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Abstract

We develop anfécient algorithm for contact detection among many arbiyaized objects. Objects are allocated to cells based
on their location and size within a nested hierarchical sptice. The choice of optimal cell sizes and the number oétdkies

for best performance is not trivial in most cases. To overtiis challenge, a novel analytical method to determinefienal
hierarchical cell space for a given object size distributiopresented. With this, a decision can be made betweeg tngrclassical
linked-cell method and the contact detection algorithnsenéed. For polydisperse systems with size ratios up to B@&alieved
220 times speed-up compared to the classical Linked-Cahaode For larger size ratios, even better speed-up is exgedthe
complexity of the algorithm is linear with the number of atifewhen the optimal hierarchical cell space is chosen. 8Sotlie
problem of contact detection in polydisperse systems éadlgris solved.

Keywords: contact detection, discrete element, polydispersierdint sizes, particle size distribution

1. Introduction ing two freely adjustable parameters: the number of hibrarc
levels and the cells’ size at each level. An analytical métho
Collision detection is a basic computational problem agsi to select these parameters is also developed. This method
in computer simulations of systems consisting of many éiscr  (for choosing parameters) is designed to improve the perfor
objects such as particles or atoms. The particle based modénhance of the algorithm and can be used for an arbitrary poly-
ing methods like the Discrete Element Method (DEM) [1] or disperse particle size distribution. We confirm our theoatt
Smoothed Particle Hydrodynamics [2] play an important rolepredictions by means of DEM simulations of homogeneous and
for physics-based simulations in various fields. The perforisotropic systems of elastic spherical particles, evenghdhe
mance of the computation relies on several factors, whieh inalgorithm is not limited to these ideal cases.
clude the physical model, on the one hand, and the contact de- The paper is organized as follows. Section 2 outlines the al-
tection algorithm used, on the other. The collision detectif ~ gorithm. We then present the method how to choose the optimal
short-range pairwise interactions between particles imllys ~ parameters in Section 3. Section 4 presents the performance
one of the most time-consuming tasks in calculations [3]. sults of the numerical simulations. Finally, the resules sum-
The most commonly used method for contact detection ofmarized and discussed, with some conclusions in Section 5.
nearly monosized particles with short-ranged forces is the
Linked-Cell method [4, 5]. Due to its simplicity and high per
formance, it has been utilized since the beginning of partic 2. Algorithm
simulations, and is easily implemented in parallel code3[6
Nevertheless, the Linked-Cell method is unablefficiently The present algorithm is designed to determine all the pairs
deal with particles of greatly varying sizes [8]. This cdfee- in a set ofN spherical particles in d-dimensional Euclidean
tively be addressed by the use of methods basddesarchical  space that overlap. Every particle is characterized by the p
grids [8, 9, 10, 11, 12, 13, 14]. Most of these methods can besition of its centrex, and its radiug,. For diferently-sized
assigned to two groups. In the first, the contacts between paspheresmin andrmnax denote the minimum and the maximum
ticles from diferent hierarchy levels are detected in the coars@article radius, respectively, ang = rmax/Imin is the extreme
grid [9, 10, 11, 13, 14], while in the second group the detecsize ratio (size distribution functions used are explaimeskec-
tion is done in the fine grid [8]; our method corresponds to theion 4).
latter group. An extensive review of various approachesto c The algorithm is made up of two phases. In the first “map-
tact detection is given in Ref. [15]. The performand@atence ping phase” all the particles are mapped into a hierarchjiddl
between them is studied in Refs. [16, 17, 18]. space (subsection 2.1). In the second “contact detectiasgih
Even though various other methods using hierarchical grigsubsection 2.2) for every particle in the system the paent
structures have been suggested, we improve upon these metlontact partners are determined, and the geometricabeter
ods by (i) reducing the range of the contact search, anddii) u tion tests with them are made.
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2.1. Mapping phase
The d-dimensionalhierarchical grid is a set ofL regular

grids with diferent cell sizes. Every regular grid is associated

with a hierarchy leveh € [1, L], wherelL is the integer num-
ber of hierarchy levels. Each levelhas a diterent cell size
% € R, where the cells ard-dimensional cubes. Grids are or-
dered with increasing cell size so thre& 1 corresponds to the
grid with smallest cell size, i.es, < sy1. For a given number
of levels and cell sizes, the hierarchical grid cells areraefiby
the following spatial mappingyl, of pointsx € RY to a cell at
specified leveh:

M: (X h) = C=(LX1/S], ... [Xa/sh], h), 1)

where| x| denotes the floor functioh The firstd components

of a d + 1)-dimensional vecto€ represent cell indices (inte-
gers), and the last one is the associated level of hierafdiny.

latter is limited whereas the former are not.

x (a.u.)

It must be noted that the cell size of each level can be set in-

dependently, in contrast to contact detection methodshwige
a tree structure for partitioning the domain [10, 18, 19]eweh

Figure 1: A 2-dimensional two-level grid for the special €ad a bi-disperse
system with cell sizes; = 2rmin = 3 (a.U.), ands; = 2rpax = 8 (a.u.). The
first level grid is plotted with dashed lines while the secdextl is plotted

the cell sizes are taken as double the size of the previower lowwith solid lines. The radius of the particle Biig = 4 (a.u.) and its position

level of hierarchy, hencs,;1 = 2s,. The flexibility of indepen-
dents, allows one to select the optimal cell sizes, according t
the particle size distribution, to improve the performaatthe
simulations. How to do this is explained in Section 3.
Using the mappindJ, every particlep can be mapped to its
cell:
Cp = M(%p, h(p), 2)

whereh(p) is thelevel of insertiorto which particlep is mapped
to. The level of insertiom(p) is the lowest level where the cell
is big enough to contain the partighe

h(p) = {lggh LS > 2rp}. 3)
In this way the diameter of particlp is smaller or equal to
the cell size in the level of insertion and therefore the silas

cal Linked-Cell method [5] can be used to detect the contacts

among particles within the same level of hierarchy.

Figure 1 illustrates a 2-dimensional two-level grid for the
special case of a bi-disperse system with, = 3/2, size ra-
tio w = 8/3, and cell sizes; = 3, ands, = 8. Since the system
contains particles of only two fierent sizes, two hierarchy lev-
els are sfficient here.

2.2. Contact detection phase

The contact detection is split into two steps, and the seaarch
done by looping over all particlgsand performing the first and
second steps consecutively for egehThe first step is the con-
tact search at the level of insertionmfh(p), using the classical
Linked-Cell method [5]. The search is done in the cell where
is mapped to, i.e&p, and in its neighbour (surrounding) cells.
Only half of the surrounding cells are searched, to avoititgs
the same particle pair twice.

lthe largest integer not greater than

is Xg = (10.3,14.4). Therefore, according to Egs. (2) and (3), particle B is

dnapped to the second level to the @JI= (1, 1, 2). Correspondingly, particle

A is mapped to the celfa = (4,2,1). The cells where the cross-level search
for particle B has to be performed from (1,3,1) to (5,6,1) maked in grey,
and the small particles which are located in those cells arle @reen). Note,
that in the method of Iwaet al [8] the search region starts at cell 211), i.e.,
one more layer of cells (which also includes particle A).

The second step is theoss-level searchFor a given parti-
cle p, one searches for potential contacts only at lelidtaver
than the level of insertion: kX h < h(p). This implies that
the particlep will be checked only against the smaller ones,
thus avoiding double checks for the same pair of particlee T
cross-level search for particfe(located at(p)) with levelhis
detailed here:

1. Define the cellgs@t andéed at levelh as

¢St = M(x7,h), and %" := M(X, h), 4)

where a search box (cube in 3D) is defineddgy= X, +
a Y%, &, witha = r,+0.5s, ande is the standard basis for
RY. Any particleq from levelh, i.e.,h(g) = h, with center
Xy outside this box can not be in contact withsince the
diameter of the largest particle at this level can not exceed
S In Fig. 2 the grey colored cells correspond to the cells
¢ st (left bottom) andz " (right top) for particle B from
the situation shown in Fig. 1.

2. The search for potential contacts is performed in evdty ce
¢ = (cy, ..., Cg, h) for which

cet < ¢ < c®foralli € [1,d], and cgs1 = h < h(p),

(5)
wherec; denotes thé-th component of vectot. In other
words, each particle which was mapped to one of these
neighbour cells is tested for contact with partigle In
Fig. 1, the leveh = 1 cells where that search has to be
performed (for particle B) are marked in grey.
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we restrict ourselves to almost homogeneous situationss Th
does not hariaffect the algorithm, only the performance might
be sub-optimal. In subsection 3.1 we briefly talk about bi-
disperse systems and then focus on polydisperse cases-in sub
section 3.2.

3.1. Bi-disperse systems

For bi-disperse particle systems the cell sizes of the tvell
grid can be easily selected as the two diameters of each parti
cle species. For some situations this may be noffasdent as
the use of the single-level Linked-Cell method. In section 4
we show some performance results for bi-disperse size-distr
butions.

_ 3.2. Polydisperse systems
Figure 2: The grey colored cells correspond to ceff&" (left bottom) and

¢ (right top) for particle B from the hierarchical grid shownFig. (1). The Systems where all the particles’ sizes arffestent we call
two diagonal vectors with length, directed to these cells from the center of polydisperse This is the case when a particle sample is drawn
particle B, are the vectorg;™ andx;" respectively. from a continuous particle size distribution (PSD), for rede

using systematic sampling approach [23, 24]. It guarardees

To test two particles for contacts, first, the axis-alignedmore evenly spread sample, i.e., always includes some of the
bounding boxes (AABB) of the particles [20] are tested forPossibly rare large particles in a sample. For such systeens t
overlap. Then, for every particle pair which passed this tae ~ Parameters of the algorithm (the number of levieland cell
exact geometrical intersection test is appfie®ince the over-  Sizessy) can be chosen in flerent ways. The performance of
lap test for AABBs is computationally cheaper than for sgiser  the hierarchical grid algorithm then strongly depends ensti

performing such test first usually increases the performanc  lected parameters. Consideftdrent numbers of hierarchy lev-
elsL. On the one hand, the fewer levels are used, the larger the

2.3. Summary number of particles per cell. This implies that a larger antou

The two steps of the algorithm, mapping and contact deef particles pairs will be found in the contact searcfieeting
tection were designed for spherical particles. Howevdreot the CPU time dramatically when the system has a large number
shapes can also be accommodated using bounding spheres; édrsmall particles. On the other hand, increasing the number
an overview of methods to compute a bounding sphere see Reff hierarchy levels will decrease the number of particlegai
[10]. Nevertheless, this carffact the performance when parti- found in the contact search. This will increase the number of
cles are rather elongated. cross-level tests, and hence the number of cells which tave t

Parallelization of the algorithm and implementation ofiper be accessed, negativelffecting the CPU time. To obtain the
odic boundary conditions are straightforward and can beedonoptimal performance it is important to balance the number of
in almost the same way as in the Linked-Cell method [21, 22]particle pairs found with the number of cells to be checked.
Finally, to reduce the memory usage related to storing the ce ~ Assume the following hypothesis holds:

we use the hash table approach [8, 10, 12]. This means that tf|1_(Ia hess 1 L be th ber of icl
hierarchical grid is not stored explicitly, instead a hasiction ypothess 1. Let M be the average num €er o particles per
cell at level h, that is, m= N,/N¢, where N is the number of

is used to map only occupied grid cells into a finite 1D hash™~" . .
table pony pied g particles at level h, and Nis the number of cells at this level.

For bi-disperse particle systems with wide size distritnsj Then the optimal distribution of particles by levels sagisfihe

for example,w > 10, the use of a two-level grid can lead following condition:
to a significant improvement as compared to the Linked-Cell
method, as we show below in section 4. Nevertheless, we are
interested in finding the optimal grid parametdrsafds,) for The detailed discussion of this is in preparation for a feitur
arbitrarily polydisperse particle systems, which willde the  publication.

best performance. In the next section we present a method how |f the particles are mapped to the levels, such that Eq. (6)
to achieve this. is approximated, it can be shown that the CPU time spent for

contact detectionlcp, scales as

m:=m =m; forall i,je[1,L] (6)

3. Selection of the optimal grid parameters
. . . . . TCD ~ NL(m+ K), (7)
The algorithm from the last section is applicable to arbjtra

systems (inhomogeneous), whereas for the following aigalys whergK is a constant corresponding to the “overhead” of the
algorithm, i.e., the time spent to access cells to be tested,

Zparticlesp andg collide only if [[%, — Xg| < rp+rq, wherel.| is Euclidean ~ M= m(L’_PSD) is the number O.f particles per cell. To compute
norm. m for a givenL and for the particle system at hand, one needs
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to choose cell sizes, so that Eq. (6) is approximately satisfied. system)y = 0.62. Note, that particles of the monodisperse case
How to do this is explained in Appendix A. Derivation of Eq. are ordered (near to walls), since the volume fraction isvabo
(7) is beyond the scope of this paper. Here, the comparison @55 [28, 31, 32].
the performance results with the prediction of Eq. (7) wél b
shown. 4.2. Experimental setup

As obtained from numerical experiments in section 4, the
value ofK varies in a narrow range [B .. ., 0.45], depending d
on the size distribution, and is set t@@vith suficient accuracy.

The systems are prepared in two stages. Starting from a ran-
om uniform distribution of points in a cubical box, the ra-

We propose to use as the optimal number of levels (ONLF'US of the particles grows linearly with time. We use non-

the one that minimizes the right hand side of Eq. (7). It muspverlapplng 'spheres [33], with an Event-Driven code [3.4]’
be noted that in general the ONL is relatively small. For ex-Whose growing rate conforms to and conserves a prescribed

ample, in the system below with = 50 with uniform volume i'ze oilﬁtrlbut;on. (Ijmt'al \{elocgles a(ljre seft ra;o!{orlnly lrdeRr, t? 34
distribution, see Fig. 3(d), ONE 7. eep the system dynamic and random, for details see Ref. [34]

When the target volume fraction is reached, the growth m®ce
is stopped.

4. Numerical experiments With the final configuration from the first step, the simula-
rJiion switches to the relaxation stage with “soft” particles.,
particles move according to interparticle forces [1]. Time&r
elastic normal contact force model is used [35], which laads
gertain contact duration. The integration time step is cateqb
according to the smallest contact duration [35, 36]. Atthe b
- ginning of this stage the velocities of the particles aréestim a
way that a collision between two of the smallest particlesido
reach an average maximum overlap of one percent of their ra-
dius. We let the simulations run for a few collisions per juéet
for equilibration before making the measurement of thequerf
mance, in order to have contacts (overlaps) between pegiicl
éhe system.

The aim of this section is to test the presented algorithm i
physically realistic, dilute to dense polydisperse gashfuid-
like systems. For these we verify experimentally the amnzajt
prediction from Eq. (7). More specific, we use homogeneou
and isotropic disordered systems of colliding elastic siché
particles in a cubical box with hard walls. The motion of pa
ticles is governed by Newton’s second law with a linear @éast
contact force during overlap. For simplicity, every pddian-
dergoes only translational motion (without rotation) anaMity
is set to zero.

Subsection 4.1 outlines which size distributions are used a
why. In subsection 4.2 it is explained how the model system
are prepared. Then, in subsection 4.3, we verify the predic-
tion given by Eq. (7), and also show the performance resoits f
some bi-disperse systems.

4.1. Particle size distributions

The following types of particle size distributions are us@gd
monodisperse, i.e., all sizes are equal; (ii) bi-dispareeg,two
different sizes, where the volume of all small particles and the
volume of all big particles are equal, which is also used if Re
[25]; (iii) uniform size distribution, i.e., the distribigin of radii
of the particles is constant; (iv) uniform volume distriiou,

i.e., the distribution of the volumes of the particles is stamt.

We believe that these types of distributions cover the most
important cases to check thdfieiency of the presented al-
gorithm. Systems with monodisperse size distributions are
widely used since kinetic theory predicts their physical be
haviour [26, 27, 28], and it is the natural benchmark against
which to compare. Bi-disperse size distributions are ofitesd
for theoretical models [25, 29, 30], and can often be a goed ap
proximation to physically realistic size distributionsnifbrm
size and uniform volume distributions are selected in otder
check the speed-up of the multilevel grid for polydisperse s
tems with relatively few small particles (uniform size) rather © ©)
many small particles (uniform volume). The uniform volume

distribution approximates the experimentally obtainee siis- Figure 3: Particle systems wit = 125001 and’ = 0.62 with (a) monodis-
tribution of a concrete mixture [24] perse size distribution, (b) bi-disperse size distributio = 10, where the

’ ; . ) . volume of all small particles is almost2%) equal to the volume of all big
Figure 3 shows the particle systems witlfelient particle particles, (c) uniform size distributiom) = 50, and (d) uniform volume distri-

size distributions foN = 125001 and volume fraction (the ra- bution,w = 50. Colour is by relative size for the cases (c) and (d).
tio between the volume of the particles and the volume of the

4

(b)




O©CO~NOOOTA~AWNPE

4.3. Experimental results with few particles, so we cannot compare all the systems for
To verify the prediction of Eq. (7) we perform two series everyN used in the monodisperse case.
of experiments, one for varying number of hierarchy levels,

and one for dferent numbers of particles. In the first series, 500 ——

we want to confirm that the multiplier next td is L(m + K). g v -
For this, using a fixedN, we calculate the value aoh for each Si;::ij};‘:;;‘: 583 L

L € [1,50] utilizing the method given in Appendix A, and 100

measure the total CPU time of simulations where the hierarch

cal grid is used withL levels, and the cell size are computed

in accordance with our hypothesis (1). To present the td?&) C w
time, we use the slowdown factor SF, that is the total CPU time

50

divided by the smallest CPU time for a given system. In Fig. 4 10
the results of this experiment are shown for systems with uni 5
form size (US) and uniform volume (UV) distributions with

N = 125001,y = 0.62 andw = 50. The analytical prediction e
(7) is also plotted withK = 0.3, scaled in such a way that S& 1

1 corresponds to the minimum of the right hand side of Eqg. (7).

Note that even though the prediction (7) is for CPU time spent L
only for contact detectionlcp, the total CPU time for fixedN
also scales a$cp. This is because the CPU time spent in the
force calculation and integration does not depend on the griFigure 4: Slowdown factor for dierent numbers of levels for systems with
parameters used. From the experimental results shown in Fif) = 125001 = 0.62 andw = 50 with uniform volume (UV) and uniform size
4 it can be seen that: (i) for the system with uniform sizerglist S) distributions. The prediction of Eq. (7) is used with= 0.3 for plotting

I . - : Yy solid lines. Note that the data can be obtained only for etteglues ol.
bution the optimal number of levels is= 2, and the speed-up
compared to the Linked-Cell method (= 1) is about 30%,

so it does not present a major advantage; (ii) in the case of 2 — : : :
uniform volume distribution the fastest CPU time is achibve sl e
usingL = 8, and the speed-up over the Linked-Cell method ' Poly, w=10  ©

(L = 1) is of about 220 times. This brings us to the conclusion 16 - Poly, =50 7

that for particle systems with relatively few small partig] the 14 L° /’\9\6 4

use of hierarchical grid algorithm is not essential; howgfor

the systems with rather many small particles the hieraathic - tar i
grid algorithm is highly advantageous. Furthermore, it ban = 1r 7
seen that the analytical prediction (7) is in very good aigreat 08 | P —
with the experimental results. We have also performed theesa e ’

. - . 0.6 - .
type of experiment for systems withfférent volume fractions,
namely,y = 0.1 andv = 0.4, and in all these cases the predic- 0.4 - 7
tion matches very well with the experimental results. 02 L i

In the second series of experiments we confirm that the CPU : : : :

. . : . 10° 10* 10° 10°
time spent for contact detection scales linearly with theber N

of particles. Figure 5 shows the total CPU time relative ® th
monodisperse cas&,®. Polydisperse systems with uniform
volume distribution are considered, since it was shown abovFigure 5: The total CPU time scaled by the total CPU time of aoutis-
that for uniform size distributions the use of hierarchigetl perse system with the same number of particles and volurogdnasimulated
algorithm is not essential. The results for bi-disperseesys ~ or the same number of iterations. We show resilts for tpefise (Bi) and
. . . polydisperse uniform volume (Poly) size distributions. tiémely wide size
are also shown, with = 2 and cell sizes equal to the diameters sy inytions cannot be properly realized for too smll
of the each kind of particles. It can be seen that the CPU time
scales a®O(N), sinceT,e is approximately constant-(0%)
for each type of system, and because the Linked-Cell meth
for monodisperse particles 8(N). Secondly, the CPU time
is close to the monodisperse ca3é®{ = 1), and the largest A hierarchical grid algorithm for contact detection in sys-
difference is about 50% in the polydisperse case wita 10.  tems with arbitrarily polydisperse objects’ sizes was dtmved.
Furthermore, the CPU time decreases with increasiaggjcon-  DEM simulations were carried out to assess the performance
stant volume fraction. This is since the mean free path of thef the algorithm, which contains as adjustable paramekers t
system decreases with which determines the number of con- number of hierarchy levels and the cell sizes at each level. A
tact neighbors found, hence the computation time. It must benethod to find the optimal parameters for an arbitrary pahydi
noted that for larges we cannot create representative samplegerse size distribution of objects was suggested and caadirm

5

Og. Summary and Conclusions
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by numerical experiments. With the optimal parameters ourle]
simulations can run orders of magnitude faster than whemusi
the (single level) Linked-Cell method. With this algorithwe
are able to simulate objects which have large size ratidsatit
most the same computational time as in the monodisperse case
With parameters selected using our method the performance o8l
the algorithm scales linearly with the number of particles f

any width of the size distribution tested. Our work opens the [g]
door to simulate realistic polydisperse systems, makirggipo

ble a complete new range of simulations.

[7]
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Appendix A. Calculation of m(L, PSD) [14]

Assume that particles are sorted by size in increasing prder

so thatr; > rj fori > j. We iteratively increase the value of [15]
by 6m < 1 starting from zero. Then for everywe distribute  [1¢]
particles by levels as following: Starting with the firstédm.e.,
h = 0, and from the smallest particle, i.e= 0, we allocate the
i-th particle at leveh. We increase the level inddxf for some [L7]
i the number of particles per cell at current level excaads
(18]
Nn(i) (A1)
NE (i) (1]

whereN(i) is the number of particles already allocated at level»,
h (including the particlé) and N:(i) is the number of cells at
levelh. The number of cell&\:(i) is calculated from the size of
particlei, e.g., for a 3D cube with size &, N¢ = (0.55/r;)3.
This process is finished when all particles are allocateérdh
fore, we obtain the number of levels for a givem Differ-
entm can lead to the samk value. In this case, we select [23]
m(L, PSD) with the minimum value, so the last level contains[24]
more particles. For numerical experiments in section 4 #ee u

of sm = 1073 for the system withv = 50 with uniform volume

(21]

(22]

distribution ancL = 7 led to about=2% variation of the number  [25]
of particles per cell at diierent levels.
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