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Abstract

The isotropic compression of polydisperse packings of frictionless spheres is modeled with the discrete element
method (DEM). The evolution of coordination number, fraction of rattlers, isotropic fabric, and pressure (isotropic
stress) is reported as function of volume fraction for different system parameters. The power law relationship, with
power = 1/2, between coordination number and volume fraction is confirmed in the jammed state for a broad
range of volume fractions and for different (moderate) polydispersities. The polydispersity in the packing causes
a shift of the critical volume fraction, i.e., more heterogeneous packings jam at higher volume fractions. Close to
jamming, the coordination number and the jamming volume fraction itself depend on both history and rate. At
larger densities, neither the deformation history nor the loading rate have a significant effect on the evolution of
the coordination number.

Concerning the fabric tensor, comparing our DEM results to theoretical predictions, good agreement for different
polydispersities is observed. An analytical expression for the pressure as function of isotropic (volumetric) strain
is proposed for polydisperse packings, based on the assumption of uniform deformation. We note that, besides the
implicit proportionality to contact number density (or fabric), no single power-law is evidenced in the relation for
the pressure. However, starting from zero pressure at the jamming point, a linear term with a quadratic correction
describes the stress evolution rather well for a broad range of densities and for various polydispersities. Finally, an
incremental evolution equation is proposed for both fabric and stress, as function of isotropic strain, and involving
the coordination number and the fraction of rattlers, as starting point for further studies involving anisotropic
deformations.
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Résumé

Lois de comportement pour déformations isotrope d’assemblage de sphéres polydisperses sans
frottement

La compression isotrope d’assemblages polydisperses de spheres sans frottement est modélisée par une méthode
aux éléments discrets (DEM). L’évolution du nombre de coordination, de la fraction de “rattlers” (les particules
instables, sans contactes), de la texture isotrope et de la pression (contrainte isotrope) est étudiée en fonction
de la fraction volumique pour différentes valeurs des parametres du systeme. Une relation en loi puissance, avec
un exposé proche de 0.5, entre le nombre de coordination et la fraction volumique est confirmée en régime de
blocage pour une large gamme de fractions volumiques et pour différentes polydispersités. La polydispersité de
I’assemblage induit un décalage de la fraction volumique critique, c’est-a-dire que les assemblages plus hétérogenes
se bloquent a des fractions volumiques plus élevées. Au voisinage du jamming, le nombre de coordination et la
fraction volumique de blocage dépendent a la fois de I’histoire et de la vitesse de chargement. A des densités plus
élevées, ni I'histoire des déformations et ni la vitesse de chargement ont un effet significatif sur I’évolution du
nombre de coordination.

En ce qui concerne le tenseur de texture, la comparaison de nos résultats DEM avec les prédictions théoriques est
satisfaisante pour différentes polydispersités. Une expression analytique de la pression en fonction des déformations
volumiques est proposée pour différents assemblages polydisperses, fondée sur une hypothése de déformation
uniforme. On notera que, outre la proportionnalité implicite vis-a-vis de la densité de nombre de contacts, aucune
loi puissance ne peut étre mise en évidence dans la relation donnant la pression. Cependant, partant d’une pression
nulle au point de blocage (jamming), un terme linéaire peut décrire, avec une correction quadratique, I’évolution
de la contrainte de maniere satisfaisante, pour une large gamme de densités et pour diverses polydispersités.
Finalement, une équation d’évolution incrémentale est proposée a la fois pour la texture et la contrainte, en
fonction de la déformation volumique, et impliquant le nombre de coordination et la fraction de rattlers. Elle
constitue un point de départ pour de futurs travaux en relation avec les déformations anisotropes.

Key words: polydisperse, frictionless granular materials ; isotropic compression ; constitutive models; rattlers

Mots-clés : matériaux granulaires polydisperses sans frottement ; compression isotrope ; lois de comportement ; particules
instables (rattlers)

1. Introduction

Dense granular materials show peculiar mechanical properties quite different from classical fluids or
solids [1, 2]. This is true not only for realistic contact forces involving friction and adhesion [3, 4], but
already in the frictionless case. Describing granular matter with continuum models is difficult due to their
inherent discrete structure and since the origin of their behavior is far from understood [4, 5, 6, 7, 8.

The transition from liquid to solid phases in disordered systems is generally investigated in the context
of jamming [6, 7, 9]. Liu and Nagel [5] have suggested that this concept can be applied to different
materials in a single framework using a jamming phase diagram with temperature, shear stress, and
volume fraction as control parameters. (The volume fraction is the ratio of solid volume to total volume.)
For athermal systems like granular materials jamming, i.e., the transition from fluid-like to solid-like
behavior, is then essentially determined by the volume fraction and the shear stress [10, 11, 12, 13].
Particularly, if a granular packing is subject to isotropic compression the shear stress is practically zero
and the only control parameter is the volume fraction, or equivalently the density (which is the product of
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volume fraction and material density). Recent numerical and experimental studies with disk and sphere
assemblies were performed to identify the critical value at which jamming first occurs [6, 14, 15, 16].
For monodisperse systems it corresponds approximately to the random close packing [9, 15, 16]. Other
quantities such as coordination number and pressure were reported to evolve as power laws of the volume
fraction in a small interval above the jamming density [6, 7, 15], resembling a phase transition and critical
phenomena [1, 2, 5, 7, 15].

Another issue is predicting the mechanical properties of granular materials, which are controlled by the
internal structure of the assembly of grains — where the internal structure itself depends on the history of
the sample. Although, particles are much smaller than the packing, the presence of discrete force chains in
the contact network can lead to long range correlations and thus precludes a straightforward continuum
description. Fluctuations of quantities like stress are extreme on the particle scale, i.e., much larger than
the mean values, and only over rather large representative volumina these fluctuations decay.

The fabric tensor is commonly used as first harmonic approximation to quantify the structure in disor-
dered systems with an average and a deviatoric (anisotropic) contact density [17, 18]. Numerical studies
of the fabric tensor under isotropic deformation of systems with disks, for different polydispersities, have
been realized [17, 19] and at least the contact number density could be related to the first three moments
of the size-distribution for isotropic situations. Advanced constitutive models within the framework of
continuum mechanics employ various definitions of the fabric tensor as a non-classical field. For exam-
ple, elasto-plasticity and hypoplasticity [20, 21] were generalized to include more general structure field
variables, however, accurate modelling of the effect of structure on the anisotropy of granular materials
remains a challenge.

The goal of this study is to test the validity of the power law for the coordination number in poly-
disperse packings of frictionless spheres also at relatively high volume fractions above jamming and to
provide incremental evolution equations for fabric and stress under isotropic deformation. For this, we
perform DEM simulations, as introduced in section 2, with packings of different polydispersities, number
of particles and loading rates. In Secs. 3 and 4, we analyze numerically the evolution of the coordination
number and of the (isotropic) trace of fabric as function of volume fraction and compare the result with
theoretical predictions in Refs. [17, 22]. In section 5, based on a theory derived in Ref. [22], we present
an analytical expression for the pressure as function of the volume fraction, resulting in an incremental
evolution equation for isotropic structure (fabric) and stress.

2. Simulation method

The Discrete Element Method (DEM) [3, 4, 23] allows us to enclose frictionless particles in a cubic
volume with periodic boundary conditions. A linear viscoelastic contact model determines the particle
contact forces in the normal direction. In order to reduce dynamical effects and shorten relaxation times
an artificial viscous background dissipation proportional to the particle velocity is added, resembling
the damping due to a background medium. In all simulations gravity is neglected, so that the applied
deformations can be assumed isotropic.

2.1. Sitmulation Parameters

Typical values of the simulation parameters are: system size N = 1000, 5000, or 10000 particles with
average radius (r) = 1 [mm], density p = 2000 [kg/m?], elastic stiffness k, = 10% [kg/s?], particle
damping coefficient v = 1 [kg/s], background dissipation v, = 0.1 [kg/s] (see Ref. [4] for a discussion
of these artificial units, which can be re-scaled due to the simplicity of the contact model). Since the
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particle size distribution is polydisperse, the contact time depends on the radius of the particles. For
example, t. = 0.31 [us] is the duration of a contact between the smallest and the biggest particles, with
the polydispersity parameter w = ryax/Tmin = 3 as defined below. The contact time between two average
particles with /(r) =1, is t. = 0.64 [us] and their mutual coefficient of restitution is » = 0.92. Because t.
is stiffness dependent and can be scaled arbitrarily [4], we do not consider it as an important simulation
parameter (as long as the deformation is performed slow, i.e., quasi-statically). Increasing stiffness leads
to smaller t., i.e., the system has a shorter response time, but has otherwise no effect on the quasi-static
results presented in this study.

In order to quantify the volume fraction rate of change during isotropic deformation, the relative loading
rate for packings undergoing the same deformation is defined as D = Tyef/Tsim, where Tyes = 1000 [us] is
the duration of the fastest simulation. Values of D used for simulations are 1072,1072,10~! and 1.

A typical deformation is applied in a strain-controlled manner to the system boundaries (periodic
“walls”), with a cosine-shape in order to avoid shocks. In a few cases, other strain functions such as
pressure-controlled “wall” displacement and uniform strain field deformation were tested. In the latter
case, the particle displacements are determined such that the instantaneous strain field is uniform inside
the packing, but relaxation is allowed due to the interactions. We observe that there are no strong
differences in the simulation results obtained from different methods as long as the deformation rates are
small. (Therefore we do not discuss the actual strain rate, but refer to the scaled (relative) inverse period
of deformation D = Tyer/Tsim as dimensionless rate.)

2.2. Polydispersity

The polydispersity of the particles can be quantified by the width w = ryax/rmin of the uniform dis-

tribution:
0= = © (w1 7 e (i) W

with the step function ©(z > 0) = 1 and O(z < 0) = 0. The dimensionless moments of the size distribu-
tion can be expressed as functions of w:
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with the first two moments 71 = 1, and 75 = %%j “ﬂ;’; Typical values of w are 1, 2 and 3, where

w = 1 corresponds to a monodisperse packing. A few simulations with larger w < 8 were also performed.
Simulations with other size distribution functions and a theoretical analysis of polydisperse packings will
be published elsewhere [22].

2.3. Preparation and test procedure

The initial packing is obtained by compressing a (fully) random granular “gas” up to a volume frac-
tion close to jamming and letting it relax. Figure 2 shows the initial configuration of the particles, the
granular gas state, before, and the granular fluid state, after first relaxation at an initial volume fraction
below jamming v; = 0.64. From the granular fluid, below jamming, the system is slowly compressed and
the evolution of the kinetic and potential energies is displayed during relaxation and compression. The
packings are isotropically compressed by moving simultaneously inwards the (fictive, periodic) boundaries
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Figure 1. Probability density function of the uniform distribution.

of the simulation domain, see Figs. 2(b)-(d). After maximal compression to vmax = 0.75, the process is
reversed until the initial volume fraction v; is recovered.

Besides (artificial) contacts at the initial state (which disappear immediately due to the high repulsive
forces involved), contacts are closed permanently only above the jamming volume fraction. The potential
energy is an indicator of the overlaps of the particles. However, since the compression is rather fast, one
can observe considerable potential energy due to collisions in the fluid-like state, at densities 1v; < v < v,
with jamming volume fraction vj. From Fig. 2(f), in the loading or un-loading state, one observes that
the kinetic energy is smaller than the potential energy at the higher densities. In the (isotropic) jammed,
solid state, the potential energy is considerably larger than the kinetic energy, whereas in the fluid-like
state referred to above it is significantly smaller. This is a rough indicator of the jammed regime, however,
not really an objective criterion due to the dynamic loading and un-loading. Close to the maximal volume
fraction, due to our co-sinusoidal loading procedure, the kinetic energy drops exponentially over about
two orders of magnitude between times ¢t = 480 us and ~580 us. For larger times, the rate of change
increases so that the kinetic energy increases again, showing jumps whenever the packing re-arranges.

Around time ¢t = 850 us, the volume fraction drops below the un-loading jamming value and the kinetic
energy becomes larger than the potential energy. Also in this fluid-like high-density granular gas, the
kinetic energy drops approximately exponentially due to collisional cooling, however, with a different rate
as before in the high density, slow deformation regime.

3. Evolution of the coordination number

In theory, the jamming transition occurs at the isostatic point [7, 15, 24]. In an isostatic packing
of frictionless particles, the coordination number, i.e., the average number of contacts per particle, is
C = 2D where D is the dimensionality of the system. One can expect smaller coordination numbers
when tangential elastic forces are involved, however, even in simulations and experiments with very small
tangential forces, the reported values of C' are consistently below 2D. This is due to the definition of
an isostatic packing, which excludes all particles that do not belong to the force network, i.e., ideally,
particles with exactly zero contacts are excluded. Nevertheless, in addition to the particles with zero
contacts, there may be particles having a finite number of contacts for some short time, which do not
contribute to the mechanical stability of the packing. The contacts of these rattlers are transient because
the repulsive contact forces push them away from the mechanically stable backbone. Thus, if the packing
were allowed to relax after every deformation step, or be deformed very slowly, these particles would lose
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Figure 2. Snapshots of the (a) initial (fully) random configuration of the particles with big (artificial) overlaps and (b) the
situation after only 40 puseconds compression when all artificial overlaps have disappeared. The color code indicates overlaps
of the particles (red: big overlaps, blue: no overlap). (¢) Snapshot of the relaxed granular “fluid” with volume fraction
v; = 0.64. Note that although particles are densely packed they have still practically no overlap, since the volume fraction is
below the jamming value vj. (d) Snapshot of the strongly compressed packing, with vmax = 0.75 using the same color code
as in (a), (b) and (c). (e) Evolution of the volume fraction, the potential and the kinetic energy during initial compression
and relaxation and (f) the loading-unloading cycle. 6



all of their contacts.

Although it is possible to check numerically the contribution of every particle to the force network [25]
an easier although less rigorous way to identify rattlers is to just count their contacts. Since frictionless
particles with less than four contacts are not mechanically stable they are defined as rattlers. This leads
to the following abbreviations and definitions as used in the rest of this study.

N : Total number of particles.
Ny := N¢>s4 : Number of particles with at least 4 contacts.
M Total number of contacts
My := Mc>4 : Total number of contacts of particles with at least 4 contacts.
M
C" = N Coordination number (classical definition).
M.
C:=C"= W4 Coordination number (modified definition).
M. C
O* =2 = Corrected coordination number.
N4 1- d)r
N — N.
URSES ~ 1 (Number) fraction of rattlers.
1
vi=— Z V, + Volume fraction of the particles.
pPEN

1
vV'ii=v - = — Z V, + Volume fraction of the particles excluding rattlers.
PENy

1
Uy 1= v Z V, + Volume fraction of rattlers.
PENy

The difference between the coordination numbers C” and C' is not caused by the “ideal rattlers” with
C = 0, since those do not contribute to C' anyway. It is caused by those particles (virtual, dynamic
rattlers) with 1 < C < 3, which are not mechanically stable, i.e., temporary, members of the contact
network. They are neglected when counting the contacts My. In the following, we will use the modified
coordination number C' := C™, instead of C'", since it better resembles the slow, quasi-static deformation
mode of the system, as will be discussed below.

The ratio of My and Ny provides the corrected coordination number C*, which perfectly follows the
isostaticity arguments. The fraction of rattlers and a comparison between the classical, the modified
and the corrected definitions are shown in Fig. 3. The values of C” and C™ are very similar, since the
number of contacts originating from particles with C' = 1, 2, or 3 contacts is small anyway and decays
with decaying rate of deformation. As to be expected, the value of C* is considerably larger and all
coordination numbers display a sharp jump at the jamming transition during un-loading. In the left
panel, Fig. 3(a), the respective fractions of particles with different numbers of contacts are shown, where
the red solid line represents ¢,. Coming from high densities, the fraction of rattlers increases and jumps
to unity when approaching v,.. In the right panel, Fig. 3(b), the different versions of the coordination
numbers are compared, showing that, while the loading and unloading branch are clearly different, C",
and C, are only slightly different close to and below the critical volume fraction v.. Even though larger,
C* behaves qualitatively similar below and above the jamming transition.

However, since C* involves not all particles, it cannot easily be related to the total particle volume, or
the mass-density of the system — that is equivalent to the volume fraction, i.e., p = p? v, with the particle
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Figure 3. (a) Evolution of the fraction of rattlers as function of volume during fraction during unloading for a simulation
with N = 10000, w = 3, and D = 0.001. Inset: Fit of Eq. (3). (b) Comparison of the coordination numbers computed using
the classical C", the modified C' and the corrected C*, for the same simulation. The data for loading and unloading are
shown by solid and dashed lines, respectively.

material density pP — as experimentally accessible for many systems. The average contact number density
vC can be related to the mechanically relevant contact number density v*C* (without rattlers):

N, (1=0)N{V,) C
%4 %4 1—¢r

where V' is the volume occupied by the packing. The non-equality could become an equal only if the
average volume of rattlers is equal to the average volume of all particles, i.e., if v./v = ¢,. Unfortunately,
there is no simple exact relation between vC and v*C*, as discussed below in section 4, since the smaller
particles are more likely to be rattlers. Therefore, we will work with the parameters v, C*(v) (see below),
and ¢, (v).

The fraction of rattlers, in the quasi-static limit, i.e., for extremely slow deformations, as presented
below, obeys the empirical relation:

vC =

= (1 - ¢ )wC* £#0v°C* = (v —1,)C* ,

¢7‘(V) = ¢c eXp |:_¢l/ (1/1 - 1):| (3)
for v > v, and ¢, (v < v.) = 1 otherwise. This involves two fit parameters (i) the fraction of rattlers at
jamming, ¢, and (ii) the rate of decay of rattlers with increasing packing fraction, ¢,. A fit of ¢, (v) is
shown in the inset of Fig. 3(a). Note that v, cannot be obtained by the fit like Eq. (3), but has to be
obtained by other means [14], e.g., by identifaction of the jump/discontinuity of ¢, (v.). Typical values
are ¢, ~ 0.13+0.03 and ¢, ~ 15 £ 2. The observation that one has ¢, (vrrp) &~ 1 at the random loose
packing fraction vryp = 0.57 is presumably accidental.

The corrected coordination number C*, obtained by disregarding rattlers, obeys a power law of volume
fraction as reported previously [6, 7, 15, 24]:

C*(v) = Co + O (161)& : (4)

where v, is the critical volume fraction, Cy is the critical coordination number, and C} is the prefactor
for the power-law with power a. Given Cy = 4, 6 in two and three dimensions, for isostatic packings of
frictionless particles, this would leave three more fit parameters (iii) v. ~ vrcp, (iv) C1 =~ 8, and (v)
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a =~ 0.5. However, we sometimes allow also Cj as free parameter in order to check the consistency with
the isostaticity assumption for the packings.

Below we check this analytical expression for C*(v) for the un-loading branch of our simulations, since
these data show much less dynamical artefacts than data from the loading branch. We do not discuss cyclic
loading and un-loading, which can lead to a continuous “drift” (increase) of v, with each loading cycle
[26]. Within the present paper, the hysteresis under cyclic loading, and possible quantitative information
that can be extracted from it (as, e.g., in magnetic systems), is not studied in detail.

Note that we do not identify the v, for un-loading with the jamming volume fraction v;. Actually,
we doubt that there is one jamming volume fraction. The critical value rather depends on the contact
properties and on the history of the packing, especially when realistic properties like friction are involved,
but also for the frictionless case studied here. A detailed study of the dependence of v, on the contact
properties and on the history of the packing in general is far from the scope of this study, so that we
focus mainly on the first un-loading branch.

3.1. Influence of polydispersity

In order to understand the effect of polydispersity, we first perform simulations using three rather small
packings of 1000 particles with three different widths of the size distribution w = 1, 2, 3. These samples
are compressed and then decompressed, at the same rate, between 1; = 0.5 and vyax = 0.9. Figure 4
displays the relation between volume fraction and coordination number for these packings. The finite
values of the coordination number during compression, at low densities, make the transition from fluid
to solid state difficult to detect. This is due to temporary contacts which arise from the dynamics at
low densities. If the packing is allowed to relax the dynamic contacts become less and the state of zero
coordination is approached, as expected. ! However, not even our slowest simulations allowed us to avoid
dynamic contacts in the compression branch.

On the other hand, a much cleaner, very sharp decrease in C' is observed during un-loading (decompres-
sion), when we approach v, from high densities, see Fig. 4. The fit of Eq. (4) to the corrected coordination
number, C*, computed during decompression, is shown in the inset of Fig. 4. The transition from the
jammed to the unjammed state occurs at higher volume fractions for more polydisperse, heterogeneous
packings. A list of the numerical values of the fit parameters is given in table 1.

Even though the system is rather small and the deformation rate is rather high, the fitted parameters
are almost consistent with the isostaticity assumption, Cy = 6. When this is imposed, the fit parameters
are quite close to each other and become almost independent of w. Only for v, there is an increasing
trend for increasing w.

1. Remark on the fit of Equation (4). We choose to fit Eq. (4) to the decompression branch of the simulation data
because the system’s kinetic to potential energy ratio is much lower than during compression in this density range, see Fig.
2(f), even for the rather fast compression used. Furthermore, boundary effects are less important during decompression
because the system is expanding and possible spurious contacts caused by the (virtual, periodic) wall motion are avoided.
In a separate set of simulations, we find that by adding extra relaxation between deformation steps, the compression and
decompression branches of C'(v) can get closer to each other (data not shown). The distance between the branches reduces
with the relaxation step but does not disappear even for the largest relaxation-times. Since the unloading branch is much
less sensible to the protocol and rate of deformation, from now on, we will fit Eq. (4), i.e., the analytical expression of the
corrected coordination number, exclusively to the decompression branch of the simulation data.
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Figure 4. Coordination number C' as function of volume fraction v for packings of 1000 particles with different size distri-
butions of width w, as given in the figure. The arrows indicate the compression (up) and decompression (down) directions.
Inset: The lines are fits of the corrected coordination number according to Eq. (4), with the fit-parameters given in table 1.

3.2. History and system size dependence

It is especially interesting to see how simulation parameters such as deformation history and system size
affect jamming and the evolution of the coordination number. We studied the effect of deformation history
by compressing and decompressing isotropically two packings with 1000 particles and polydispersity w =
3, but for different volume fraction ranges. The first sample is compressed from an initial state close to
jamming up to a very high volume fraction (v : 0.64 = 0.9) and back. The second sample is compressed
from the same initial state up to a moderate volume fraction (v : 0.64 = 0.75) and back.

Figure 5(a) shows the evolution of the coordination number as function of v for both samples. Although,
the highly compressed packing seems to have a larger critical volume fraction, the difference practically
disappears when rattlers are removed. Figure 5(b) shows the corrected coordination number C* during
decompression and the fit of Eq. (4) to the data obtained from the moderately compressed sample. Note
that the fit is also quite good as an extrapolation for stronger compression, i.e., higher densities, suggesting
that isotropic deformation history has no substantial effect on the coordination number at higher volume
fractions.

The size of the system has no effect on the critical volume fraction and the evolution of the coordination
number. Figure 6 illustrates the coordination number as function of volume fraction during a cycle
of compression—decompression for three packings comprising N = 1000, 5000 and 10000 particles. All
samples are deformed at the same relative rate D = 0.5, with the same polydispersity parameter w = 3.
The small size systems show stronger fluctuations prior to jamming since dynamical effects are more
pronounced for. On the other hand, after jamming all curves obey a similar power law as confirmed by
the fits of Eq. (4) to the corrected coordination number C*, shown in the inset of Figure 6.

The values of the critical volume fractions obtained from the fits are 0.6650 + 0.0002, 0.6647 + 0.0001,
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Figure 6. Evolution of the coordination number for different system sizes, with w = 3 and D = 0.5. Inset: Fits of the
corrected coordination number C* according to Eq. (4). The red, green and blue lines are the fits for N = 1000, 5000 and
10000, respectively.

and 0.6652 4+ 0.0001, for NV = 1000, 5000, and 10000, respectively. The other parameters, see Table 2,
are very close to each other and to those reported in Table 1. These rather small differences between the
critical volume fractions (and also the other fit parameters) for different N imply that the system size
does not have an important effect on the evolution of the (corrected) coordination number C*. Larger
systems display smaller statistical fluctuations, however.
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3.3. Effect of loading rate

The effect of the loading rate on jamming and the evolution of the coordination number is analyzed
by applying isotropic deformation to a polydisperse (w = 3) sample at various rates. Figure 7(a) shows
the evolution of the coordination number as function of volume fraction for a packing of 10000 particles
deformed at relative rates D = 1, 0.5, 0.1, 0.01, and 0.001. The fits of Eq. (4) to the corrected coordination
number are shown in Fig. 7(b) and the fit parameters are summarized in table 2.

The jamming transition should best be studied in the quasi-static limit, i.e., for D — 0, when the
sample has infinitely long time to relax. However, practically, this is impossible [15]. Using the fit of Eq.
(4) for a systematic study of the deformation rate effect on the critical volume fraction is not reliable due
to the singularity of its derivative at this point. The rapid change of the slope of C*(v) near jamming
increases the sensitivity of other parameters to the fit range and causes them to fluctuate. When studying
the jamming transition, in recent studies, the densities very close to v, were carefully studied. Note that
here, we provide data for a much wider range of densities, far away from the transition — to be used for
practical applications. Therefore, the parameters and especially the exponents reported in this study can
be slightly different from those in previous studies.

For example, the exponent a ~ 0.5 previously reported in [6] for 2D and [7, 15] for 3D, cannot be always
recovered (see Table 2) for very slow compression; we rather find o ~ 0.66 for the slowest compression
rates. The critical volume fraction, on the other hand, is not varying much and these variations are
presumably due to the sensitive fit function with a singular slope close to v., as mentioned already above.
In Ref. [14], alternative methods were compared to determine the critical volume fraction based on the
fraction of rattlers, the pressure, and the ratio of the kinetic and potential energies of the packing. For a
better, more objective analysis of rate effects, we believe that the fit should be used in conjunction with
at least one of these methods. Then, when obtained independently, v, is not a free fit parameter anymore.
However, since changing the loading rate seems to have no strong effect on r., and the coordination
numbers at volume fractions considerably above v., we do not pursue this further.

4. Fabric Tensor

In the following, we compare the simulation results on the trace of the fabric tensor to the recent
3D predictions of Durdn et al. [22] that complement the older 2D results by Madadi et al. [17, 19]. In
these studies, the effect of polydispersity on the trace of the fabric tensor was expressed in terms of the
moments of the size distribution. The basic assumption, in both 2D and 3D, is that the linear compacity
cs, defined as the fraction of the particle surface shielded by its neighbors, is independent of the particle
radius. From this the trace of the fabric is found to be proportional to the contact number density, vC,
and a dimensionless pre-factor (see gs below) that only depends on the moments of the size-distribution.
Since derivation is similar in both 2D and 3D, only some formulas are shown; for more details we refer
to Refs. [17, 19, 22].

As first order approximation, in 3D, the mean number of contacts, C(r), of a particle with radius
r is inversely proportional to the fraction of its surface Q(r)/(47) shielded by a neighboring sphere of
characteristic radius (r), such that:

dreg

C(T) - Q(T) ’ (5)

where Q(r) = 27 (1 — cos ), with the sinus and cosinus of the shielding half-angle, sino = 1/(r/(r) +
1) and cosa = /1 —sin® a, respectively. When inserting Eq. (5) into the definition of the average
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Figure 7. (a) Evolution of the coordination number for different deformation rates. Inset: Zoom into the decompression
branch during transition from the jammed to the unjammed state. (b) The corrected coordination number C* and the fits
of Eq. (4). (c) Log-log plot of C* — Cy against (v/v. — 1) from the same data as in (a) and (b). (d) The ratio of data and
fit, C*/C*(v), indicates that the quality of the fit is better than one percent for the full range of data [v.;0.75].

coordination number C' = [~ C(r)f(r) dr = 4mes [°[f(r)/Q(r)]dr, it is possible to calculate explicitly
the expected compacity for different C:

QQC

CS(C) = 1 _ 02 + 02722 Y

(6)
with the dimensionless second moment 75 from Eq. (2). Using the quadratic approximation of Durdn
et al. [22] for the solid angle Q(r) leads to ax = Q((r))/(47) = % (1—-+/3/2), Bo = V/3/24as, and
Cy = By(Bs — 5/6). For example, in the monodisperse special case one has ¢; = a2C, so that inserting
the isostatic limit C* = C(1 — ¢.) = 6 leads to ¢ = 6az/(1 — ¢.) ~ 0.47 for ¢, ~ 0.15, i.e., about half of
the surface of particles is shielded close to the jamming point.

Figure 8 shows the numerical data for the coordination number C(r) and the compacity cs(r) as
function of r/(r) for w = 3 (for which 7o = 13/12) and two different volume fractions: a very high one
(v =~ 0.74) and one close to jamming (v ~ 0.67), along with the predicted relations from Eqs. (5) and
(6), for coordination number and compacity, respectively. Although, Eq. (5) describes the size-dependent
contact number qualitatively well for a broad range of densities, at small radii, the contact number drops
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considerably below the predictions, see Figs. 8(a) and 8(c). The assumption of a constant compacity is
confirmed for the larger particle radii, but fails for smaller radii, see Figs. 8(b) and 8(d).

Using the average coordination number, C, or inserting C* = C'/(1 — ¢,) into Eq. (6) leads to the red
and blue data sets, respectively. Clearly the theoretical prediction that uses C'is superior to the one using
C*. Nevertheless, we report the interesting and intuitive observation that the latter coordination number
has a lower limit C*(r) > 4, since rattlers are excluded. Since small particles have smaller surface area,
their chance to have less than four contacts is higher, so that more rattlers are from the small fractions.
Interestingly, the data for cs(r) indicate that those small particles that are not rattlers have a higher
compacity than the average. Different shapes and wider size distributions have to be studied to allow
more general insights.
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Figure 8. (a,b) Average number of contacts C(r) as function of the normalized particle radius, including (red) and excluding
(blue) rattlers, at different volume fractions for packings with N = 10000 particles. The points are data from the simulations
while the solid lines are the analytical predictions of Eq. (5) using either ¢s(C) (red) or ¢s(C*) (blue), and thus confirming
that using ¢s(C) = ¢s((1 — ¢r) C*)) in Eq. (6) is self-consistent. (c,d) Linear compacity c¢s as function of the normalized
radius, computed from the same packings as in (a) and (b), including (red) and excluding (blue) rattlers. Again the solid
lines are the theoretical prediction of Eq. (6).

Using the definition of the average coordination number, C', the trace of the fabric can be written as
detailed in Ref. [22]:
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Fy = u(®) = (V) X 1,0, = (V) [ drvn)Cre) = g )

peV 0

with the volumes V), and the contact numbers C), of particles p, and the term g3, which contains the
information about the polydispersity, which is defined as [22]:

O ARG .
B T [T ’
<m4[mwmﬁm

where the brackets (...)o indicate the normalized averaging over the modified distribution function
[f(r)/Q(r)]. Using the moment expansion of Durdn et al. [22], the lowest order analytical approxima-
tion (that involves moments up to order k = 5) is:

(rt) (r°)
1 — By + Cy + (B2 — 2Cs) ) +Cs 20
(r?)
4[5 1]
where the constants By and Cy were defined in the previous section. This is considerably more involved
than the 2D results [17, 19], since none of the above terms can be neglected [22]. Only for the monodisperse
situation, one has the simplification g3 = 1.

Equation (7) is plotted in Fig. 9 using the simulation data for different distribution widths w. For all
distributions and packing densities from very loose up to very dense packings (v ~ 0.9), the proportionality
between the trace of the fabric and the contact density is well described by Eq. (9), when the correction
factor gs is used. More explicitly, the correction factor, even though not perfect, improves the quality of
the prediction considerably. The reason for the remaining disagreement of order of 1% can be due to the
assumption of particles of radius r being surrounded by particles of mean radius, due to neglecting the
overlap of the particles in the theoretical considerations, or due to the higher proability for small particles
to be rattlers.

The moments of the size distribution can be expressed in terms of the relative width w using Eq. (2),
which allows us to study the behavior of g3 as a function of w. The inset of Fig. 9 shows the analytical
approximation and the exact definition of g3, from Eq. (8), along with the values of g3 obtained from the
DEM simulation. For highly polydisperse packings, corresponding to large w, the kth moment becomes
(r¥y — (r)k2F/(k + 1) and g3 thus saturates at a constant gi'® = 1.62. Therefore, the influence of an
increase in the polydispersity on tr(F) is limited for high w in the framework of the approximations made.
A more detailed study of this prediction for wide size distributions is, however, far from the scope of this
study.

g3 & 9)

5. Pressure

In this section, the pressure is introduced and related to the other system properties volume fraction,
coordination number, fraction of rattlers, and fabric. In order to better understand the final analytical
expressions, the stress is rewritten and re-phrased, starting from the traditional definitions.

The micromechanical stress tensor components for a (static) particle (in mechanical equilibrium) are

defined as:
1 r

o= g SIS (10

P =1
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Figure 9. The trace of the fabric tensor as given by Eq. (7) for different size distributions with w given in the inset from
simulations with N = 1000 (“L3” indicates a larger simulation with N = 10000 and “crystal” indicates an ordered lattice
structure whereas w = 1 is a disordered, monodisperse configuration). Each data-point corresponds to one density and
fabric, as averaged over the whole system, at different densities during decompression. Inset: The constant g3 plotted as
function of w from its definition (o), the analytical approximation (solid line) and the simulation data (+).

where 1P¢ = (r, —0./2)n is the branch vector of contact ¢ and £7° = k, .1 is the (linear) force associated,
with particle radius, rp, overlap 6., spring-stiffness, k,, and the contact-direction unit vector, n. Here we
assume [4] that the contact point is located at the middle of the overlap. 2 From these definitions, the
trace of the stress for a single particle becomes:

Ky O 5
tr(o?) = 7" > 6 (rp — 5) , (11)
P =1

with the number of contacts C), of particle p. For a packing of IV particles, the trace of the average stress
tensor can be computed by weighing the particles according to their volume [27]:

2. A more realistic alternative would be to define it on the plane bisecting the particles in contact and split the overlap
accordingly, however, the accuracy gained in doing so would be negligible for small overlaps and similar particle radii.
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tr(o) = = Vp tr(o?)
v
peV
N Cp Cp
kny, 1 9
== > de—5>682] . (12)
4 p=1 c=1 2 c=1

where V' is the total volume of the packing.
One can express V in terms of the volume fraction and the volume of the N particles as V = N(V,) /v,

with (V) = %’r <T}37>, where the brackets denote averaging of a particle-property A, over all particles in a

packing, e.g., (A) := (4,) = % Z;\le A,. Introducing also the normalized average normal force for each

particle p as ¢p = fp/(fp), with f, = Zf:’)l knd., the trace of the averaged stress tensor becomes:

where C = 4 = L > pen, Op is the mean coordination number (or just coordination number, averaged
over all particles), (6). = ]%14 > cenr, Oc is the average overlap over all M, contacts, of particles with four or

more contacts that contribute to the contact network, and we have used the identities: <Z§:p1 de) = C{(0)e

and (32, 02) = C(6%)..
The non-dimensional pressure is defined as p = 32> tr(o), so that introducing the normalized particle

radius &, = rp/(r) and overlap A, = d./(r) leads to:

p=p((A)e) = T-vCUA). (20, — DAY | (13)

where the factors are

PR - (A%
(€% (€%) (A)2
For a monodisperse packing the factor g, simplifies to 1. In the general polydisperse case, the evaluation
of g, necessitates an integration over the normalized particle size distribution h(§) using the pdfs of the
normalized average normal force ¢(§) acting on particles of radius &:

1 oo
%= /0 £O(E)h(€) dE | (14)

as discussed in more detail in Ref. [22]. On the other hand, the nonlinear factor b involves the second
moment of the normalized normal force distribution function (A2)./{A)2.

Now we turn our attention to the remaining variable in Eq. (13), i.e., the normalized average overlap
(A).. We relate it to the volumetric strain under the simplifying assumption of uniform deformation
in the packing (non-affine deformations are relevant but go beyond the scope of this study). Given the

displacement gradient, u; ;, the change of the branch vector of a contact is:

dli = Uq,j lj, (15)

17



where summation is implied over repeating indices and the comma indicates the derivative with respect
to the following index, i.e., the j-coordinate. The scalar product with the contact normal corresponds to
the change of overlap § and we assume that for small overlaps the length of the branch vector is equal to
(r), so that:

dé = nldll = <T> TiUq, 5705 (16)

For an isotropic deformation and contact distribution, as considered in this study, the off-diagonal (i.e.,
the deviatoric as well as the anti-symmetric) elements of the displacement gradient will cancel in average.
Hence, recalling the definition of the normalized contact overlap, A, = §./(r), one can write:

d(A), = De,. (17)

where e, = ¢;; is the trace of the infinitesimal strain tensor defined by €;; = %(u” + u;;) and D is
a proportionality constant that depends on the size distribution and reflects the non-affinities in the
deformation, however, this issue is beyond the scope of this study.

The average normalized overlap (A). can be obtained by integrating Eq. (17), where the integral of ¢,
denoted by ey, is the true or logarithmic volume change of the system, relative to the reference volume
Vb, with corresponding reference volume fraction, vy, which we choose — without loss of generality — to

be equal to the critical, jamming volume fraction vy = v, so that.

(A). =D Y = Dee=Dmn (”—) . (18)

Vo v
Substituting Eq. (18) into Eq. (13) we obtain for the non-dimensional pressure:

vC

p=po—(—&v) [1 = w(—ev)] , (19)

VC
where the prefactors are condensed into py = v.gp,D/2m and v, = bD/2g,. The implications of this, e.g.,
the combination g, D should not depend on v., will be further studied and discussed elsewhere [22].
Note that in our sign-convention, compressive strains are negative — corresponding to decreasing volume
with ongoing compression — so that, accordingly, compressive stresses should be negative too. However,
we rather use positive compressive stress as above, for the sake of continuity.
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Figure 10. The dimensionless pressure as function of the volume fraction (left) (where the solid line is Eq. (19), with
ve. = 0.666 and otherwise using the numbers giving in table 3 that fit well data-set S with N = 5000 particles and w = 3.)
and the scaled pressure as function of the (negative) volumetric strain (right). The solid line is obtained from Eq. (20) and
the dashed line is the linear approximation. Inset: Zoom into the small deformation regime.
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Figure 10 shows the non-dimensional pressure as function of volumetric strain, from representative
simulations of isotropic deformation for different size distributions. Various other data (not shown, except
for one that is indicated by S) using different system sizes and deformation protocols collapse with the
same curves — as long as the rate of deformation is small. Interestingly, the scaled pressure

= e -] .

is independent of the polydispersity and is well represented by the linear relation in Eq. (19), namely
p* & —poey, valid for small deformations. The correction factor [1 + 7,ey] is only required for large
volumetric strain. The (positive) coefficients pg & 0.0418 and 7, =~ 0.110 fit our data well .

Eq. (19) now represents the constitutive relation for pressure, from which we can compute, e.g., the
bulk modulus of a polydisperse packing, using the definition B = =V (9p/0V) = Op/d(—ey) = vOp/ov.
Given the dimensionless bulk modulus,

p

Op polv [ dIn(Fy)

B= = 1—=2v,(—¢ey) + (—&v) [1 = Yp(—&y)] ————= 21
Se = Bl 1= 2ple) + (o) 1= (2] G (21)

with Fy = tr(F) = gsvC, one has an incremental evolution equation for the dimensionless stress:
dp = B(—dey), (22)

with the incremental evolution equation for the isotropic fabric:
oC

dFV :FV (14’1/5) (*dEV), (23)

where the classical coordination number, C' = (1 — ¢, (v))C*(v), is an analytically known function of v,
see Egs. (3) and (4), involving the parameters/coefficients as summarized in table 3.

Note that the above evolution equation for the dimensionless pressure Eq. (22), together with Egs.
(21), (23) and Egs. (3), (4), represents the main result of this study that can be easily translated into
dimensional pressure and bulk modulus by multiplication with the factor k,/(2(r)). As final remark, the
bulk modulus does not explicitly depend on pressure, but Fy does implicitly, hiding the pressure depence
of B. Furthermore, the last term in the bulk modulus involves the derivative 0C'/Jv, which can be very
large close the the critical density, due to the power v < 1, and thus is not negligible. Future work should
focus on the validation and comparison of the present approach with experimental data, e.g., concerning
the density dependence of pressure and the pressure dependence of B.

6. Summary and Conclusion

The transition between fluid- and solid-like phases in idealized, frictionless packings of polydisperse
spheres has been investigated by means of discrete element simulations of isotropic compression and de-
compression. As main result, an incremental constitutive relation is given in Eq. (22) for the pressure

3. The best fit quality (error less than one per-cent for all densities) is obtained when Eq. (20) is used to fit the pressure,
disregarding the data very close to jamming, i.e., for the best fits, data for v < v, 4+ 0.002 are neglected, since those are
hampered by dynamic effects and are thus most unreliable — even when following a very slow unloading procedure (data-set
S). Thus we cannot exclude the possibility that the behavior very close to jamming turns out to be different from our
results. However, as compared to the very wide range of densities covered, this concerns only a very small regime at very
low pressures. The parameter pg is of major importance, while v, depends on pg rather strongly, however, contributing only
a small variation to the pressure. Furthermore, fitting power laws proportional to (v — VC)’B to the pressure was not possible
over the whole range. For the ranges 0.67 < v < 0.72 and 0.7 < v < 0.9 rather good fits lead to power 8 = 1.21 and 1.34,
respectively.
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change under isotropic deformation, to be used together with Eqs. (21), (23) and Egs. (3), (4). The
pressure evolution equation should be (i) valid for a road range of volume fractions v > v,, (ii) should be
rather insensitive to (moderate) polydispersity and (iii) involves only analytically known functions of the
volume fraction.

The coordination number, i.e., the average number of contacts per all particles, C, is analyzed as
function of the volume fraction in order to characterize the state of the granular packing. When the
rattlers (i.e. particles with less than four contacts) are disregarded, one obtains the corrected coordination
number C* ~ C'/(1— ¢,). The fraction of rattlers, ¢,, jumps at the jamming volume fraction from ¢, = 1
to ¢, and then decays exponentially with increasing volume fraction. Previous studies have shown that
the coordination C* number is discontinuous at the transition and evolves as a power law in the jammed
phase close to the critical volume fraction. However, to the authors knowledge, the validity of the power
law has not been checked in a broader range up to much higher volume fractions. We fitted an analytical
expression of the power law to the simulation data obtained from various packings and confirm that it is
not only valid in the neighborhood of v, but also for very dense packings.

The effect of different system and simulation parameters on the coordination number and the critical
volume fraction have been analyzed. We find that changing the polydispersity of the packing causes a shift
in the critical volume fraction, i.e., more heterogeneous packings jam at higher volume fractions. However,
the power law behavior of the coordination number is not affected by polydispersity. Lowering the defor-
mation rate has the effect of steepening the slope of the coordination number vs. volume fraction curve
at the transition, which suggests that the discontinuity will be only achieved in the limit of quasistatic
deformation. A study of the effect of deformation rate on the critical volume fraction based on the fit of
the power law is unreliable because of the singularity at this point. We recommend that the fit should
be used in conjunction with one of the methods proposed in Ref. [14] to determine v, self-consistently.
Finally, we note that varying the deformation rate as well as the system size and deformation history
does not have a significant effect on the evolution of the coordination number at high volume fractions:
when the rattlers are removed, the power law behavior remains unaffected, at higher densities.

The structure of the contact network plays an important role in determining the mechanical properties
of granular materials. In section 4 we reviewed previous theoretical predictions regarding the trace of the
fabric tensor and compared them with our numerical results. The contact number density »C' obtained
from the simulations and corrected by the factor g3, which only depends on the moments of the particle
size distribution, as proposed in Ref. [22], is in good agreement with the trace of the fabric tensor, so that
tr(F) = gsvC*(1 — ¢,.).

Additionaly, an incremental expression of the pressure has been derived in section 5 based on the
micromechanical properties of the particles. The volumetric strain applied to the packing and the isotropic
fabric was related to it, thereby enabling us to give an analytical expression for the bulk modulus that
includes an evolution term of the isotropic fabric, as specified above. Scaling is observed between the
numerical results for different polydispersities when the scaled pressure p* is plotted against volumetric
strain relative to the critical configuration at volume fraction v = v.. We note that the analytical form of
the pressure does not explicitly contain a closed power-law relation. The pressure is proportional to the
trace of fabric (which contains the power-law relation for the coordination number) and otherwise linear
with volumetric strain — involving a rather small quadratic correction for very large strains.

In this paper we only considered isotropic deformations applied to frictionless packings of spheres. The
natural next steps are to also apply deviatoric (or shear) strain and to include friction and other material
parameters. The former will lead to structural anisotropy, while the latter allows to study the effect of
various contact properties — like friction — on the evolution of the fabric and the stress. The evolution
of, not only, pressure but also of deviatoric stresses is related to the anisotropy of the structure, see the
2D observations in Refs. [28, 29] and the more recent results in 3D, [30, 31], which also confirm that the
scaling relation of the fabric — as observed here without friction — holds also in the presence of friction
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[23, 32].

We note that the jamming volume fraction v, (e.g. under cyclic loading) is not a constant, but depends
on the history of the packing. This issue was not addressed in this study, but will be subject to future
research.

Finally, the relations proposed in this study should be compared to experimental data in order to
test their predictive value. For example, the pressure dependence of the bulk-modulus is a measurable
bulk property, whereas the fraction of rattlers and the isotropic fabric are usually not easily available
experimentally.
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(a) (b)
w 1 2 3 w 1 2 3

Co 6.0000 5.9690 6.1158 Co 6 6 6

Ch 8.7989 8.5539 7.9439 C1 8.7363 8.5561 7.9367
ol 0.5363 0.5776 0.5737 ol 0.5662 0.5826 0.5542

Ve 0.6524 0.6582 0.6718 Ve 0.6548 0.6585 0.6707

Table 1

(a) Numerical values of the fit-parameters obtained by fitting Eq. (4) to the un-loading simulation data of Fig. 4, in the
intervals [0.655:0.85], [0.66:0.85] and [0.672:0.85] for w = 1,2 and 3, respectively. (b) Numerical values of the fit-parameters
obtained by fitting Eq. (4) to the un-loading simulation data of Fig. 4, in the same intervals and fixing Co = 6.
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N = 1000 N = 5000 N = 10000

D=1 D=0.5 D=1 D=0.5 D=1 D=05 D=01 D=001 D=0.001

Co 5.0256  5.8221 5.7645  5.8838 5.7645 5.7887 = 6.0643 6.1587 6.1853
Cyp  7.5938  8.4875 8.2019  8.1661 8.2019  7.9915 8.4204 8.8347 8.7514
a 0.3904 0.5572 0.5279  0.5431 0.5279  0.5199 0.5909 0.6301 0.6318
ve 0.6650  0.6650 0.6654  0.6647 0.6654  0.6652 0.6648 0.6645 0.6644
ui 0.6652 0.6644 0.6624  0.6620 0.6627  0.6632 0.6633 0.6634 0.6633

Table 2

Numerical values of the fit parameters of Eq. (4) for various system sizes and loading rates. All packings have the polydis-
persity parameter w = 3 and are deformed within the range v : 0.64 == 0.75. The fits are performed in the intervals [v1 : v2],
with v1 = 0.665 and vo = 0.75. 1/2 are the volume fractions at which the pressure vanishes during unloading, see Ref. [14].
Note that the data in table 1 are slightly different (since they come from simulations with different initial conditions), which
tells us something about the sensitivity and variation of parameters with different initial configurations.

fit parameters for C'(v)

jamming volume fraction ve| 0.66 £0.01 |variable ve(D,w,...)
coordination number at jamming Co 6 exact

prefactor for the algebraic coordination number C1 8+ 0.5 variable

power for the algebraic coordination number «a | 0.58£0.05 |approximate

fit parameters for ¢, (v)

fraction of rattlers at jamming ¢c| 0.134+0.03 |approximate

decay rate of fraction of rattlers bu 15+2 approximate

relation between fabric and contact number density

polydispersity correction factor g3 >1 variable g3(w)

fit parameters for p

linear pressure factor po [0.0418 4= 0.001 |approximate

non-linear pressure factor Yp 0.110 strongly dependent on pg

Table 3

Summary of the coefficients involved in the constitutive relations for the pressure p and the isotropic fabric Fy . In the
column right of the symbols are given typical values — some of them are exact, some are fits with a broad spread and some
are not changing so much. In the last column some strong dependencies are indicated, e.g., g3 depends only on the width
of the size distribution, w, but not on other variables.
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