, pushing sg towards sg ∝ Tg = 0. This

dissipation/relaxation takes place due to collisions, with

rate ∼ Tg, in the collisional gas- and fluid-like regime.

In addition, analogous to the viscous heating term in

the hydrodynamic theory of Newtonian fluids, which

transfers kinetic energy into heat, via ηv∗ijv
∗
ij ≡ ηv2s →

T ∂
∂ts, there is a term that transfers kinetic energy into

“granular heat”, ηgv
2
s → Tg

∂
∂tsg. Therefore, assuming

∇iTg = 0, and ignoring other gradients, the evolution

equation for granular energy reads

Tg
∂
∂tsg = −γT 2

g + ηgv
2
s , (22)

with coefficient γ = γ(Tg) dependent on Tg, and the

compressional viscosity neglected, like convective and

diffusive terms, for the sake of brevity. To be used in the

following, after division by Tg and some re-writing 12,

the evolution equation for granular temperature reads:

bρ ∂∂tTg = −γ1T ∗g Tg + η1v
2
s . (23)

The effective rate of dissipation T ∗g = Tg + Te is dis-

cussed in more detail below in Secs. 3.1 and 4.

For given deviatoric (shear) strain rate, vs = |v∗ij | =
| − ε̇∗ij |, the steady state solution is given and discussed

in section 4.6 in the limit cases γ0 � γ1Tg and Te � Tg:

Tg = T (ss)
g = vs

√
ηg
γ
≈ vs

√
η1
γ1
,

a result known to hold in granular gases 13, up to mod-

erate densities [7,8,111]. In this case, the system is in

the rate-independent elasto-plastic regime, where the

granular temperature is proportional to the strain rate.

For diminishing Tg � Te and γ0 � γ1Tg, we have an

exponential and much faster decay, ∂
∂tTg ∝ −Tg, how-

ever, also here the steady state granular temperature

persists and remains relevant, as T
(e)
g ≈ (T

(ss)
g )2/Te,

see section 4.6.

12 Preempting the discussion in Sec. 3, to write down the
final evolution equation for Tg, for reasons detailed in [107,
44,45], and partially in Sec. 3, we use:

sg = ρbTg, ηg = η0 + η1Tg, γ = γ0 + γ1Tg, or, equivalently

γ = γ1(Tg + γ0/γ1) ≡ γ1(Tg + Te) ≡ γ1T∗g ,

in order to work with parameters that do not depend on Tg
anymore, and mostly ignoring the Newtonian type viscosity
η0 in the following. When inserting ρb into Eq. (22) for energy,
the time derivative of this variable is assumed to be small and
thus neglected.
13 Note the difference in nomenclature: TG ∼ T 2

g ∝ v2s , see
the text around Eq. (2).
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Returning to the elastic strain uij , we note that

granular media are elastic for quiescent grains, Tg = 0,

as slopes of sand-piles demonstrate. If the particles “jig-

gle”, Tg 6= 0, the elastic shear strain and stress will

diminish, and eventually vanish: Tapping a vessel of

grains (with a finite number) long (and strong) enough

results in a flattened granular surface, like in transient

elasticity. Combining both conditions of Eqs. (19), the

evolution equation for the elastic strain contains both

types of plastic strain rates, see also Ref. [102] and Eqs.

(15), and (18),

ε̇pij = ε̇ij − ∂
∂tε

e
ij = λTgε

e
ij + pijklε̇kl + ψij (24)

= −vij + ∂
∂tuij = −λTguij − pijklvkl + ψij ,

where the first term on the right, pushing uij towards

the plastic minimum uij = 0, operates only for Tg 6= 0,

representing the fluctuation driven plastic strain rate.

The second term represents strain-driven plastic de-

formations proportional to stress. Note that the prob-

abilities pijkl occur well within the macroscopic, elasti-

cally stable regime – involving possibly local events, on

the particle scale – and will be simplified 14 using only

the respective purely isotropic and deviatoric (shear)

plastic deformation probabilities, pv and ps, see sub-

section 4.1 15. The micro-mechanical origins of these

probabilities, are not addressed here, rather see Refs.

[27,46,20,123,18,14,19,33] and many more references

therein. There – among other considerations – it is

shown that (finite) granular systems can remain elas-

tic for tiny strain, then have localized plastic events at

larger strain with probability increasing, before (global)

yield takes place with particular probabilities as cast

into a meso-scale, stochastic master-equation approach,

in Refs. [144,145,47].

The third term, ψij , depends on the gradient of the

elastic stress, see Refs. [107,44], and thus vanishes for

constant elastic stress, as relevant in the following sec-

tions. As discussed above, around Eq. (15), the plastic

strain rate, ψij , pushes uij towards the elastic equilib-

rium of uniform stress in the energetically convex re-

gion, and away from it in the concave one, since the

gradient of stress changes sign at the transition.

14 The split up into an isotropic (volumetric) and a de-
viatoric (shear) contribution, results in pijkl = pvδijδkl +

psδ̂ij δ̂kl, so that the strain-driven plastic deformation rate
reduces to: pijklvkl = pvδijvll + psv∗ij = −pvδij ε̇v − psε̇∗ij .
The symbols δij and δ̂ij , represent the unit isotropic and

deviatoric tensors, with δ2ij = D, δ̂2ij = 1, and δij δ̂ij = 0.
15 The symbols pv and ps are probabilities so that, in order
to avoid confusion with pressure, P , they are given with one
subscript, and in color throughout.

2.3.1 Dynamics at constant shear rate or stress

Equation (24), in addition to the dynamics of Tg, Eq.

(22), render granular behavior rather more complex

than the superposition of behavior from polymers and

elastic media. Imposing either a constant shear rate or

a constant elastic stress in a polymer melt, Eq. (17),

the steady state result is the same, vs = λeus, in either

case.

This symmetry does not hold for granular media

– not even for the simplest case with Te = 0, and

p = 0. A constant shear rate, v̂s, where the hat in-

dicates the fact that this quantity is fixed/controlled,

with the stationary solution T
(s)
g = v̂s

√
η1/γ1 inserted

into Eq. (24), ignoring the p-terms on the r.h.s., leads

to a rate-independent evolution equation for uij that

possesses the hypoplastic structure [146], since Tg is

taking a value proportional to the absolute value of the

strain rate. The steady state elastic shear strain is thus:

u
(s)
s =

√
γ1/η1/λ. It accounts well for elasto-plastic mo-

tion [147], including the approach to the critical state

and shear jamming [44,45,148,149].

On the other hand, controlling the stress or, equiv-

alently, holding the elastic strain, ûs, constant and in-

serting the stationary limit of Eq. (24), v
(u)
s = λTgûs,

into Eq. (22), yields the relaxation rate: γc = (γ1 −
η1λ

2u2s) = γ1[1−(us/u
c
s)

2], negative if ûs < ucs = u
(s)
s =√

γ1/η1/λ, the case when we find Tg to relax to zero,

pushing the system into a static state, v
(u)
s → 0. The

relaxation rate vanishes (i.e., the relaxation time di-

verges) as the stress (or elastic strain) approaches the

critical value, ucs. With a further increase of us, the rate

flips sign to positive above the critical value, see [44,

45], creating an ever increasing strain rate v
(u)
s . Ac-

cordingly, switching from an imposed shear rate (say

during an approach to the critical state) to an imposed

sub-critical stress will render the system static due to

the relaxation of Tg, whereas a critical or super-critical

stress will create Tg and thus accelerate the flow, since

vs ∝ Tg.

2.3.2 Dynamics in the concave region

Within the cone of Fig. 2, in the energetically con-

vex region, as long as one considers only the evolu-

tion of uniform stresses, the elastic dissipative term

ψij = ∇i[β∇kπjk] + ∇j [β∇kπik] remains zero. Serv-

ing to maintain stress uniformity, it may simply be ne-

glected.

Perturbing the system by a (local) stress, δπij , from

a static situation, in the convex, stable region, results in

a relaxation of the elastic strain, due to the sign of ψij .

In contrast, in the concave region, because of Eq. (14),
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this relaxation turns into an explosion, and drives the

stress towards further, stronger non-uniformity.

This accelerates the grains, locally, leading to

nonuniform velocities vi and finite strain rates, vij ≡
−ε̇ij 6= 0. The latter serve as a source for granular

heat, see Eq. (22), and create considerable Tg, which

activates the first plastic term of Eq. (24), which relaxes

the stress back into the stable, convex region. Hence, al-

though the imposed perturbation creates a local stress

response along the direction associated with the nega-

tive eigenvalue initially, it is the stress relaxation back

to the convex region that dominates for finite times. If

not strong/fast enough, the system will yield or un-jam

dynamically. This is one way how GSH accounts for

stability and un-jamming dynamics by instability, both

mediated by the granular temperature

Unfortunately, including the elastic stress-gradient

driven plastic strain rate renders Eq. (24) an unstable

partial differential equation, the solution of which re-

quires increased technical efforts. This is undesirable in

a first, qualitative study, and an approximation scheme

may prove useful. We suggest to go on neglecting the

elastic dissipative terms, and to add a stress term to

Eq. (22), such that Tg is directly produced by an elastic

stress. The balance equations for s, sg, for the energet-

ically convex region, are given as

T ∂
∂ts =R = γT 2

g + βijklπijπkl + · · · , (25)

Tg
∂
∂tsg =Rg = −γT 2

g + ηgvijvij . (26)

The equally permissible alternative,

T ∂
∂ts = γT 2

g + · · · , (27)

Tg
∂
∂tsg = −γT 2

g + ηgvijvij + β̄ijklπijπkl, (28)

was not adopted, because any static πij would then

produce Tg, leading to its decay. This is not observed

in static granular media that can sustain finite stresses

indefinitely (see sand-piles) – if not perturbed exter-

nally. Yet the reasoning is not valid outside the cone,

where static stresses are not stable. Hence we combine

Eq. (25) with (28), noting

β̄ijkl = 0 inside, and βijkl = 0 outside, (29)

the elastically stable cone. The explicit forms for βijkl
and β̄ijkl, which carry the units of inverse stress (com-

pliance) rate, are constitutive choices that will be dis-

cussed in the next section in some detail for βijkl, while

a very simple model for β̄ijkl will be presented in sub-

section 4.9 and studied in Sec. 5.

2.4 Second law of thermodynamics

The second law of thermodynamics (the balance of ther-

mal and granular entropy) from Eqs. (25) and (26) can

be summarized as R > 0 and Rg + γT 2
g > 0 (since both

represent dissipative, irreversible processes), or com-

bined:

R+Rg = (βijkl+ β̄ijkl)πijπkl+ηgvijvij + . . . ≥ 0 , (30)

noting that the dissipation of granular energy −γT 2
g

irreversibly enters the thermal energy, thus cancelling

itself in R+Rg.

More general, in the absence of gradients, the total pro-

duction of entropy can be re-phrased [102] as:

R+Rg = πij ε̇
p
ij + σDij ε̇ij ≥ 0 , (31)

with, however, more complex expressions needed for the

evolution of the elastic strain, εeij = ε̇ij− ε̇pij , and the a-

priori unknown viscous/dissipative stress, σDij , for both

of which the isotropic and deviatoric parts can – and are

assumed to – evolve independently from each other. As

example, where the dissipative stress is not shown for

the sake of brevity, inserting the constitutive relation

from Eq. (24), leads to the following split-up:

R+Rg ≈ πij
(
ε̇pij + pijklε̇kl

)
+ . . . (32)

≈ λ1TgP∆∆+ λTgπ
∗
ijε

e∗
ij + πij

(
pv ε̇vδij + psε̇

∗
ij

)
+ . . . .

The first and second term in the last line of Eq. (32)

represent entropy production by fluctuation driven re-

laxation and are always positive. In contrast, the third

and fourth term are due to plastic (re-arrangements)

driven by isotropic and deviatoric strain, respectively.

They can be either positive or negative, dependent on

the direction of the strain rate. The third term is neg-

ative for extension (ε̇v < 0), while the fourth term is

negative, in particular, at strain reversal. If negative,

these contributions must be compensated by positive

production terms, such as the ones ignored 16, or the

probabilities must be set to zero, as will be discussed

in more detail in section 4.

A more general approach to construct the vis-

cous/dissipative stress from an inserted plastic strain

rate is using the Onsager matrix (to establish time-

inversion symmetry), from the appendix in Ref. [102].

After ignoring gradients of temperature and thus heat

fluxes, as well as all associated terms, one can transform

16 For more details about possible choices of non-diagonal
Onsager coefficients, see Appendix A in Ref. [102]. For exam-
ple, the term pijklε̇kl, coupling the plastic strain rate with
the strain rate, requires a similar term of opposite sign, cou-
pling to the elastic stress and contributing to the viscous-
dissipative stress: σDij ε̇ij = −pklijπklε̇ij = −pvP∆ε̇v −
psπ∗ij ε̇

∗
ij .
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all tensors into eigen-value form 17. This results in only

two independent invariants per state variable tensor,

ignoring the third for the sake of simplicity, yielding

a 4 × 4 matrix form to determine plastic strains and

dissipative stresses:
ε̇pv
ε̇ps
σDv
σDs

 = X ·


∆

εes
ε̇v
ε̇s

 , with (33)

X =


evv evs hvv hvs
esv ess hsv hss

απs − hvvB∆ −hsvG∆ ηvv 0

−hvsB∆ α1P∆ − hssG∆ 0 ηss



=


λ1Tg −α1ε̇s pv psα1ε

e
s

−αε̇v λTg pvα∆ ps
απs − pvB∆ −pvα∆G∆ ηv 0

−psα1ε
e
sB∆ α1P∆ − psG∆ 0 ηs


with 4-tuple vectors of the invariants of the state vari-

ables or their conjugates (pressure P∆ = B∆∆ and

shear stress norm πs = sign(π)|πij | = G∆εes), with se-

cant moduli assumed constant in the momentary situa-

tion, above jamming (cases below jamming, ∆ < 0, are

discussed at the end of this section).

The plastic strain rates (placeholder for strain-rate mi-

nus elastic strain, which is the state-variable) are thus:

ε̇pv = λ1Tg∆− α1ε
e
sε̇s(1− ps) + pv ε̇v ,

and

ε̇ps = λTgε
e
s − α∆ε̇v(1− pv) + psε̇s ,

while the dissipative stresses are

σDv = ηv ε̇v − pvP∆ + απs∆(1− pv) ,

and

σDs = ηsε̇s − psπs + α1P∆ε
e
s(1− ps) .

For the sake of brevity, some of the above terms are

not used furtheron, i.e., while the α1-term will be used,

only a placeholder is given for pg = α∆ε̇v(1− pv); sim-

ilarly, for the dissipative stresses, only the first terms

17 Any rank-two tensor can be decomposed into (v = vol-
umetric = isotropic, and s = shear = deviatoric) Tij =

Tvδij + Tsδ̂0ij + . . ., with unit tensor δij and (reference) unit

deviator in diagonal form: δ̂0ij =
√

1/2[1, 0,−1], using the
isotropic, first invariant Tv = Tii/D, ignoring its third in-
variant, and a signed version of the second invariant Ts =

sign(T )|T∗ij | = sign(T )|Tij − Tvδij | =
√
T∗ijT

∗
ij =

√
2JT2 ,

with sign(T ) = δ̂Tij δ̂
0
ij , as used in [120]. In the eigensystem,

sign(T ) switches sign whenever δ̂Tij changes direction relative

to the (constant) reference δ̂0ij .

are used in some (numerical) solutions (even though

small), while the other terms are subject to ongoing

studies. The only non-classical term used is the granu-

lar energy creation, active outside the elastically stable

regime, abbreviated as fg = β̄ijklπijπkl, below in Sec.

4.

Inserting the above expressions into Eq. (31) results in

an always positive total entropy production:

R+Rg = P∆ε̇
p
v + πsε̇

p
s + σDv ε̇v + σDs ε̇s (34)

= λ1Tg∆P∆ + λTgε
e
sπs + ηv ε̇

2
v + ηsε̇

2
s

= βvP
2
∆ + βs(πs)

2 + ηv ε̇
2
v + ηsε̇

2
s ≥ 0 ,

which is true by construction, since all terms are

quadratic in either elastic strains (stresses) or strain

rates. The first two terms are a simple constitutive

choice for the more general forms in Eq. (30), with

purely isotropic, βv = λ1Tg/B∆, and deviatoric, βs =

λTg/G∆, compliance rates.

Below jamming, one has (per definition) no elastic

stress with purely plastic deformations, with probabil-

ities, pv = ps = 1, and thus only the viscous terms

survive in Eq. (34). On the other hand, in the ideal

elastic limit, above jamming, one has no plastic defor-

mations, pv = ps = 0, so that the classical GSH shows

up with only the λ-preceded relaxation terms surviv-

ing (and the α-preceded terms in plastic strains and

dissipative stresses cancelling each other).

3 Granular solid hydrodynamics (GSH)

As review, GSH is a continuum mechanical theory for
granular media, set up in compliance with thermody-

namics and conservation laws. GSH possesses the state

variables:

(i) density, ρ, or volume fraction, φ = ρ/ρp,

(ii) momentum density, ρvi = 0, neglected here,

(iii) elastic isotropic strain ∆ = −ull = εev =

log (ρ/ρJ),

(iv) elastic deviatoric (shear) strain us =
√

2Ju2 ,

(v) granular temperature TG ∝ T 2
g , and

(vi) temperature T , not used in the following,

with conventions and nomenclature given in Sec. 1.7.

The GSH used here reduces to various different,

more classical theories, in the respective limits – when

set appropriately, as was shown in: Refs. [147] for hy-

poplasticity, [150] for the µ(I)-rheology, and [44] for flu-

idity, etc. The question is now if it is possible to catch

the complex phenomenology at yielding, jamming, un-

jamming, elasticity and loss of elasticity with a simple

model that only knows about four state variables: ρ, ∆,

us, and Tg.
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For the sake of completeness, we first recollect the

more complex, more complete classical GSH, as pub-

lished in the previous years, in Sec. 3.1, before we re-

duce GSH to an over-simplified minimal model in Sec.

3.2, which will allow for a better understanding of the

structure of GSH. Note that the nomenclature of clas-

sical GSH is applied in Sec. 3.1, whereas we switch to

the positive compressive strain convention and nomen-

clature in Sec. 3.2.

3.1 About classical GSH

The complete equations of GSH may be found in

Refs. [107,44], a simplified version in Ref. [45], from

which we boil down to a minimalistic version in subsec-

tion 3.2, ignoring not only momentum density and gra-

dients, but also the density dependence of most trans-

port coefficients and parameters, since those represent

top-down constitutive assumptions, rather than basic

(qualitative, bottom-up) theory. First, we discuss a few

complications in the classical GSH nomenclature, that

are not necessary for our present focus, but will become

important if a more quantitative model is the goal, so

that we keep them as reference for the sake of complete-

ness.

3.1.1 The classical GSH constitutive model

The energy density has a thermal and an elastic part:

w = wT + w∆, wT = s2g/(2ρb) ,

w∆ =
√
∆[2B(ρ)∆2/5 +G(ρ)u2s], B,G > 0 , (35)

with P∆ ≡ π``/3. This represents the first constitutive

assumption at the core of classical GSH. In the follow-

ing, we drop the explicit ρ-dependence of B and G for

convenience, but keep in mind and used it whenever

needed. (In previous GSH-publications, G was denoted

as A.). The elastic stresses are defined as the derivatives

of w with respect to the elastic strain uij :

πij ≡ −∂w/∂uij = P∆δij − πsu∗ij/us , (36)

P∆ =
√
∆(B∆+Gu2s/2∆), πs = 2G

√
∆us , (37)

4P∆/πs = 2(B/G)(∆/us) + us/∆ , (38)

which represents no constitutive assumption, but is just

a consequence of Eq. (35). Like the elastic stress, being

conjugate to the elastic strain, the granular tempera-

ture is conjugate to the granular entropy, which allows

to define the thermal pressure, PT , as the derivative of

the granular thermal free energy with respect to vol-

ume, at constant sg or Tg, as:

Tg ≡ ∂wT /∂sg = sg/ρb , → wT = ρbT 2
g /2 , (39)

PT = − ∂[wT /ρ]

∂(1/ρ)

∣∣∣∣
sg

≡ − ∂[(wT − Tgsg)/ρ]

∂[1/ρ]

∣∣∣∣
Tg

= −
ρ2T 2

g

2

∂b

∂ρ
,

(40)

where we note that the granular entropy is not needed,

replaced by the density dependent (positive) function

b = b(ρ), decaying with density, ∂b/∂ρ < 0. The elastic

energy w∆ has been tested for: (1) static stress distri-

butions in silos, sand piles, point loads on a granular

sheet [151]; (2) incremental stress-strain relations from

varying static stresses [152]; (3) propagation of elastic

waves at varying stresses [153].

As already observed in Ref. [107], w∆ is convex if:

us/∆ ≤
√

2B/G =: ge, or (41)

πs/P∆ ≤
√

2G/B = 2/ge .

For more details see subsection 3.4. Because the macro-

scopic friction, or yield limit, µ0 ∼
√

2G/B, is observed

to be not (or only weakly) density dependent, in steady

state, at least for cohesionless granular media, the next

constitutive model assumption used is: G/B = const.,

and

B = B0 [(ρ− ρ̄)/(ρcp − ρ)]
0.15

, (42)

where B0 > 0 is a constant, and ρ̄ ≡ 1
9 (20ρ`p − 11ρcp),

with ρcp− ρ`p ≈ ρ`p− ρ̄. (ρcp is the random-close pack-

ing density, the highest one at which grains may re-

main uncompressed, ρ`p is the random-loose packing
density, the lowest one at which grains may stay static.)

The expression for B was empirically constructed to

account for three granular characteristics: (1) It pro-

vides concavity, for any density smaller than ρ < ρ`p,

and convexity between ρ`p and ρcp, ensuring the sta-

bility of elastic solutions in this region. (2) The den-

sity dependence of sound velocities, c (as measured

by Hardin and Richart [154]), is well approximated by

c =
√
B/ρ ≈

√
B∆1/2/ρ. (3) The slow divergence at

ρcp mimics the fact that the system is much stiffer for

ρ = ρcp than at loose packing B(ρ = ρ`p). Comparing

these constitutive assumptions for G and B with par-

ticle simulations is subject of ongoing work, but goes

beyond the scope of this paper 18.

18 To account for the un-jamming transition at the random
loose density, ρ`p, a density dependence of B was seen as
necessary in the classical GSH literature. To account for the
virgin consolidation curve, higher order elastic strain terms
in the elastic energy were proposed, with density dependent
coefficients, see [107,155]. The Coulomb yield could be ac-
counted for with no density dependence, as in Eq. (41). Since
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Finally, the function b was chosen as:

b = b1/ρ+ b0 [1− ρ/ρcp]a , (43)

with another small power law, a ≈ 0.1, such that PT ≈
wT for ρ→ 0, and PT ≈ wT /(ρcp−ρ) for ρ→ ρcp, limits

which reduces b to first or second term, respectively,

for details see Refs. [8,156]. The thermal pressure is

explicitly given as:

PT =
ρ2T 2

g

2

[
b1
ρ2

+
ab0

ρcp(1− ρ/ρcp)1−a

]
=: ρT 2

gGp ,

(44)

which defines the abbreviation for the positive Gp =

Gp(ρ) = −(ρ/2)∂b/∂ρ, that also is set to constant in

the following sections, a good approximation for low

densities only, where Gp ≈ b1/2 ≈ 1 (in units of d2). In

the regime of standard kinetic theory being valid, one

has Gp = [1 + (D − 1)(1 + r)φg2(φ)], with restitution

coefficient r and pair correlation at contact, g2(φ), as

specified for example in Refs. [8,113,111].

Adding some speculative connection to other works,

the function b is qualitatively similar to the density de-

pendence, F = gd/δv, of the scaled fluidity, g, as re-

ported in Ref. [18]. However, note that the fluidity is

based on shear stress and shear strain only, whereas the

thermal stress, PT /Gp = ρT 2
g = ρ(δv/d)2 ∼ ρ(g/F )2 is

also defined for isotropic deformations, i.e., non-sheared

systems. Whether g and F (ρ) are truly related with Tg
and Gp(ρ), and how exactly, is subject of ongoing re-

search and goes beyond the scope of this paper.

3.1.2 The evolution equations

For completeness, we specify the evolution equations in

the classical GSH nomenclature, where we note the sign

conventions ∆ = εev, uij = −εeij and vij = −ε̇ij , see Sec.

1.7. For the elastic strain one has:

∂
∂tu
∗
ij = v∗ij − λTgu∗ij , (45)

∂
∂t∆+ v`` = α1u

∗
ijv
∗
ij − λ1Tg∆, (46)

with α1 as an off-diagonal Onsager coefficient, see sub-

section 2.4, accounting for Reynolds dilatancy. Mass

and momentum conservation read:

∂
∂tρ+∇i(ρvi) = 0, (47)

∂
∂t (ρvi) +∇i(σij + ρvivj) = −ρgi, (48)

our illustrative examples are focused on the latter, hence B
is set to constant in Secs. 4 and 5. A quantitative comparison
with particle simulation data will show which assumptions or
terms are really needed.

with the total stress: σij = πij + PT δij − η1Tgv∗ij , with

viscosity, ηg = η1Tg.

Finally, the evolution equation for Tg, with b as

given by Eq. (39) and T ∗g ≡ Tg + γ0/γ1 =: Tg + Te,

is given by Eq. (23).

The coefficients α1, γ0, γ1, η1, and ρb are all func-

tions of the state variables, especially the density, which

would require many more constitutive assumptions, so

that they are over-simplified and taken as constants in

the following sections. Alternative energy densities are

compared next.

3.2 Minimal GSH type model for a material point

At the core of GSH, assuming a homogeneous represen-

tative volume, without convection, ρvi = 0 and gradi-

ents, ∇i(...) = 0, one has a postulated energy density,

w = we + wT , (49)

with an elastic and a dynamic, kinetic/granular con-

tribution. The total stress is thus not an independent

(state) variable, but can be abbreviated as

σij = πij + PT δij + σvisc.
ij (50)

=: P∆δij + π∗ij + ρT 2
gGpδij + χε̇vδij + ηε̇∗ij ,

where the five terms represent isotropic and deviatoric

elastic stresses, kinetic/granular stress (with an over-

simplified Gp = 1, which should depend – at least –

on density, see Eq. (44)), and isotropic (v=volumetric)

and deviatoric (s=shear) viscous stresses, with viscosi-

ties χ = ηv and η = η1 = ηs, respectively, where the
subscript 1 was used above.

Now, a few versions of the energy density are dis-

cussed, before elastic energy stability is considered in

the next subsection 3.4.

3.2.1 The linear elastic energy

For completeness, in the (too) simple case of a linear

elastic energy density:

wlin =
(
(1/2)Blin∆

2 +Glinu
2
s

)
if ∆ > 0 , (51)

and wlin = 0 if ∆ ≤ 0, with u2s = εe∗ij ε
e∗
ij , one can easily

derive the elastic stress πij = ∂w/∂uij . The parameters

Blin, Glin carry the units of stress, while their possible

dependencies on other state-variables (like density) are

ignored here.

The isotropic elastic pressure (defined in D dimensions)

is:

P lin∆ =
πll
D

=
∂wlin
∂∆

= Blin∆ ,
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and the deviatoric elastic stress is:

π∗ij
lin :=

∂we
∂εe∗ij

= 2Glinε
e∗
ij .

Further differentiation yields the (constant) moduli:

Blin = Blin, Glin = 2Glin, and no anisotropy Alin = 0,

which is surely too simple for granular matter.

The anisotropic linear elastic energy density:

wA =
(
(1/2)Blin∆

2 +Alin∆ε
e∗
ij ε̂

e
ij +Glinu

2
s

)
, (52)

if ∆ > 0 with ε̂eij = εe∗ij /|εe∗ij |, as proposed in Refs. [86,

120,157]. yields:

PA∆ =
πll
D

= Blin∆+Alinε
e∗
ij ε̂

e
ij ,

and the deviatoric elastic stress:

π∗ij
A =

∂we
∂εe∗ij

= 2Glinε
e∗
ij +Alin∆ε̂

e
ij .

Further differentiation yields the (constant) moduli:

BA = Blin, GA = 2Glin, and anisotropy AA = Alin,

which is the simplest possible anisotropic elastic model,

with cross-coupling between isotropic and deviatoric

elastic strains and stresses, as compared to particle sim-

ulations and discussed in detail in Refs. [86,120,157].

However, the anisotropy modulus is not constant and

thus requires an evolution or state equation by itself,

e.g., Alin/Blin = Fdev, with deviatoric fabric, Fdev, as

observed from 3D particle simulations in Refs. [120,30].

3.2.2 The non-linear (Hertzian) elastic energy

One can derive the elastic stress πij = ∂w/∂uij , from
the simplest (non-linear) elastic energy density:

we =
√
∆
(
(2/5)B∆2 +Gu2s

)
if ∆ > 0 , (53)

and we = 0 if ∆ ≤ 0, with u2s = εe∗ij ε
e∗
ij , and B = B(ρ),

G = G(ρ) carrying the units of stress, while their pos-

sible functional dependencies on other state-variables

(like density) are not carried along in the rest of this

study. Two choices (out of many more) of the density

dependence of the energy density (and its coefficients)

are discussed below, where appropriate, but in other

cases the density dependence is avoided completely in

order to learn what the effect of this simplifaction would

be. The isotropic elastic pressure (defined in D dimen-

sions) is:

P∆ =
πll
D

=
∂we
∂εev

= B∆3/2 +
1

2
Gu2s∆

−1/2 =: B∆∆ ,

and the deviatoric elastic stress is:

π∗ij :=
∂we
∂εe∗ij

= 2G∆1/2εe∗ij =: G∆εe∗ij ,

implicitly defining the (∆-dependent) bulk and shear

secant moduli B∆ and G∆, which mimic a linear ∆-

or εe∗ij -dependence of isotropic or deviatoric stress, re-

spectively, not to be confused with the (true) tangent

moduli:

B = B∆1/2
[
(3/2)− (1/4)(G/B)(us/∆)2

]
6= B∆,

G = 2G∆1/2 = G∆, and A = G∆1/2(us/∆).

The notation details and alternative definitions of the

state variables εev = ∆ and us = |εe∗ij | = | − u∗ij | are

given in Sec. 1.7.

3.2.3 The granular linear elastic energy

From particle simulations, using the linear con-

tact model, see Refs. [46,158,159,120] and references

therein, the (linear) elastic energy density is comple-

mented by a pre-factor, dependent (non-linearly) on the

coordination number

C := C(φ, φJ) = C(∆) = C0 + C1∆
αC , (54)

with positive constants 19 , see subsection 6, so that:

wC = φ

(
1

2
CBC∆

2 + (C − C0)GCu
2
s

)
if ∆ > 0 , (55)

and wC = 0 if ∆ ≤ 0, with u2s = εe∗ij ε
e∗
ij , and BC , GC

carrying the units of stress, while their possible depen-

dencies on other state-variables – like density, explicitly

spelled out in Eq. (55) – are ignored in the rest of this

study, for the sake of simplicity, without loss of gener-

ality, while density-dependent coefficients are discussed

in the context of the Hertzian energy density.

Note that the above wC implies that the first term gets

an additional, constant contribution in C due to the

implied linear contact model; this contribution is not

present in the second term that vanishes for ∆ → 0

(for frictionless materials) [120]. Otherwise the linear

and the Hertzian energy densities resemble each other

for αC = 1/2, as detailed below.

The isotropic elastic pressure is:

PC∆ =
∂wC
∂∆

= φCBC∆+ φC ′BC
[
∆2/2 + (GC/BC)u2s

]
= φC0BC∆+ φC1BC∆

1+αC

[
1 +

αC
2

+ αC
GC
BC

u2s
∆2

]
≈ φC0BC∆ for ∆� 1 and αC > 0 , (56)

and the deviatoric elastic granular stress is:

π∗ij
C =

∂we
∂εe∗ij

= 2φC1GC∆
αCεe∗ij , (57)

19 The derivatives of C are:
C′ = αCC1∆αC−1 = αC(C − C0)∆−1, and
C′′ = αC(αC − 1)C1∆αC−2 = αC(αC − 1)(C − C0)∆−2 .
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both featuring very similar non-linearities as the

Hertzian type energy density, qualitatively different

only in the first, linear term of PC∆ .

The tangent moduli are:

BC = φC0BC + φC1BC∆
αC×[

(1 + αC)(1 +
αC
2

) + αC(αC − 1)
GC
BC

u2s
∆2

]
,

GC = 2φC1GC∆
αC , and

AC = 2αCφC1GC∆
αC (us/∆) (58)

Note that inserting αC = 1/2, which fits almost per-

fectly particle simulation data [46], results in

BC = φC0BC + φC1BC∆
1/2

[
15

8
− 1

4

GC
BC

u2s
∆2

]
,

GC = 2φC1GC∆
1/2 , and

AC = φC1GC∆
1/2(us/∆) , (59)

with the first term (C0 > 0) being the only difference

to the non-linear Hertzian moduli in subsection 3.2.2,

after translation: (4/5)B = φC1BC and G = φC1GC .

3.2.4 Granular Hertzian energy density

The combination of the two previous subsections, i.e.,

non-linear contacts combined with granular (coordina-

tion number dependent) energy, goes beyond the scope

of this study and will be discussed elsewhere.

3.3 Simplest GSH equations and discussion

For a material point, in absence of gradients, using ∂t ∼
∂/∂t ∼ d/dt, the evolution of density with strain rate:

∂tρ = ρε̇v (60)

has no free parameters. Here, positive strain rate corre-

sponds to compression and negative to extension, i.e.,

density increase and decrease, respectively; density can

also be seen as the volume fraction, related to each other

by the (constant) material density, i.e., φ = ρ/ρp. Later,

in section 5, units will be chosen explicitly, such that

ρp = 1, so that φ = ρ, as implied from now on.

In the evolution equation for the isotropic elastic

strain:

∂t∆ = ε̇v − λ1Tg∆+ α1ε
e∗
ij ε̇
∗
ij (61)

the first term couples elastic and total strain together,

while the second term is relaxing ∆ towards zero 20 –

in case of finite Tg, with rate λ1Tg. The third term can

20 Relaxation of ∆→ 0, at fixed density, ρ, implies that the
granular temperature (jiggling) causes the jamming density

be positive (or negative, e.g., at strain reversal 21 ), and

thus works against (or with) the relaxation term.

The third equation defines the evolution of the de-

viatoric (shear) elastic strain

∂tε
e∗
ij = ε̇∗ij − λTgεe∗ij , (62)

where the first term creates deviatoric elastic strain,

co-linearly with the strain rate, while the second term

relaxes the deviatoric elastic strain, with rate λTg. A

dilatancy term analogous to the third in Eq. ((61)) is

permitted by the Onsager relation, and was previously

added for symmetry in Refs. [44,45,120], as discussed

in subsection 2.4, and used in section 4.

The fourth equation represents the evolution of the

granular temperature

∂tTg = −RTTgT ∗g + fT (ε̇ij) (63)

= RT0

[
−(1− r2)TgT

∗
g + f2s ε̇

∗
ij ε̇
∗
ij + f2v ε̇v ε̇v

]
with T ∗g = Tg + Te, as specified in the following sec-

tion 4, and the abbreviation for the dissipation rate,

RT = γ1/(ρb) = RT0(1 − r2), proportional to the en-

ergy dissipation factor (1−r2), where r is the (effective)

restitution coefficient. The energy creation terms are

condensed into the tensor function fT (ε̇ij), independent

on r, so that one could separate them into two energy

creation rates, RT0f
2
s = ηs/(ρb) and RT0f

2
v = ηv/(ρb),

for shear and volumetric strain rates, respectively.

3.4 Minimal elastic model with two variables

One could decompose the elastic stress and strain ten-

sors into invariants (and their orientations). Under the

assumption of fixed and co-linear tensor-eigensystems,

and ignoring the third invariant for the sake of brevity,

what remains are the isotropic and deviatoric stresses,

σα = {P∆, πs = π∗s}, and elastic strains, uα = {∆,us =

u∗s}, each as 2-tuple vectors, denoted by Greek indices.

This provides the criteria for energy minima:

δ2w = −δπijδuij = δπαδuα =
∂πα
∂uβ

δuαδuβ > 0. (64)

to relax as ρJ → ρ, in both jammed and un-jammed states,
increasing and decreasing, respectively. A decrease (an in-
crease) of the elastic strain, ∆, at fixed density, ρ, corresponds
to an increase (a decrease) of the jamming density, ρJ , see
Ref. [46]. On the other hand, at fixed confining pressure, P , a
jammed system, at finite, but small Tg (tapping) will develop
to a state such that the elastic pressure, P∆ = P − PT ≈ P ,
remains constant; relaxation of ∆ then corresponds to an in-
crease of density, i.e., compaction.
21 After large strain, one has a positive product, εe∗ij ε̇

∗
ij > 0,

but at strain reversal the same term will be negative, for a
while, until the elastic deviatoric strain reverts direction.
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Using the (positive) invariants yields the simple 2x2

Hessian matrix (for second order elastic work):

∂2we
∂uα∂uβ

=
∂πα
∂uβ

=

(
∂P∆/∂∆ ∂P∆/∂us
∂πs/∂∆ ∂πs/∂us

)
=:

(
B A
A G

)
= C . (65)

If it has only positive eigenvalues, the (elastic) energy

we is a convex function of the elastic strain-invariants ∆

and us. With other words, the elastic stability criterion

is det(C) = BG −A2 > 0.

3.4.1 Eigen-values and -vectors at elastic instability

First, we compute the eigen-values and -vectors from

the matrix C, before we introduce constitutive assump-

tions about the energy density and discuss those, sepa-

rately, in the next sub-subsections.

Basic linear algebra yields the two eigen-values,

C1,0 = (B + G)/2 ±
√

(B − G)2/4 +A2, as solution of

the quadratic equation 0 = (B − C)(G − C) − A2 =

C2−C(B+G)+BG−A2, with C1 = B+G and C0 = 0,

at the point of instability, where BG = A2.

Using C1, and A =
√
GB, with the two equations

−Gn̂(1)1 + An̂(1)2 = 0 and An̂(1)1 − Bn̂
(1)
2 = 0, results in

the corresponding eigen-vector (with n̂
(1)
2 = n̂

(1)
1 G/A =

n̂
(1)
1 A/B = n̂

(1)
1

√
G/B), which defines the “direction”

(in elastic strain invariants) of maximal stability: n̂(1) =

±(1,
√
G/B)/

√
1 + G/B.

Note that eigenvectors are normalized, come with

unspecified direction (±), are associated to an eigen-

value (superscript (0) or (1)), and are situated in the

space of isotropic and deviatoric elastic strains (∆,us),

where the brackets indicate a line-vector, with com-

ponents separated by the komma. Some examples are

given below in Fig. 3.

Using C0 = 0, and A =
√
GB, with the two equa-

tions Bn̂(0)1 + An̂(0)2 = 0 and An̂(0)1 + Gn̂(0)2 = 0, re-

sults in the corresponding eigen-vector (with n̂
(0)
2 =

−n̂(0)1 B/A = −n̂(0)1 A/G = −n̂(0)1

√
B/G), which gives

the “direction” of instability (in the space of elas-

tic strain-invariants): n̂(0) = ±(−
√
G/B, 1)/

√
1 + G/B,

perpendicular to the direction of maximal stability.

Note the special role the ratio of shear to bulk mod-

ulus takes in this analysis.

More explicitly, incremental changes in the elas-

tic strain space, in directions n̂(0), i.e., δu
(0)
α =

(δ∆(0), δu
(0)
s ) = δεe n̂

(0)
α , at the point of elastic insta-

bility, can be done without change of elastic stress,

δπ
(0)
α = 0, and energy, δ2w(0) = (δεe)2n̂

(0)
α n̂

(0)
β Cαβ =

0. Such increments are thus permitted from en-

ergy/thermodynamic arguments; for examples, see Fig.

3. With other words, any other elastic strain increment

will require energy; for energy considerations, see also

Ref. [102,42,101] and references therein.

3.4.2 GSH with Hertzian type elastic instability

In the case of a Hertzian type elastic energy density, we,

see Eq. (53), as typically used in the GSH literature [44],

one has:

B = (3/2)B∆1/2 − (1/4)Gu2s∆
−3/2 6= B∆,

G = 2G∆1/2, and A = G∆−1/2us,

i.e., the stability condition, BG −A2 > 0, translates to

(us/∆)2 < g2e := 2B/G , (66)

as previously shown in Eq. (12) in Ref. [45], and in Eq.

(41) above, for elastic, static systems above jamming,

for ∆ > 0. Below jamming, for ∆ ≤ 0, one has we = 0

and thus trivially det(C) = 0, while at the point of

instability:
√
G/B = A/B = G/A = 2∆/us = 2/ge.

Using we in Eq. (53), the non-zero eigenvalue can be

re-written as: C1 = [B + 2G]∆1/2 = B[1 + 4/g2e ]∆1/2,

with ge =
√

2B/G, while the zero eigenvalue will be

more relevant for understanding failure mechanisms at

elastic instability.

The eigen-vectors in elastic strain space are:

n̂(1) = ±(1, 2/ge)/
√

1 + 4/g2e , and

n̂(0) = ±(2/ge,−1)/
√

1 + 4/g2e ,

at the point of elastic instability, where incremental

strains parallel to n̂(0) change neither stress, δπ
(0)
α = 0,

nor energy, δ2w(0) = (δεe)2n̂
(0)
α n̂

(0)
β Cαβ = 0, and are

thus permitted.

In other words, considering the shear vs. normal stress

space, one could see the limit of elasticity as one pos-

sible definition of the maximal (elastic) macroscopic

(bulk) friction, defined by the ratio: µe := π∗s/P∆ =

G∆us/(B∆∆), with the limit value taken at the loss

of elastic stability: µ0
e =

√
2G/B = 2/ge. Incremen-

tal changes of elastic strain along the eigenvector n̂(1),

with norm δεe, result in stress increments, δπ
(1)
α =

C1δε
en̂

(1)
α , parallel to the slope µ0

e =
√
G/B.

3.4.3 GSH with granular elastic energy instability

In the case of a granular (coordination number depen-

dent) elastic energy density, wC , see Eq. (55), and the

respective moduli, see Eq. (59), the stability condition,

BCGC −A2
C > 0, translates to:

C0 + C1∆
αC× (67)[

(1 + αC)(1 +
αC
2

)− αC(1− αC)
GC
BC

u2s
∆2

]
− 2α2

CC1∆
αC (GC/BC)(us/∆)2 > 0 ,
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that can be solved by a rather complex function

C0+C1∆
αC (1 + αC)(1 +

αC
2

) (68)

> αCC1∆
αC (1 + αC)

GC
BC

u2s
∆2

,

which simplifies to

us <
C0

αCC1(1 + αC)

BC
GC

∆1−αC/2 , (69)

close to jamming, for ∆ � 1, given 0 < αC < 1. This

renders wC a strange choice, since it implies stronger

stability to shear strain closer to jamming, and a non-

linear behavior of the elastic stability – subject of on-

going studies.

3.5 Anisotropic, elastic-plastic moduli from DEM

In Refs. [46,120,157], an incremental (athermal) elasto-

plastic evolution model for the isotropic and deviatoric

stresses was proposed (in their eigen-system, p and τ)

as

∂tp = Bε̇v(1− pv) +Aε̇s(1− ps) , (70)

∂tτ = Aε̇v(1− pv) + Gε̇s(1− ps) , (71)

with additional evolution equations for the anisotropy

modulus A [120,157], and the jamming density [46] –

both not detailed here. In order to relate this model

to the present GSH based evolution equations, as-

sume (overly simplified, for the sake of clarity) that

∂tp ≈ B∂t∆ and ∂tτ ≈ G∂tεes, to arrive at the evolution

equations of the elastic strains:

∂t∆ = ε̇v(1− pv) +
A
B
ε̇s(1− ps) , (72)

∂tε
e
s = ε̇s(1− ps) +

A
G
ε̇v(1− pv) , (73)

where the first terms represent their elastic and plastic

responses, with probabilities for plastic deformations pv
(see Sec. 4.1.1) and ps (see Sec. 4.1.2), while the second

terms are anisotropy terms, cross-coupling isotropic and

deviatoric strain actions and reactions.

In Ref. [120], the elements of the constitutive moduli

matrix, C, were directly deduced from particle simula-

tions, and took a form (slightly simplified here by im-

plying that the fabric and the elastic strain are propor-

tional): B = B0φZ (with the product of volume frac-

tion, φ, and coordination number, Z, which is a non-

linear function of ∆), G/B = G0(∆)(1 − gs(us/∆)2),

and A/B = us/∆, with G0(∆) = g0(1 − exp(−∆/∆g))

and constants B0, g0, gs and ∆g. Note that for this

model no energy density is available so far – work in

progress.

In the elastic limit case one has pv = ps = 0, and can

identify the cross-term in Eq. (72) with the last term in

Eq. (61), i.e., α1ε
e
sε̇s = A

B ε̇s, causing pressure dilatancy

under shear strain. From the second cross-term in Eq.

(4.1), one can deduce a missing cross-term in Eq. (62),

as αd = A
G ε̇v, causing shear stress “dilatancy” under

isotropic strain.

From this, the condition for elastic instability, G/B −
(A/B)2 = 0, translates to: g2e := (ugs/∆)2 = G0(∆)/[1+

gsG0(∆)], which implies a very narrow elastic regime

for small ∆, since G0(∆) → g0∆/∆g, for vanishing

∆/∆g � 1, so that ge ∝
√
∆/∆g. For large ∆/∆g � 1,

one has instead g2e ≈ 1/[gs + 1/g0], independent of ∆.

The “direction” (in elastic strain invariants) of maximal

stability becomes: n̂(1) = ±(1,
√
G/B)/

√
1 + G/B =

±(∆,ugs)/
√
∆2 + (ugs)2, and with the perpendicu-

lar “direction” of maximal in-stability: n̂(0) =

±(−
√
G/B, 1)/

√
1 + G/B = ±(−ugs , ∆)/

√
∆2 + (ugs)2,

after using
√
G/B = A/B = ugs/∆.

This model, derived from frictionless particle simula-

tions [120], thus would result in a non-linear ugs = ge∆

in Fig. 3 – different from the other models presented

before in this section. However, all models have in com-

mon that the stress response to a strain-increment in

the direction of the unit-vector n̂(1), is parallel to the

slope µ0
e =

√
G/B in stress space.

Further consideration of this particle simulation based

constitutive model for stress and fabric – and the ques-

tion if an additional fabric state variable (tensor) is

needed at all – go beyond the scope of the present study,

but are subject of ongoing research. Nevertheless, the

cross-terms discussed above will be considered in the

next section in some situations.

3.6 Special cases

In order to reduce the model complexity, and to under-

stand what the eigen-vectors from the last subsection

mean, it is instructive to consider a few simple special

cases. Some of these cases will be later studied analyt-

ically and numerically. They represent simplifications

that boil down a complicated theoretical framework to

a simpler, possibly even transparent form that allows

for better understanding and sometimes even for an-

alytical solutions. We propose to apply those special

cases to any new theory before one really applies the

whole framework. Furthermore, the special cases allow

to isolate a few of the terms and possibly calibrate the

model parameters one by one. One traditional work on

more complex, so-called proportional loading paths is
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Ref. [35], however, we reduce ourselves to the simplest

cases only.

For the rest of this section, we use the stability re-

sults from the Hertz-like elastic energy density, as dis-

cussed in subsection 3.4.2. Most of the cases are illus-

trated schematically in Fig. 3.

2b1b0 0

ge

33b

us

1 2

∆

Fig. 3 Sketch of (strain-driven) deformation cases in the
space of the elastic strain invariants, i.e., us plotted against
∆. The slope ge indicates the elastic instability limit. The
numbers at the black arrows indicate the case-number, where
dashed, thin lines are continuing the trends outwards into the
concave zone (elastically instable). The blue and red arrows
give the eigen-vectors of stability n̂(1), and instability, n̂(0),
respectively, where their unspecified direction (±) maybe di-
rected outwards or into the convex zone (elastically stable),
dependent on the situation and the boundary conditions.

Except for a few cases, most start from a jammed,

elastically stable state with finite initial elastic strains

∆(0) > 0 and us(0) > 0.

(case 0) Assume the system unjammed, ∆(0) < 0, and

apply a constant compressive strain rate, ε̇v = −vll > 0.

The density and the elastic strain, ∆ = log(ρ/ρJ), will

grow together until the system jams at ρJ , from which

on its evolution equation kicks in. It was shown in Refs.

[160,161], and earlier works cited therein, that already

below jamming, the jamming density (and thus ∆) de-

pends on the procedure of preparation, in particular on

the strain rate and on the granular temperature, how-

ever, this fact goes beyond the present focus and is thus

not studied further.

(case 1) Assuming a purely isotropic de-compression,

ε̇v = −vll < 0, from a jammed state, one expects

the elastic isotropic strain, ∆, to decrease faster than

its deviatoric (shear) counterpart, us, until at u2s =

(2B/G)∆2, or us = ge∆, the looser system cannot sus-

tain the shear-stress anymore, so that un-jamming due

to instability with respect to shear occurs. In order to

remain at least marginally stable, one needs a decrease

of us → u0s = ge∆, a situation that could be referred to

as shear-yielding [10,95,46].

(case 1b) In the situation without initial elastic shear

strain, us(0) = 0, the stability criterion is always

true and the system remains stable until isotropic un-

jamming takes place at ∆ = 0.

(case 2) In the case of isotropic compression, the model

remains stable, unless the virgin consolidation line is

reached, where the system restructures to be able to

carry the increasing stress. This situation is not de-

tailed further, but the (case 2b) of loading without

shear is studied in subsection 4.1 to display the role of

plastic deformations due to isotropic compression.

(case 3) Assuming a purely deviatoric (volume con-

serving) shear strain rate, ε̇∗ij = −v∗ij , from a state with

initial ∆0 > 0, one expects the elastic deviatoric (shear)

strain, us, to increase faster than its isotropic counter-

part, ∆, could build up, until at ∆ → ∆0(1 + ε∆) =

us/ge, the system cannot sustain pressure (isotropic

stress) anymore, so that an instability with respect to

volume change occurs, and one has a consequent de-

crease of φJ , due to a possible further increase of ∆,

i.e., one origin of dilatancy. The evolution of ∆ inside

the cone and at the limit of elastic stability are qualita-

tively different, as will be studied numerically later on.

(case 3b) Under the same purely deviatoric deforma-

tion, the isotropic elastic strain ∆ could also decrease,

corresponding to φJ increasing. This leads to elastic in-

stability at smaller elastic strains, ∆ → ∆0(1 − ε∆) =

us/ge, not much changing the considerations in case 3,

but rather leading to compactancy instead of dilatancy,

as to be expected for very loose packings. Furthermore,

this could lead to isotropic unjamming, if φJ drops be-

low φ.

Several of the cases discussed above will be next stud-

ied analytically (as far as possible) and numerically in

section 5.

4 Analytical results for special cases

After a summary of the equations that will be used in

this section, we take several special cases, starting from

the athermal limit, Tg = 0. Various versions and lim-

its of the model are discussed and analytically treated

(in some special cases where this is possible), while also

several new terms and regularization schemes are pro-

posed, to be later used in the numerical solutions.

The set of model equations is summarised here for

reference, with the colored terms representing exten-
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sions from the black terms (representing model 0):

∂tρ = ρε̇v , (74)

∂t∆ = ε̇v(1− pv)− λ1Tg∆pg + α1ε
e∗
ij ε̇
∗
ij(1− ps) , (75)

∂tε
e∗
ij = ε̇∗ij(1− ps)− λTgεe∗ij +αd , (76)

∂tTg = −RTT 2
g (T ∗g /Tg) + fT (ε̇ij) + fg(g∗) , (77)

before some meaningful special cases (purely isotropic

and deviatoric loading) are discussed below, for which

analytical solutions are provided, if possible. The col-

ored terms are not present in the original Eqs. (60)-(63),

which is referred to as model 0 (having thus no valid

athermal limit), which is used as starting point to study

transients in Sec. 5.

The blue terms pg and αd are introduced here as

place-holders for elements discussed below, in subsec-

tion 4.7, or to be added in future, as introduced in Refs.

[46,120,157].

The rate of cooling is modified in the elastic,

jammed state (∆ > 0) by adding an “elastic dissi-

pation rate” Te, referred to as model e, as T ∗g /Tg =

1 + Te/Tg = 1 + Te0∆
h/Tg where only the special case

h = 0, i.e., Te = Te0, will be treated below 22. The

presence of Te does not affect the dynamics too much

for finite Tg � Te (Haff’s free homogeneous cooling

state (HCS), well below jamming), but in the limit of

very small Tg → 0, for elastic, jammed systems, this

(phonon/wave-driven) dissipation becomes important,

generalizing HCS, providing an exponential decay of

Tg → 0 in absence of other driving mechanisms (and

∆ > 0), see subsection 4.4. The dissipated granular en-

ergy ∂tw = ρbTg∂tTg = −ρbT 3
g (T ∗g /Tg) is balanced by

an equal positive term creating thermal energy or en-

tropy, i.e., this term does not contribute to the second

law of thermodynamics, see subsection 2.4.

The new magenta term fg(g∗), in Eq. (77), is only

active if the system is outside of the elastically stable

regime, where g∗ = us/∆−ge > 0, with the limit of elas-

tic stability ge. It is continuous, inactive in the convex

region, active outside. This term generates more gran-

ular temperature, jiggling, the more the system gets

elastically unstable, due to concavity of the elastic en-

ergy.

The terms (1− pv) and (1− ps) represent the prob-

abilities for elastic deformations, with pv and ps the

probabilities for isotropic/deviatoric plastic deforma-

tions, respectively, see Ref. [46], as specified in Sec. 2.3,

Eq. (24), and discussed next, in section 4.1.

22 For a Hertzian type bulk modulus, the time-scale of mo-
mentum (wave) propagation, for us = 0, can be estimated as

te = 1/Te = d/ve ∝ d/
√
B∆/ρ = d

√
ρ/B∆1/2 ∝ ∆−1/4,

i.e., an exponent h = 1/4. This estimate, together with a
Hertzian elastic pressure, P∆ ∝ ∆3/2, yields an estimated

wave speed ve ∝ P 1/6
∆ or moduli B ∝ P 1/3

∆ .

4.1 The granular athermal limit Tg = 0

Enforcing the athermal case, Tg = 0, the system of

equations reduces to:

∂t∆ = ε̇v(1− pv) + α1ε
e∗
ij ε̇
∗
ij(1− ps) , (78)

∂tε
e∗
ij = ε̇∗ij(1− ps)+αd , (79)

see Eqs. (72) and (4.1), where the cross-term αd is usu-

ally neglected, and the off-diagonal Onsager coefficients

pv and ps were previously introduced in Ref. [107], but

taken equal to α1, while here they are, alternatively,

interpreted as the probabilities for (isotropic and devi-

atoric) plastic (re-structuring) events in the packing, as

in subsection 2.3, , and in Refs. [46,157]. Note that in

Eqs. (78) and (79), the probabilites for isotropic and

deviatoric plastic deformations are systematically at-

tached to isotropic and deviatoric strain rates, respec-

tively.

In the few plots in this section, dimensionless units

are used, such that ρ = φ, and stress is in units of

1 MPa, as discussed in detail at the beginning of section

5. The quantitative calibration of the GSH based theory

by particle simulation data as well a alternative units,

are discussed in section 6.

4.1.1 Athermal isotropic loading

For isotropic loading (ε̇∗ij = 0), the system of equa-

tions reduces even further to ε̇pv := ε̇v − ∂t∆ = ε̇vpv =

∂t log(ρJ) 23.

The elastic limit, with probability pv = 0, translates

to constant ρJ , whereas the fully plastic limit, pv = 1,

translates to ε̇pv = ρ̇/ρ = ε̇v. In all other cases, the

probability for plastic deformations should be a func-

tion of the state-variables and the sign of deformation

rate (i.e., compression or tension).

A simple constitutive assumption, pv ε̇v = −λ1Te∆,

could be directly merged into the relaxation term as

−λ1T ∗g∆, with T ∗g = Tg + Te, and solved analytically
24. This model displays the transient elastic behavior of

polymer melts or glasses for which (in absence of any

isotropic strain rate, for finite, constant Te) ∆ → 0.

However, since the reality of granular matter, as mea-

sured from particle simulations in Ref. [46], is some-

what more complex, already for frictionless spheres –

and even more for realistic frictional non-spherical par-

ticles – we have to come up with a better relation for

the probability for isotropic plastic rearrangements.

23 The chain rule yields an identity between the plastic
strain rate and the time-evolution of the jamming density:
∂t∆ = (∂tρ)/ρ− (∂tρJ )/ρJ = ε̇v − ∂t log(ρJ ).
24 Inserting the expression from above, this yields the ather-
mal evolution of the elastic strain: ∂t∆ = ε̇v − λ1Te0∆1+h.
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The (un-)jamming density was reported, see Eq.

(5) in Ref. [46], to reach after infinitely many isotropic

loading/un-loading cycles the limit density:

ρ∞ = ρJ0 + b∞

[
ρ

ρJ0
− 1

]β∞
+

, (80)

with the half-sided linear function [x > 0]+ = x, and

[x ≤ 0]+ = 0, otherwise, ρ∞ = ρJ0 for ρ < ρJ0
25. Us-

ing Eq. (80), and noting that the first loading is charac-

terized by ρJ−ρJ0 = pv0(ρ∞−ρJ0), with pv0 = 1−e−1,

see Eq. (6) in Ref. [46], one can deduce the probability

for plastic deformations from:

∂ log(ρJ)

∂t
=

1

ρJ

∂ρJ
∂t

=
ρ

ρJ

∂ρJ
∂ρ

1

ρ

∂ρ

∂t
= pv ε̇v , (81)

yielding:

pv =
ρ

ρJ

∂ρJ
∂ρ

= pv0β∞
ρ

ρJ

ρ∞ − ρJ0
ρ− ρJ0

(82)

= (e− 1)β∞
ρ

ρJ

ρ∞ − ρJ
ρ− ρJ0

≈ 1

2

ρ

ρJ0

ρ∞/ρJ − 1

ρ/ρJ0 − 1

=
pv0

1− pv0
β∞

ρ∞/ρJ − 1

1− ρJ0/ρ
≈ 0.5

∆−∆∞
1− ρJ0/ρ

,

expressed in terms of the difference between the limit

and the actual jamming density ρ∞ − ρJ = e−1(ρ∞ −
ρJ0), with ∆∞ = log(ρ∞/ρJ).

Below jamming, we postulate pv(ρ < ρJ0) = 0. Just

above jamming, the divergent probability in Eq. (83) is

limited to pv(ρ/ρJ0−1� 1) = 1, until it decays to finite

positive values 0 < pv ≤ 1 at higher densities. After

shear reversal, the plastic strain rate becomes negative

pv ε̇v < 0, which we also simplify to pv(ε̇v < 0) = 0,

i.e., no plastic events for de-compression. Cast into one

formula, as implemented in the numerical solutions, this

reads: min(1,max(0, pv)) max(0, ε̇v).

4.1.2 Athermal deviatoric (pure shear) loading

Another special case that allows for analytical treat-

ment is pure deviatoric (isochoric) shear, ε̇v = 0, the

elastic strains develop as ∂t∆ = α1ε
e∗
ij ε̇
∗
ij(1− ps) and

∂tε
e∗
ij = ε̇∗ij(1− ps) or, equivalently, for the plastic

strain rate ε̇pij = ε̇∗ij − ∂tεe∗ij = ε̇∗ijps ∼ vsps.
Postulating the existence of a constant “critical”

steady state for the macroscopic friction, i.e., the

25 Thus, while ρJ0 ∼ ρ`p, corresponds to random loose
packing, ρ∞ ∼ ρcp takes the place of random close pack-
ing, ρcp, continuously grows with density. The higher densi-
ties could be achieved by over-compression of soft particles
(rubber, gel, etc.), whereas hard particles (metal, glass, etc.)
would break (not considered here). For hard/rigid particles,
one could replace Eq. (80) with a step function equal to ρcp
for ∆ > 0.

Fig. 4 Jamming density ρJ = ρ exp(−∆), plotted against
density, ρ, during loading up to ρmax = 0.66, 0.67, 0.69, 0.72
and 0.90, with subsequent un-/re-loading cycles with ampli-
tude, δρ = 0.01. The cycles on top correspond very much to
the case ρmax = 0.90 and δρ = 0.25 displayed in Fig. 2a in
Ref. [46]. The solid red line represents ρ∞ in Eq. (80), with
ρJ0 = 0.657, and coefficients b∞ = 0.02, β∞ = 0.30. Note
the flat blue lines for un-loading and for ρJ < ρ∞, i.e., cases
where one has pv = 0 for unloading and in unjammed situa-
tions. (The jamming density can be deduced from simulations
using Eq. (104), see Sec. 6.)

quasi static limit stress ratio, µc0 := µc(vs → 0) =

Gc∆ucs/(Bc∆∆c) 26 , 27, this allows to express the proba-

bility for plastic (shear) events as:

ps =
µ

µc0

[
ˆεe∗ij

ˆ̇ε∗ij

]
+

:=
1

µc0

G∆
B∆

[
εe∗ij ε̇

∗
ij

]
+

∆vs
≈ us
ucs

, (83)

for ∆ > 0, and ps = 1 otherwise, where the hats denote

unit-tensors, the ratio of the tangent moduli depends

on the constitutive choice of the energy density, and

the last approximation is only valid after sufficiently

long steady shear, close to the critical state, and/or if

∆ ≈ ∆c vanishes from Eq. (83), but not for strain re-

versal. The term in brackets limits ps ≥ 0, as to keep

it positive, i.e., [x > 0]+ = x, and [x ≤ 0]+ = 0, and

26 For the Hertzian energy density, see Eq. (53), using
µ := π∗∆/P∆, the ratio of moduli, G∆/B∆ = 2G/[B +
(1/2)G(us/∆)2], implies a relation, Gc∆/Bc∆ = µc0∆

c/ucs =
2G/[B + (1/2)G(ucs/∆

c)2] = 4/[g2e + (ucs/∆
c)2], between

shear and bulk modulus, and allows to determine from the
quadratic equation: µc0(ucs/∆

c)2 − 4ucs/∆
c + µc0g

2
e = 0 the

shear to isotropic elastic strain ratio ucs/∆
c = 2/µc0 ±√

(2/µc0)2 − g2e , with real solutions for µc0 ≤ 2/ge, as real-
ized in cases modelled here (data not shown).
27 For the granular energy density, see Eq. (55), the ratio
of tangent moduli and the solution for µc0 are not spelled out
here, for the sake of brevity.
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Fig. 5 Pressure plotted against density, ρ, similar as in Fig.
4, but with ρJ0 = 0.60, during loading up to ρmax = 0.62,
0.64, 0.66, and 0.68, with subsequent un-/re-loading cycles
with amplitude, δρ = 0.01. The horizontal blue lines on top
correspond to ρmax = 0.68 and δρ = 0.08. The dashed
green curve represents the initial loading, up to ρmax (green
dots), with six un-/re-loading cycles, ending at the magenta
dots. Note that the lowest ρmax = 0.62 is un-jamming and
re-jamming during the cycles. The upper (blue) curve rep-
resents the elastic limit case, with pv = 0, i.e., without
plastic rearrangements and the analytical pressure state-line:
P∆ = B∆3/2, with B = 1. The lowermost curves represent
cyclic un-/re-loading from ρmax = 0.68 with large amplitude,
δρ = 0.08, down to ρmin = 0.60, well below the jamming-
point, un-jamming and re-jamming during every cycle. The
inset represents the void fraction, e, plotted against (logarith-
mic) pressure, P , similar to Fig. 2a.

thus valid also for strain-reversal and during early tran-

sients, for which negative argument values result in per-

fectly elastic response, ps = 0, as done similarly in Refs.

[46,157,120] and references therein – based on, and in

agreement with, DEM simulations 28. The probability

for plastic events in Eq. (79), specified above in Eq.

(83), can be very small at the beginning of shear, but

increases due to the build-up of elastic shear strain, us,

before it asymptotically approaches ps = 1 for large

strain in the perfectly plastic, critical state. At reversal

of shear, the argument of the bracket-function becomes

negative, i.e., the system is elastic with ps = 0, until

the shear strain adjusts to the new direction 29.

In cases where density and thus∆ is reduced in mag-

nitude after the system has reached the critical state

(not studied here), also ucs ∝ ∆c will reduce, and the

term 1− ps = 0, can become negative, resulting in the

28 If one can assume: ∆ ≈ ∆c, i.e., that the isotropic elas-
tic strain is almost constant, close to its critical state limit
already, Eq. (79) can be solved analytically, yielding an ex-
ponential approach of us to its critical state limit, see Ref.
[46].
29 Like for pv, this could be merged into the relaxation
term −λT∗g u∗ij , if one would assume: −v∗ijps = −λTeu∗ij , the
discussion of which goes far beyond this paper.

decay of us, however, this is skipped here for the sake

of brevity.
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Fig. 6 Shear stress, σdev := πs = |π∗ij | (units are spec-
ified in section 5 and a comparison to particle simulations
is presented in section 6), plotted against pressure, P , from
athermal solutions to cases compressed up to ρmax = 0.61,
0.63, 0.65, 0.67, and 0.69 (green dots), and subsequent cyclic
pure shear with amplitude, δγ ∼ 0.28, where the magenta
dots represent the end-situation after six forward-backward
shear cycles. The dashed line indicates the pre-set slope
µc0 = σcdev/P

c = 0.5. The only other parameter active in this
model is α1 = 2, where the case ρmax = 0.65 was simulated
with two other values of α1 = 0.5 and 8, to display the en-
hancing effect on pressure-dilatancy of this parameter. Note
that the imposed macroscopic friction, here µc0 = 0.5 (dash-
dotted blue line), is chosen smaller than the elastic stability
limit, 2/ge = 1 (dashed blue line), such that the latter is never
reached. The inset represents the shear stress evolution with
strain, during the cyclic forward-backward shearing, where
the higher density cases reach larger stress levels; the thick
dashed lines represent the analytical solutions from Eq. (84)
during initial shear from the isotropic states.

Analytical treatment is possible close to steady

state, for ∆ ≈ ∆c assumed constant, where the de-

viatoric elastic strain evolves as: ∂tus = vs(1− ps) ≈
vs(1− us/ucs), with analytical solution:

us(t) = ucs − [ucs − us(0)] exp(−vst/ucs) , (84)

and critical state elastic shear strain:

ucs = ∆c

[
2/µc0 −

√
(2/µc0)2 − g2e

]
,

as plotted in the inset of Fig. 6 as dashed lines, for the

initial shear stress evolution σdev = π∗s = 2G∆1/2us.

This analytical solution is very similar to the solutions
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Fig. 7 Pressure plotted against density, from the same
model solution as in Fig. 6. The lower curve represents the ini-
tial loading, up to ρmax (green dots), with six cyclic forward-
backward shear cycles, ending at the magenta dots, displaying
the pressure-dilatancy caused by isochoric shear. The upper
(dashed blue) curve represents the elastic limit compression,
with pv = 0. The inset displays the pressure during the shear
cycles for the largest two densities.

presented in Refs. [120,46,157], however, further dis-

cussion is beyond the scope of this paper 30.

What remains is to also consider the varia-

tion/evolution of ∆ during pure (volume conserving)

shear, due to variations in the jamming density. Not-

ing the similarity between ps and the α1-term in Eq.

(78), in order to solve the problem analytically, one can

rewrite the evolution equation for the isotropic elastic

strain as: ∂t∆ = α1usvs(1− ps) ≈ α1u
c
svsps(1− ps) ≈

α1u
c
sps∂tus ≈ α1us∂tus, for constant vs (not valid for

strain-reversal). This equation has a critical state solu-

tion, ∆ = ∆c, due to the term (1− ps) ≈ 0, as well as a

stable elastic solution with ∂t∆ ≈ 0 for ps ∝ us ≈ 0, in

an initial isotropic state, see the infinite slopes in Fig. 6,

for small shear strain and thus small shear stress. Due

to the quadratic proportionality to us, the variation in

∆ is much smaller than the variation in us itself – at

least as long as us/∆ < 1. During shear starting from

an isotropic state, the variation in ∆ is strictly positive,

in the athermal limit, correspinding to dilatancy, i.e.,

the jamming density decreases, while at shear strain-

reversal the evolution is opposite, changing sign dur-

ing evolution, allowing for “butterfly-shape” loading-

unloading cycles of ∆ or P∆, see the inset in Fig. 7,

as consistent with particle simulations [120]. Note that

the above assumptions are reasonable well above jam-

ming, ∆ > 0, but not close to jamming, where the un-

30 Note that since ucs depends (weakly) on ∆, the system of
equations is still coupled and the analytical solution is only
approximate.

jamming can happen during every branch of the cycles,

as shown in Ref. [46].

4.2 The granular thermal limit Ṫg = 0

Assume that one could maintain a constant granular

temperature steady state, e.g., by homogeneous driv-

ing/tapping, see Refs. [162], which would result in the

set of equations:

∂t∆ = ε̇v(1− pv)− λ1Tg∆pg + α1ε
e∗
ij ε̇
∗
ij(1− ps) (85)

∂tε
e∗
ij = ε̇∗ij(1− ps)− λTgεe∗ij +αd . (86)

For vanishing strain rate ε̇ij = 0, the equations decou-

ple and only the relaxation terms survive, This corre-

sponds to the “plastic equilibrium” limit case ∆ = 0,

εe∗ij = 0, which is approached exponentially fast, with

rates λ1Tg and λTg. The term pg = 1 allows to choose

the plastic equilibrium of transiently elastic systems, for

which ∆→ 0, or is needed in a form pg = 1−∆∞/∆, or

pg = 1 − pv, so that a granular type plastic limit with

∆ > 0 can be achieved, see subsection 4.7.

For finite ε̇ij , the system will establish thermal,

elasto-plastic dynamic states that are not discussed fur-

ther for the sake of brevity.

Strictly controlling density, i.e., fixing e, the situa-

tion is interesting again for granular matter. Any per-

turbation, as tapping or small-amplitude cyclic shear,

will typically result in a decrease of both the elastic

strain, ∆, and consequently the pressure, P∆ = B∆∆,

with elastic bulk-modulus B∆ ∝ B∆1/2 + . . . . In this

situation, the pressure curve shifts to smaller densities

(larger e), and changes slope, both moving it away fur-

ther from the elastic state-line, like shown in Fig. 5

(which represents a zoom into the previous Fig. 4, but

with different parameter ρJ0 = 0.60, which would more

resemble frictional granular material. On the other

hand, large strain shear results in (pressure) dilatancy,

shifting the state-line to higher densities (or the void

fraction to the right, towards the VCL, but not beyond),

defining the critical state line (CS) – see magenta points

in Fig. 7. The amplitude of pressure dilatancy increases

with density (pressure), and so does the characteristic

shear strain at which the system transits into a new

state.

4.3 Isotropic jamming/un-jamming in minimal GSH

The model equations for isotropic compression/tension,

with strain rates ∂tρ = ε̇v 6= 0, and ε̇∗ij = 0, reduce to:

∂t∆ = ε̇v(1− pv)− λ1Tg∆ (87)

∂tε
e∗
ij = −λTgεe∗ij +αd (88)

∂tTg = −RTT 2
g (T ∗g /Tg) + fT (ε̇ij) + fg(g∗) (89)
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The density is coupled to strain rate directly, while the

second equation (88) is decoupled (for αd = 0) just re-

laxing an existing elastic shear strain to zero.

TODO: I dont know where this came from - remove it

for submission: From the coupled evolution equations

(87) and (89) for ∆ and Tg, we observe that the situa-

tion at the end of an isotropic compression is indepen-

dent of the density reached if pv = 0. The coupled evo-

lution equations (87) and (89) could be (quantitatively)

calibrated to particle simulations like in Ref. [46], in a

future study, however, in Sec. 6 they are calibrated to

the athermal case, that isolates the evolution of ∆, as is

relevant also for extremely small compression rates, ε̇v,

and thus Tg ≈ 0, if pv 6= 0. For finite positive (compres-

sive) strain rate, the inhomogeneous solution leads to a

divergent increase of Tg with time due to the continu-

ous energy input. The energy production term due to

elastic instability in Eq. (89) would become active for

finite us, when ∆ < geus, but is ignored here, assum-

ing us = 0 (which is not strictly true in real systems,

where there can be some small, local, random elastic

deviatoric strain).

For finite positive (compressive) strain rate, one has

a continuous energy input due to the viscous source

term fT , that can lead to increase or decrease of Tg,

and thus affects also the evolution of ∆. For negative

(expansive) strain rate, the same is true, however, as

soon as the system approaches un-jamming, the behav-

ior qualitatively changes due to Te → 0, which is quali-

tatively, not quantitatively accounted for in the present

version with constant parameters, in particular fv and

RT0; more details are beyond the scope of this study.

4.4 Homogeneous cooling below and above jamming

In the absence of any strainrate mode, or other means

of energy input [162], and assuming that Tg is so small

that ∆ is practically constant, the evolution equation

for Tg, abbreviating γ = RT = RT0(1−r2), and assum-

ing Te = 0, results in an algebraic evolution:
Tg
T 0
g

=
1

1 +RTT 0
g t

, (90)

in the free, homogeneous cooling state, as relevant for

systems below jamming in the granular gas state 31.

On the other hand, assuming the simplest model for

T ∗g ≈ Te, with h = 0 (or for constant ∆), for a small

perturbation from an elastic base state, one has
Tg
T 0
g

= exp (−RTTet) , (91)

31 Remember that the granular temperature in the standard
kinetic theory literature is TG ∝ T 2

g , but we do not consider
all those details here and rather refer to the relevant litera-
ture, e.g., Refs. [7,8,110,111] and references therein.

as relevant for elastically stable systems, well above the

jamming density, for which small perturbations decay

exponentially fast.

4.5 Pure shear transients from an isotropic state

This case was studied in detail by particle simulations

in Refs. [120,46], and should be studied analytically

too with respect to questions about the build-up of

anisotropy, and the degradation of the (shear) modulus,

but is skipped for the sake of brevity.

4.6 Steady state pure shear (model 0 and e)

In case of deviatoric pure shear, the density equation

vanishes, since vll = 0 the density is conserved, ∂tρ = 0,

and the terms with isotropic strain rate in the equations

drop out. The remaining equations yield the steady

state solution for the granular temperature:

∂tTg = 0 = RT0

[
−(1− r2)TgT

∗
g + f2s ε̇

∗
ij ε̇
∗
ij

]
with T ∗g = Te + Tg, so that (for Te = 0):

(T
(ss)
g0 )2 =

f2s (ε̇∗ij ε̇
∗
ij)

(1− r2)
=

f2s v
2
s

(1− r2)
, (92)

or (for T ∗g = Tg + Te):

(T (ss)
g )2 + T (ss)

g Te − (T
(ss)
g0 )2 = 0 ,

yields

T (ss)
g = ±

√
(Te/2)2 + (T

(ss)
g0 )2 − Te/2 , (93)

where only the positive solution is reasonable.

In the “collisional” limit Tg � Te, one has the

dynamic steady state: T
(ss)
g ≈ T

(ss)
g0 ∝ vs, while for

Tg � Te, the steady state temperature in the “elas-

tic” steady state is: T
(ss)
ge ≈ (T

(ss)
g0 )2/Te ∝ v2s , i.e., it

vanishes quadratically for vs → 0.

For the deviatoric elastic strain one has:

∂tε
e∗
ij = 0 = ε̇∗ij − λTgεe∗ij ,

so that:

u(ss)s = vs/(λT
(ss)
g ) and u

(ss)
s0 =

√
1− r2/(λfs) , (94)

while for the isotropic elastic strain one has:

∂t∆ = 0 = −λ1Tg∆+ α1ε
e∗
ij ε̇
∗
ij ,

so that inserting Eqs. (92) and (94) yields the isotropic

elastic strain in steady state:

∆(ss) =
α1v

2
s

λ1λ(T
(ss)
g )2

and ∆
(ss)
0 =

α1(1− r2)

λ1λf2s
, (95)
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the former valid for model e, the latter for the simplest

model 0, where the subscript 0 indicates Te = 0; model

e is not indicated since it represents the default case.

In the “elastic” limit Tg � Te, for vs → 0, the

other two state variables, in model 0, behave as: u
(ss)
s →

v−1s , ∆(ss) → v−2s , and thus g(ss) = us/∆ → vs, i.e., a

leading order linear increase with (shear) strain rate.

4.7 Steady state pure shear (model 1)

In model 1, only the evolution equation of the isotropic

elastic strain has to be modified:

d

dt
∆ = 0 = −λ1Tg∆pg + α1u

∗
ijv
∗
ij

so that inserting Eqs. (92) and (94) yields the isotropic

elastic strain in steady state:

∆
(ss)
1 =

α1v
2
s

λλ1(T
(ss)
g )2pg

=
∆(ss)

pg
, (96)

for model 1 for constant or ∆-indepdendent pg.

In some of the numerical implementations, we used

pg = ∆−∆∞, in order to make ∆ relax towards a finite

value, with ∆∞ = log(ρ∞/ρ), as defined in Eq. (80).

This allows to re-write pg = log(ρJ/ρ∞), which makes

the relaxation term vanish for ρJ = ρ∞, negative for

larger values and increasingly positive for smaller jam-

ming densities. Unfortunately, it also requires to solve

a quadratic equation, resulting in

∆(ss) = (1/2)∆∞[1 +
√

1 + 4∆(ss)/∆∞] ,

i.e., an increased steady state elastic strain, represent-

ing strain-dilatancy. Note that this approach to achieve

finite ∆ under steady state shear, increasing with den-

sity – as to be expected – is different in philosophy than

making the bulk modulus factor B density dependent.

In other of the numerical implementations, we used

pg = 1−∆∞/∆, in order to make ∆ relax towards a

finite value, resulting in the simpler steady state ex-

pression:

∆
(ss)
1 = ∆(ss) −∆∞ = log(ρ∞/ρ

(ss)
J ) ,

with ∆∞ < 0 for ρ > ρ∞, which even can change

sign dependent on the relative magnitudes of ∆(ss) and

∆∞. Note that this approach to achieve finite ∆ under

steady state shear, increasing with density – as to be

expected – is different in philosophy than making the

bulk modulus factor B density dependent.

4.8 Discussion of the steady state

Dividing Eq. (94) by (95) yields the deviatoric to elastic

strain ratio in steady state (in order to evaluate whether

the system is elastically stable or not):

g(ss) :=
u
(ss)
s

∆(ss)
=
λ1T

(ss)
g

α1vs
. (97)

If the ratio of elastic strains in Eq. (97) is smaller than

the elastic stability limit g(ss) ≤ ge =
√

2B/G the

system remains in a possibly stable (elastic, jammed)

state, while it looses stability if the ratio reaches and/or

exceeds the limit value.

Solving numerically the system of equations, includ-

ing the transient evolution, confirms that the steady

state is independent of the density, for model 0, see

Sec. 5, as ρ does not appear in the steady state solu-

tions above.

The elastic strain ratio, Eq. (97), which deter-

mines whether the system becomes elastically instable

in steady state, is not the same as the macroscopic fric-

tion at which the material flows plastically. Dividing the

steady state shear stress by pressure defines the macro-

scopic (bulk) “friction”: µ = σ∗ij/P , which results in the

steady state bulk friction:

µ(ss) =
σ∗ij
P

=
π∗ij

(ss) + ηv∗ij
P∆ + PT

=
G∆u(ss)ij + ηv∗ij
B∆∆(ss) + PT

. (98)

In the slow strain rate limit, ε̇ij → 0, of Eq. (98),

above jamming, ∆ > 0, the second terms in nomina-

tor and denominator vanish, linearly and quadratically

with Tg → 0, respectively, and one has

µ
(ss)
0 =

G∆u(ss)s

B∆∆(ss)

=
2(G/B)(∆(ss))−1u

(ss)
s

1 + (1/2)(G/B)(u
(ss)
s )2(∆(ss))−2

=
4(G/2B)g(ss)

1 + (G/2B)(g(ss))2
=

4g(ss)

g2e + (g(ss))2
. (99)

For the special case g(ss) = ge, when the elastic limit

of stability and the steady state ratio of elastic strains

coincide, this translates to: µ
(ss)
0 = 2/ge.

4.9 Temperature unjamming regularization (model g)

In order to regularize the elastic unjamming instability,

we introduce a measure for the distance from the elastic

limit gs = (g−ge) = (us/∆−
√

2B/G), which influences

the temperature evolution

d

dt
Tg = RT

[
−T 2

g

]
+ fT (ε̇ij) + fg(g∗) , (100)
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with fg(g∗) = fgθ(gs)gs, and the step-function θ(gs >

0) = 1, and 0 else, so that one has for steady-state pure

shear (with model 0):

(T (ss)
g )2 =

f2s v
2
s + fgθ(gs)gs
(1− r2)

, (101)

i.e., just an elevated granular temperature that affects,

in turn, the other state-variables (elastic strains) via

their respective relaxation terms, as will be shown in

the next section 5.

5 Numerical solutions of GSH

In order to better understand GSH, including transients

and transitions, and to validate the analytical solutions

in the previous section 4, we solve the system of equa-

tions numerically (with matlab, using ode45) and – fo-

cusing on a few terms only – discuss the features of the

simplest GSH type model with mostly constant coef-

ficients, see table 1, and the energy density from Eqs.

(53). Symbols with a prime are dimensional, whereas all

presented results are dimensionless (without prime), as

explained next.

Units are indicated by subscript-u and are here

chosen as particle diameter, e.g., x
′

u = d
′

p = 10−3m,

and density, ρ
′

u = ρ
′

p = m
′

p/V
′

p = 2000 kg m−3, with

volume, V
′

p , of a single particle, so that its mass is:

m
′

p = ρ
′

pV
′

p = (π/6)ρ
′

p(d
′

p)
3 = (π/6)m

′

u ≈ 10−6 kg, with

unit of mass: m
′

u = ρ
′

u(x
′

u)3 = 2×10−6 kg. When the fi-

nal unit is chosen as stress, σ
′

u = 1 MPa (or 10 kPa), this

results in the unit of time being: t
′

u = (m
′

u/x
′

u/σ
′

u)1/2 ≈
50× 10−6 s = 50µs (or t

′

u = 500µs).

The protocol of the numerical solutions consists of

three stages: The initial preparation by isotropic com-

pression (green) is followed by the testing mode (vari-

ous colors for different parameters), and finally by a re-

laxation phase without any strain rate (magenta). The

testing mode is in the following examples pure devi-

atoric (volume-conserving) shear, for large strains, to

approach the critical state.

5.1 Effect of elastic dissipation and unjamming

Next goal is to understand the behavior of the sim-

plest version of the GSH model and the effects of the

elastic dissipation parameter Te and the temperature

regularization, fg, that controls the dynamics at elastic

unjamming.

The initial preparation starts from an un-jammed

state at ρ(0) = 0.58, with isotropic jamming taking

place at density ρJ0 = 0.60, up to different target den-

sities ρ = 0.61, 0.62, 0.63, 0.68, 0.74, and 0.80 during

tp = 1000. From this point on, pure shear is applied

for ts = 5000 and the final relaxation is applied for

tr = 4000.
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Fig. 8 Case A (model 0): Shear stress plotted against pres-
sure (top) and deviatoric-to-isotropic elastic strain ratio plot-
ted against time (bottom). The green lines (on the horizontal
axis) represent the isotropic preparation, the magenta lines
(overlapping) the final relaxation, and the big solid (cyan)
dot, or dashed cyan line in the lower panel, show the theoret-

ically predicted steady state σdev = µ
(ss)
0 p from Eq. (99), be-

ing density-independent for the over-simplified models. The
dash-dotted (blue) lines represent the elastic stability limit
ge, while the dashed thin blue line indicates µ0 = 0.5 (not
relevant here) for Te = 10−6.

First, the effect of Te on the system is studied in

Figs. 8 and 9, by plotting shear stress against pres-

sure and the ratio of the deviatoric-to-isotropic elastic

strains against time. Due to the density-independent

parameters, in particular B, all the different density

configurations approach to the same steady state, as

analytically predicted (solid point in upper panel). The

overshoot in the transient decreases with increasing

density, before the steady state ratio of us/∆ is reached,

and the relaxation kicks in after shear is stopped . In

the former, Fig. 8, Te = 10−6 (case A) is practically

zero and has no effect, whereas in the latter, Fig. 9, the

finite Te (case B) causes a reduced Tg in steady state,

as well as a much more rapid relaxation (exponential

due to Te, instead of algebraic, like in the free cooling
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m. Te fg B G λ λ1 α1 RT0 r RT fs fv ηs χ ge g(ss) µ0

A 0 10−6 0 1 0.5 3 1 2 50 0.6 32 2 1 1 0.1 2 1.250 0.90
B 0e 2× 10−4 0 1 0.5 3 1 2 50 0.6 32 2 1 1 0.1 2 1.165 0.87
C 0eg 2× 10−4 4× 10−4 1 0.5 3 1 2 50 0.6 32 2 1 1 0.1 2 1.165 0.87
D1 0 0 0 1 0.5 3 1 ... 50 0.6 32 2 1 0.1 0.1 2 ... 1
D2 0g 0 5× 10−5 1 0.5 3 1 ... 50 0.6 32 2 1 0.1 0.1 2 ... 1
D3 0eg 2× 10−4 5× 10−5 1 0.5 3 1 ... 50 0.6 32 2 1 0.1 0.1 2 ... 1

Table 1 Summary of parameters used for the numerical solutions of GSH, in the classical version without plastic deformation
probabilities, pv = ps = 0, where m. indicates the model version used, and dots replace varied values. The last three columns
contain the elastic stability limit ge, and the analytical solution to the steady state for shear to normal elastic strain and stress,
respectively.
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Fig. 9 Case B (model 0e with Te = 2.10−4): Same as in Fig.
8, with only difference the elastic dissipation active.

granular gas) to the static state (shorter magenta lines).

Due the decreased Tg, in steady state, the other state

variables ∆ and us are increased, whereas their ratio is

slightly decreased, see Eq. (97).

The effect of the new temperature production term

with fg = 4.10−4 is then tested in Fig. 10 (case C),

with otherwise the same settings as in case B. Only

those cases that overshoot ge are affected. One of them,

the lowermost density case, is completely destabilized

by the increase in Tg in the unstable regime, reaching a

completely different steady state (far out of plot range),

and returning rapidly to elastic stability as soon as the

shear strain is stopped. Another case (second lowest

density) remains above, but moves closer to ge and re-

mains there for some longer time before it reaches the

analytically predicted steady state. This proofs that the

production term of Tg, due to the elastic instability,

allows to regularize the systems behavior by dynamic

means: Counterintuitively, an increased generation of

Tg can keep the system closer to the elastic instability,

however, if too much Tg is produced, this destabilizes

the system and allows it to explore the plastic, colli-

sional steady state with very large Tg and – at the same

time – comparatively small us and ∆ (see the lower left

corner in the upper panel and the out-of-bounds data

in the lower panel).
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Fig. 10 Case C (model 0eg with Te = 2.10−4 and fg =
4.10−4): Same as in Fig. 8, with difference the elastic dissi-
pation and the granular temperature creation both active.

5.2 Effect of dilatancy and dynamics

Next goal is to understand the behavior of the model at

constant density, with different dilatancy parameters,

α1, and the effects of the elastic dissipation parameter

Te and the temperature regularization fg.
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The initial preparation starts from an un-jammed

state at ρ(0) = 0.58, and is applied up to target density

ρ = 0.65, during tp = 1000. From this point on, pure

shear is applied for ts = 5000 and the final relaxation

is applied for tr = 4000, like before.

The values of α1 are chosen such that a few of the

data remain within the elastic instability limit us/∆ <

ge, but a few overshoot, as can be seen in the lower

panels of Figs. 11, 12, and 13.
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Fig. 11 Case D1 (model 0): Shear stress plotted against pres-
sure (top) and deviatoric-to-isotropic elastic strain ratio plot-
ted against time (bottom), for the same density, ρ = 0.65 for
pure shear, with parameters given in table 1, in particular,
for Te = 0, and fg = 0, for different values of α1 = 0.75,
1, 1.25, 1.5, 2 (from top to bottom). The green lines (on the
horizontal) represent the isotropic preparation, the curves the
evolution during pure shear up to the dots, representing the

analytical steady state solution, σdev = µ
(ss)
0 P , see Eq. (99),

while the magenta lines show the final relaxation, starting
from the dots, without shear. The slopes in the top panel

correspond to µ
(ss)
0 = 1 and µc = 0.5, to guide the eye, and

the dashed horizontal lines in the lower panel represent the
analytical values ge = 2 (dash-dotted, blue) and various g(ss)

(cyan and thin dots), see Eq. (97).

First, the effect of fg on the system is studied in

Figs. 11, 12, and later the effect of Te in Fig. 13. Again,

shear stress is plotted against pressure and the ratio

of the deviatoric-to-isotropic elastic strains is plotted

against time. In the former, Fig. 11, Te and fg are prac-

tically zero and have no effect at all, but an increasing

dilatancy parameter, α1 causes the system into decreas-

ing levels of g = us/∆ during shear steady state (ss).
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Fig. 12 Case D2 (model 0): Shear data as in Fig. 11, where
all parameters are the same, except for fg = 5.10−5, which
determines the granular temperature production in the insta-
ble regime, see Eq. (101) (not shown explicitly), which causes
the different behavior of the upper curves.

The two lowermost curves remain within the elastic in-

stability limit, the intermediate value α1 = 1.25 dis-

plays a slight overshoot but hits ge = 2 in steady state,

wheras the upper two curves are clearly beyond the

elastically stable regime g > ge. In the shear stress to

normal stress plot, the different α1 values lead to dif-

ferent steady states (thick dots) and a slow relaxation

(magenta lines).

When temperature regularization is active in Fig.

12, the curves in the stable regime are not affected, the

intermediate case is slightly modified and the upper two

curves (smaller two α1) are, again, considerably affected

by the generation of Tg, i.e., the much larger Tg causes

both elastic strains to relax towards the plastic limit –

see the curves in the lower left corner of the shear to

normal stress plot.

In the last Fig. 13, the finite Te causes a reduced Tg

in steady state, which results also in smaller u
(ss)
s /∆,

see Eq. (97). During final relaxation, Te is also causing a

much more rapid (exponential) relaxation to the static

state (shorter magenta lines).

Note that the elastic dissipation term, with finite Te,

is reducing granular temperature within and outside,

whereas the thermal activation, fg, increases Tg, but

only outside the elastically stable regime.
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Fig. 13 Case D3 (model 0): Shear data as in Fig. 12, where
all parameters are the same, except for Te = 2.10−4, which
leads to slightly lower steady states, and a much more rapid
(exponential) dissipation of energy.

6 DEM particle simulations

The particle simulations to be compared to the GSH

solutions are the simplest possible element tests in a

periodic cubical cell, with only diagonal components

of the strain-rate active (isotropic compression/tension

and pure shear). The N = 4913 frictionless particles

(µp = 0), with particle diameters drawn from a ran-

dom homogeneous size distribution with maximum to

minimum width, dmaxp /dminp = 3, are the same as used

in Ref. [46], even though the simulations were re-run

slower for the first compression and de-compression cy-

cle, see Fig. 1.

6.1 Non-dimensionalization of DEM

The parameters given in the following with a prime,

e.g., ρ
′

p = 2000 or d
′

p = 2, are used in the simulations

shown in this paper. For working with units, there are

two alternatives: Either one can read the numbers in

chosen units 32 or the units are chosen based on physical

properties to achieve non-dimensional quantities. The

latter option is adopted here, i.e., the unit of length is

32 Units could be, e.g., length, x
′

u = 0.5 × 10−3 m, time,
t
′

u = 10−5 s, and mass, m
′

u = 1.25 × 10−10 kg, to match

experimental values: d̂p = d
′

px
′

u = 1 mm, ρ̂p = ρ
′

uρ
′

p =

2000 kg m−3, etc., see Ref. [163], and section 5.

chosen as the mean particle diameter, x
′

u = 〈d′p〉 = 2,

so that 〈dp〉 = 1 is the dimensionless diameter. The

second unit is the material density, ρ
′

u = ρ
′

p = 2000,

so that one has the dimensionless density, ρ = φ, and

thus the unit of mass, m
′

u = ρ
′

u(x
′

u)3, i.e., the parti-

cle mass, mp = (π/6). For the third unit one has sev-

eral choices, where we adopt here the units of elas-

tic stress, σ
′

u = k
′

n/d
′

p, with the linear normal con-

tact stiffness, k
′

n = 105, which yields the dimension-

less stress σ = σ
′
d
′

p/k
′

n, and results in the unit of time

t
′

u = (m
′

u/k
′

n)1/2 = 0.4 33. In the chosen units, the di-

mensionless linear stiffness is kn = k
′

n(t
′

u)2/m
′

u = 1,

and the linear contact viscosity, γ
′

n = 103, becomes

γn = γ
′

nt
′

u/m
′

u = γ
′

n/[k
′

nt
′

u] = 4 × 10−3, with back-

ground viscosity, γ
′

b = 102, or γb = γ
′

bt
′

u/m
′

u = 4×10−4.

The consequent physically relevant properties are

the restitution coefficient r = exp(−ηtc) ≈ 0.855, with

damping factor η = γn/(2m12), reduced mass, m12 =

0.063, and contact duration, tc = π/
√
kn/m12 − η2 =

0.79, or t
′

c = tct
′

u = 0.316, all considered for a contact

between the largest and the smallest particle, with the

larger viscous damping time-scale, tv = 2m12/γn ≈ 5,

and the even larger background damping time-scale

tb = 2m12/γb ≈ 50. Note that this choice of units corre-

sponds to setting t
′

u ∝ t
′

c, which corresponds to collaps-

ing different stiffness simulations in the elastic regime

[72,113].

6.2 Calibration of GSH with DEM

The energy density has the same units as stress,

w
′

C =
E
′

pot

V ′
=

ρ

NV ′p

M∑
c=1

1

2
k
′

n(δ
′

c)
2 ≈ ρCk

′

n

4V ′p
〈(δ
′
)2〉 ,

(102)

with the particle volume, V
′

p = (π/6)〈(d′p)3〉, and the

contact number per particle C = 2M/N , given the total

number of contacts, M . The fraction of rattlers, fr, that

relates C to the coordination number Z = C/(1− fr),
is not studied here, as it was discussed in detail in Ref.

[46] and references therein.

The dimensionless energy density is thus:

wC = w
′

Cd
′

p/k
′

n =
ρC

4V ′p
d
′

p〈(δ
′
)2〉

≈ 3ρC〈dp〉
2π〈d3p〉

〈δ2〉 =:
ρC

2
p0BC∆

2 , (103)

33 The alternative dimensionless stress: σγ =
σ
′
/[ρ

′

p(d
′

pγ̇
′
)2], with the unit of time set by the shear

rate, t
′

u = γ̇
′
, is more useful for collisional shear flows, see

Ref. [113], and is thus not adopted here fore the sake of
brevity.
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Fig. 14 Scaled energy density, w∗ = w/(p0ρC), plotted
against density (volume fraction), ρ = φ, for three models as
introduced in sections 3.2.2 (Hertzian, we – thin lines) and
3.2.3, (granular, linear, wC – thick lines), and perfectly elas-
tic w0 = (1/2)B∆2

0 – light thin line – with ∆0 = log(ρ/ρJ0),
with ρJ0 = 0.65 – all based on the same numerical solu-
tion of ∆, under six large-amplitude, isotropic, cyclic loading-
unloading cycles, in subsection 4.1.1, and the explicit form of
w inserted thereafter, while the symbols are taken from the
particle simulations, scaled the same way.

with all lengths non-dimensionalized by d
′

p, and p0 ≈
3
π
dpd

2
2

〈d3p〉
≈ 0.766 d22 ≈ 0.0704, chosen such that BC = 1,

accounting for the third non-dimensional moment of

the size distribution 〈d3p〉 ≈ 1.245 (equals unity for

monodisperse particles), for more details see Refs. [30,

158,159,161,164].

From the present simulation data, one can identify

(not shown) the (almost) constant ratios between over-

lap and elastic strain:

d1 = h21〈δ/dp〉/∆∗ = 〈δ/dp〉/∆ ≈ 0.24 ,

squared overlap and elastic strain:

d2 = 〈(δ/dp)2〉1/2/∆∗ ≈ 0.31 ,

as well as overlap and squared overlap:

d3 = h1〈δ〉/(〈δ2〉)1/2 ≈ 0.79 ,

using the elastic strain deduced from the scaled, di-

mensionless pressure, ∆ = ∆∗/h21 = P/(p0ρCh21),

with p0 = 0.0704, and the large-overlap abbreviations

h1 = 1−〈δ/dp〉 and h21 = 1−〈(δ/dp)2〉/〈δ/dp〉, see Ref.

[158]. This also allows to deduce the jamming density:

ρJ = ρ/ exp(∆) ≈ ρ exp(〈δ/dp〉/d1) , (104)

which eventually allows to compare its evolution with

the theoretical prediction, see Fig. 4.

Fig. 15 Pressure scaled such that it resembles the isotropic
elastic strain, ∆ = P/(p0ρCh21) from the same data as in
Fig. 14, where the uppermost line represents the perfectly
elastic limit case, ∆ = log(ρ/ρJ0), with the minimal isotropic
jamming density, ρJ0 = 0.65. For a zoom into the small pres-
sure range, see Fig. 1
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Fig. 16 Coordination number C = C0 + C1∆αC , from the
same data as in Fig. 14; circles and triangles correspond to
the first loading and un-loading branch, respectively.

7 Conclusion and Outlook

The focus of this paper was on yielding and un-

jamming/jamming of granular matter, a study inspired

by the late Bob Behringer, to whom this work is

dedicated. In an attempt to combine theoretical con-

siderations with numerical/experimental observations

on granular matter, the authors propose a minimalist

macroscopic model to capture qualitatively all states of

granular matter, and which even can be solved analyt-

ically in various special cases. Furthermore, the paper

contains a review of literature on GSH as well as on par-

ticle simulation, which are compared in relation to each

other and eventually used to quantitatively calibrate

the GSH theoretical model with existing numerical re-

sults from a simple, frictionless, soft particle model.



Un-jamming: statics to dynamics 33

The system considered was a representative volume

element (RVE) of granular matter, homogeneous, i.e.,

without gradients and with no walls. The granular ma-

terial was considered in fluid-like and solid-like states,

as well as during continuous changes between these

states. Particular focus was on the transition from elas-

tically stable to instable, which is a novel contribution

since the latter states can be highly dynamic, a situa-

tion that is not treatable by, e.g., standard elasto-plastic

approaches or critical state theory.

Based on the rather complex, but versatile granular

solid hydrodynamics (GSH), a much simplified qualita-

tive model that includes un-jammed, gas- or fluid-like

states as well as jammed solid-like states (elastically

stable) was proposed and studied both analytically as

well as numerically. Furthermore, various transitions

and intermediate states could be identified and bet-

ter understood in the framework of this simple GSH

type model, which has only four state-variables, den-

sity, elastic strain (isotropic and deviatoric) and gran-

ular temperature, unifying all the states and transi-

tions of granular matter that we could imagine. In order

to keep this universal model attempt transparent, the

model equations were often over-simplified by setting

most parameters constant, so that the structure of the

model equations rather than the consequences of addi-

tional constitutive assumptions could be tested. Analyt-

ical solutions of the model were possible for cases where

either one or more state variables was fixed or set to

zero, while other cases involved either purely isotropic

or purely shear modes of deformation, which typically

removes considerable fractions from the equations to

render them solvable.

The model was generalized to include soft parti-

cle phenomenology, and even quantitative the rheology,

elastic and dissipative responses, as inspired by recent

soft particle simulations. Also a strictly non-thermal

limit (removing the granular temperature) was consid-

ered, as well as perfectly plastic, elastic or intermediate

states – possibly related to the critical state and the

elastic instability, which was actually the main focus

and reason to start this research. A major open ques-

tion about the size of the volume in which such instabil-

ities occur, cannot be answered in this study, since we

assumed homogeneity inside the RVE on the continuum

theory level.

Even though rather simple, the minimal universal

model is capable of following the granular system from

very low (dilute granular gas) to very high densities

(dense jammed granular solid), including various

transitions and all the transients. In order to limit

complexity, the model was considered for a homoge-

neous (gradient-free) system that could be either seen

as a RVE, or as material point of a full continuum

model. However, it is not clear which size this material

element should have. From particle simulations with

a few 1000 particles, it is clear (data not shown

here) that the system is never really homogeneous,

and that zones of plastic deformations can range

from a few particles up to system spanning events.

This inhomogeneity within the RVE was enclosed in

the probabilities for plastic deformations that are an

extension to the classical GSH.

Considering jamming, we report a very slow, “half-

hearted” transition to the jammed state, as observed

in both particle simulations and GSH, where the

true jamming density φJ , is established above, not

at the minimal possible jamming density φJ0 < φJ ,

even in the absence of perturbations due to granular

temperature, Tg, just due to the occurrence of plastic

(irreversible) deformations that lead to better, more

efficient packing during compression. A more detailed

study of the rate dependence and thus dependence on

Tg, was beyond the scope of this study.

7.1 Modes of un-jamming

Once jammed, the first mode of isotropic un-jamming

appears trivial: decompression of the system makes the

density decrease and un-jamming takes place when the

elastic strain vanishes. However, the density at which

un-jamming takes place is not the same as the jam-

ming density, it rather depends on the history of the

packing. Perturbations by tapping or over-compression

both can result in un- and re-jamming densities con-
siderably larger than the lowest possible, the random

loose packing density. The longer/stronger the system

is perturbed, the larger the jamming density will be,

but the approach to this upper limit is realized very

slowly, so slow that it requires very many cycles to be

reached. Whether there are well defined random loose

and random close packing densities, below/above which

the system cannot jam/un-jam anymore is an important

open question. both limit densities are very sensible to

the protocol one uses to approach and realize/measure

them, especially in the absence of friction as relevant

for soft, gel-like particles that resemble to many of the

simulations referred to in this study.

The second mode of un-jamming is by plastic

yielding, which involves irreversible deformations/re-

structuring of the solid granular matter, but does not

involve dynamics or granular temperature – at least not

in the classical picture. Plastic events occur with a cer-

tain probability, see Ref. [46], which is larger the closer

the system is to un-jamming or the larger the elastic
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shear strain (and/or stress) is, which was previously ac-

cumulated. This mode involves the more classical world

of elasto-plastic continuum mechanics and rheology for

example see Refs. [165,29,4]. The evident lack of a dy-

namic state variable is at the origin of many difficulties

with those elasto-plastic concepts, in particular when

the deformation rates become larger and larger. Mod-

ern concepts like fluidity or non-local models have been

proposed during the last years to overcome this problem

[165,166,66,94,18,111], however, the proper account

for the granular temperature in the elastic regime, and

for unjamming, is still an open issue that is at least

partly solved now.

The third mode of un-jamming is a transition oc-

curing via an elastic instability, i.e., the loss of convex-

ity, and then involves deformations of the solid granu-

lar matter that can occur without penalty (work), at

the onset of concavity (elastic instability) or, are even

activated/pushed by the external stresses (in the con-

cave regime, or closeby). This mode is seemingly differ-

ent from plastic yielding, since it allows for dynamics

(granular temperature) to build up, grow, and eventu-

ally push back the system into a mechanically stable

elastic state before/while it is dissipated.

How much different – if at all – plastic and elas-

tic yielding really are has to be seen, and is subject of

current ongoing research.

7.2 Outlook and open questions

Besides extending the theory to general, inhomoge-

neous systems with gradients, further research is also

needed to:

– Generalize the present version to arbitrary tensorial

form in three dimensions, involving also the so far

lacking third invariant of the tensors.

– Connect quantitatively the granular gas and fluid

(standard) kinetic theory with GSH.

– Determine the proper shape of the energy density

for granular solids for realistic materials with fric-

tion, cohesion, polydispersity.

– Sort out if the present version of GSH without a

micro-structural (fabric) tensor is sufficient or needs

to be improved – is the elastic strain enough?

– Find the different mechanisms of relaxation, cre-

ation and destruction of energy in the elastic strain

degrees of freedom as well as the dynamic, kinetic,

granular ones.

– Identify the relaxation/evolution dynamics and the

interplay of the multiple mechanisms, represented

by the various different terms, of the state-variables

below, above and during un-jamming/jamming?

Present research is aimed to address the remaining chal-

lenging questions: What are the differences and similar-

ities of the driving forces/mechanisms? And, can they

indeed all be combined in a single universal model as

attempted in this study?
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11):570–586, 2010.

159. O. Durán, N. P. Kruyt, and S. Luding. Micro-
mechanical analysis of deformation characteristics of
three-dimensional granular materials. International
Journal of Solids and Structures, 47(17):2234–2245,
2010.

160. V. Ogarko and S. Luding. Equation of state and
jamming density for equivalent bi- and polydisperse,
smooth, hard sphere systems. Journal of Chemical
Physics, 136(12):124508, 2012.

161. Vitaliy Ogarko and Stefan Luding. Prediction of poly-
disperse hard-sphere mixture behavior using tridisperse
systems. Soft Matter, 9(40):9530–9534, 2013.

162. Raffaele Cafiero, Stefan Luding, and Hans J. Herrmann.
Two-dimensional granular gas of inelastic spheres with
multiplicative driving. Phys. Rev. Lett., 84:6014–6017,
2000.



Un-jamming: statics to dynamics 39

163. S. Luding. Objective constitutive relations from DEM.
In J. Grabe, editor, Seehäfen für Containerschiffe
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