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Abstract

We develop an efficient algorithm for contact detection among many arbitrarily sized objects. Objects are allocated to cells based
on their location and size within a nested hierarchical cellspace. The choice of optimal cell sizes and the number of hierarchies
for best performance is not trivial in most cases. To overcome this challenge, a novel analytical method to determine theoptimal
hierarchical cell space for a given object size distribution is presented. With this, a decision can be made between using the classical
linked-cell method and the contact detection algorithm presented. For polydisperse systems with size ratios up to 50, we achieved
220 times speed-up compared to the classical Linked-Cell method. For larger size ratios, even better speed-up is expected. The
complexity of the algorithm is linear with the number of objects when the optimal hierarchical cell space is chosen. So that the
problem of contact detection in polydisperse systems essentially is solved.

Keywords: contact detection, discrete element, polydisperse, different sizes, particle size distribution

1. Introduction

Collision detection is a basic computational problem arising
in computer simulations of systems consisting of many discrete
objects such as particles or atoms. The particle based model-
ing methods like the Discrete Element Method (DEM) [1] or
Smoothed Particle Hydrodynamics [2] play an important role
for physics-based simulations in various fields. The perfor-
mance of the computation relies on several factors, which in-
clude the physical model, on the one hand, and the contact de-
tection algorithm used, on the other. The collision detection of
short-range pairwise interactions between particles is usually
one of the most time-consuming tasks in calculations [3].

The most commonly used method for contact detection of
nearly monosized particles with short-ranged forces is the
Linked-Cell method [4, 5]. Due to its simplicity and high per-
formance, it has been utilized since the beginning of particle
simulations, and is easily implemented in parallel codes [6, 7].

Nevertheless, the Linked-Cell method is unable to efficiently
deal with particles of greatly varying sizes [8]. This can effec-
tively be addressed by the use of methods based onhierarchical
grids [8, 9, 10, 11, 12, 13, 14]. Most of these methods can be
assigned to two groups. In the first, the contacts between par-
ticles from different hierarchy levels are detected in the coarse
grid [9, 10, 11, 13, 14], while in the second group the detec-
tion is done in the fine grid [8]; our method corresponds to the
latter group. An extensive review of various approaches to con-
tact detection is given in Ref. [15]. The performance difference
between them is studied in Refs. [16, 17, 18].

Even though various other methods using hierarchical grid
structures have been suggested, we improve upon these meth-
ods by (i) reducing the range of the contact search, and (ii) us-

ing two freely adjustable parameters: the number of hierarchy
levels and the cells’ size at each level. An analytical method
to select these parameters is also developed. This method
(for choosing parameters) is designed to improve the perfor-
mance of the algorithm and can be used for an arbitrary poly-
disperse particle size distribution. We confirm our theoretical
predictions by means of DEM simulations of homogeneous and
isotropic systems of elastic spherical particles, even though the
algorithm is not limited to these ideal cases.

The paper is organized as follows. Section 2 outlines the al-
gorithm. We then present the method how to choose the optimal
parameters in Section 3. Section 4 presents the performancere-
sults of the numerical simulations. Finally, the results are sum-
marized and discussed, with some conclusions in Section 5.

2. Algorithm

The present algorithm is designed to determine all the pairs
in a set ofN spherical particles in ad-dimensional Euclidean
space that overlap. Every particle is characterized by the po-
sition of its centre~xp and its radiusrp. For differently-sized
spheresrmin and rmax denote the minimum and the maximum
particle radius, respectively, andω = rmax/rmin is the extreme
size ratio (size distribution functions used are explainedin sec-
tion 4).

The algorithm is made up of two phases. In the first “map-
ping phase” all the particles are mapped into a hierarchicalgrid
space (subsection 2.1). In the second “contact detection phase”
(subsection 2.2) for every particle in the system the potential
contact partners are determined, and the geometrical intersec-
tion tests with them are made.
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2.1. Mapping phase

The d-dimensionalhierarchical grid is a set ofL regular
grids with different cell sizes. Every regular grid is associated
with a hierarchy levelh ∈ [1, L], whereL is the integer num-
ber of hierarchy levels. Each levelh has a different cell size
sh ∈ R, where the cells ared-dimensional cubes. Grids are or-
dered with increasing cell size so thath = 1 corresponds to the
grid with smallest cell size, i.e.sh < sh+1. For a given number
of levels and cell sizes, the hierarchical grid cells are defined by
the following spatial mapping,M, of points~x ∈ Rd to a cell at
specified levelh:

M : (~x, h) 7→ ~c = (⌊x1/sh⌋ , ..., ⌊xd/sh⌋ , h), (1)

where⌊x⌋ denotes the floor function1. The firstd components
of a (d + 1)-dimensional vector~c represent cell indices (inte-
gers), and the last one is the associated level of hierarchy.The
latter is limited whereas the former are not.

It must be noted that the cell size of each level can be set in-
dependently, in contrast to contact detection methods which use
a tree structure for partitioning the domain [10, 18, 19], where
the cell sizes are taken as double the size of the previous lower
level of hierarchy, hencesh+1 = 2sh. The flexibility of indepen-
dentsh allows one to select the optimal cell sizes, according to
the particle size distribution, to improve the performanceof the
simulations. How to do this is explained in Section 3.

Using the mappingM, every particlep can be mapped to its
cell:

~cp = M(~xp, h(p)), (2)

whereh(p) is thelevel of insertionto which particlep is mapped
to. The level of insertionh(p) is the lowest level where the cell
is big enough to contain the particlep:

h(p) =
{

min
1≤h≤L

h : sh ≥ 2rp

}

. (3)

In this way the diameter of particlep is smaller or equal to
the cell size in the level of insertion and therefore the classi-
cal Linked-Cell method [5] can be used to detect the contacts
among particles within the same level of hierarchy.

Figure 1 illustrates a 2-dimensional two-level grid for the
special case of a bi-disperse system withrmin = 3/2, size ra-
tio ω = 8/3, and cell sizess1 = 3, ands2 = 8. Since the system
contains particles of only two different sizes, two hierarchy lev-
els are sufficient here.

2.2. Contact detection phase

The contact detection is split into two steps, and the searchis
done by looping over all particlesp and performing the first and
second steps consecutively for eachp. The first step is the con-
tact search at the level of insertion ofp, h(p), using the classical
Linked-Cell method [5]. The search is done in the cell wherep
is mapped to, i.e.,~cp, and in its neighbour (surrounding) cells.
Only half of the surrounding cells are searched, to avoid testing
the same particle pair twice.

1the largest integer not greater thanx

B

A

x (a.u.)

y (a.u.)

243 8

8

3

16
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Figure 1: A 2-dimensional two-level grid for the special case of a bi-disperse
system with cell sizess1 = 2rmin = 3 (a.u.), ands2 = 2rmax = 8 (a.u.). The
first level grid is plotted with dashed lines while the secondlevel is plotted
with solid lines. The radius of the particle B isrB = 4 (a.u.) and its position
is ~xB = (10.3, 14.4). Therefore, according to Eqs. (2) and (3), particle B is
mapped to the second level to the cell~cB = (1, 1, 2). Correspondingly, particle
A is mapped to the cell~cA = (4, 2, 1). The cells where the cross-level search
for particle B has to be performed from (1,3,1) to (5,6,1) aremarked in grey,
and the small particles which are located in those cells are dark (green). Note,
that in the method of Iwaiet al [8] the search region starts at cell (1, 2, 1), i.e.,
one more layer of cells (which also includes particle A).

The second step is thecross-level search. For a given parti-
cle p, one searches for potential contacts only at levelsh lower
than the level of insertion: 1≤ h < h(p). This implies that
the particlep will be checked only against the smaller ones,
thus avoiding double checks for the same pair of particles. The
cross-level search for particlep (located ath(p)) with levelh is
detailed here:

1. Define the cells~c start and~c end at levelh as

~c start := M(~x −c , h), and ~c end := M(~x +c , h), (4)

where a search box (cube in 3D) is defined by~x ±c = ~xp ±

α
∑d

i=1 ei , withα = rp+0.5sh andei is the standard basis for
R

d. Any particleq from levelh, i.e.,h(q) = h, with center
~xq outside this box can not be in contact withp, since the
diameter of the largest particle at this level can not exceed
sh. In Fig. 2 the grey colored cells correspond to the cells
~c start (left bottom) and~c end (right top) for particle B from
the situation shown in Fig. 1.

2. The search for potential contacts is performed in every cell
~c = (c1, ..., cd, h) for which

cstart
i ≤ ci ≤ cend

i for all i ∈ [1, d], and cd+1 = h < h(p),
(5)

whereci denotes thei-th component of vector~c. In other
words, each particle which was mapped to one of these
neighbour cells is tested for contact with particlep. In
Fig. 1, the levelh = 1 cells where that search has to be
performed (for particle B) are marked in grey.
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Figure 2: The grey colored cells correspond to cells~c start (left bottom) and
~c end (right top) for particle B from the hierarchical grid shown in Fig. (1). The
two diagonal vectors with lengthα, directed to these cells from the center of
particle B, are the vectors~x −c and~x +c respectively.

To test two particles for contacts, first, the axis-aligned
bounding boxes (AABB) of the particles [20] are tested for
overlap. Then, for every particle pair which passed this test, the
exact geometrical intersection test is applied2. Since the over-
lap test for AABBs is computationally cheaper than for spheres,
performing such test first usually increases the performance.

2.3. Summary
The two steps of the algorithm, mapping and contact de-

tection were designed for spherical particles. However, other
shapes can also be accommodated using bounding spheres; for
an overview of methods to compute a bounding sphere see Ref.
[10]. Nevertheless, this can affect the performance when parti-
cles are rather elongated.

Parallelization of the algorithm and implementation of peri-
odic boundary conditions are straightforward and can be done
in almost the same way as in the Linked-Cell method [21, 22].
Finally, to reduce the memory usage related to storing the cells,
we use the hash table approach [8, 10, 12]. This means that the
hierarchical grid is not stored explicitly, instead a hash function
is used to map only occupied grid cells into a finite 1D hash
table.

For bi-disperse particle systems with wide size distributions,
for example,ω > 10, the use of a two-level grid can lead
to a significant improvement as compared to the Linked-Cell
method, as we show below in section 4. Nevertheless, we are
interested in finding the optimal grid parameters (L andsh) for
arbitrarily polydisperse particle systems, which will lead to the
best performance. In the next section we present a method how
to achieve this.

3. Selection of the optimal grid parameters

The algorithm from the last section is applicable to arbitrary
systems (inhomogeneous), whereas for the following analysis,

2particlesp andq collide only if
∥

∥

∥~xp − ~xq

∥

∥

∥ < rp+ rq, where‖·‖ is Euclidean
norm.

we restrict ourselves to almost homogeneous situations. This
does not harm/affect the algorithm, only the performance might
be sub-optimal. In subsection 3.1 we briefly talk about bi-
disperse systems and then focus on polydisperse cases in sub-
section 3.2.

3.1. Bi-disperse systems

For bi-disperse particle systems the cell sizes of the two-level
grid can be easily selected as the two diameters of each parti-
cle species. For some situations this may be not as efficient as
the use of the single-level Linked-Cell method. In section 4
we show some performance results for bi-disperse size distri-
butions.

3.2. Polydisperse systems

Systems where all the particles’ sizes are different we call
polydisperse. This is the case when a particle sample is drawn
from a continuous particle size distribution (PSD), for example
using systematic sampling approach [23, 24]. It guaranteesa
more evenly spread sample, i.e., always includes some of the
possibly rare large particles in a sample. For such systems the
parameters of the algorithm (the number of levelsL and cell
sizessh) can be chosen in different ways. The performance of
the hierarchical grid algorithm then strongly depends on the se-
lected parameters. Consider different numbers of hierarchy lev-
elsL. On the one hand, the fewer levels are used, the larger the
number of particles per cell. This implies that a larger amount
of particles pairs will be found in the contact search, affecting
the CPU time dramatically when the system has a large number
of small particles. On the other hand, increasing the number
of hierarchy levels will decrease the number of particle pairs
found in the contact search. This will increase the number of
cross-level tests, and hence the number of cells which have to
be accessed, negatively affecting the CPU time. To obtain the
optimal performance it is important to balance the number of
particle pairs found with the number of cells to be checked.

Assume the following hypothesis holds:

Hypothesis 1. Let mh be the average number of particles per
cell at level h, that is, mh = Nh/Nc

h, where Nh is the number of
particles at level h, and Nch is the number of cells at this level.
Then the optimal distribution of particles by levels satisfies the
following condition:

m := mi = mj , for all i , j ∈ [1, L]. (6)

The detailed discussion of this is in preparation for a future
publication.

If the particles are mapped to the levels, such that Eq. (6)
is approximated, it can be shown that the CPU time spent for
contact detection,TCD, scales as

TCD ∼ NL(m+ K), (7)

whereK is a constant corresponding to the “overhead” of the
algorithm, i.e., the time spent to access cells to be tested,and
m = m(L,PSD) is the number of particles per cell. To compute
m for a givenL and for the particle system at hand, one needs

3
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to choose cell sizessh so that Eq. (6) is approximately satisfied.
How to do this is explained in Appendix A. Derivation of Eq.
(7) is beyond the scope of this paper. Here, the comparison of
the performance results with the prediction of Eq. (7) will be
shown.

As obtained from numerical experiments in section 4, the
value ofK varies in a narrow range [0.2, . . . , 0.45], depending
on the size distribution, and is set to 0.3 with sufficient accuracy.

We propose to use as the optimal number of levels (ONL)
the one that minimizes the right hand side of Eq. (7). It must
be noted that in general the ONL is relatively small. For ex-
ample, in the system below withω = 50 with uniform volume
distribution, see Fig. 3(d), ONL= 7.

4. Numerical experiments

The aim of this section is to test the presented algorithm in
physically realistic, dilute to dense polydisperse gas- and fluid-
like systems. For these we verify experimentally the analytical
prediction from Eq. (7). More specific, we use homogeneous
and isotropic disordered systems of colliding elastic spherical
particles in a cubical box with hard walls. The motion of par-
ticles is governed by Newton’s second law with a linear elastic
contact force during overlap. For simplicity, every particle un-
dergoes only translational motion (without rotation) and gravity
is set to zero.

Subsection 4.1 outlines which size distributions are used and
why. In subsection 4.2 it is explained how the model systems
are prepared. Then, in subsection 4.3, we verify the predic-
tion given by Eq. (7), and also show the performance results for
some bi-disperse systems.

4.1. Particle size distributions
The following types of particle size distributions are used: (i)

monodisperse, i.e., all sizes are equal; (ii) bi-disperse,i.e., two
different sizes, where the volume of all small particles and the
volume of all big particles are equal, which is also used in Ref.
[25]; (iii) uniform size distribution, i.e., the distribution of radii
of the particles is constant; (iv) uniform volume distribution,
i.e., the distribution of the volumes of the particles is constant.

We believe that these types of distributions cover the most
important cases to check the efficiency of the presented al-
gorithm. Systems with monodisperse size distributions are
widely used since kinetic theory predicts their physical be-
haviour [26, 27, 28], and it is the natural benchmark against
which to compare. Bi-disperse size distributions are oftenused
for theoretical models [25, 29, 30], and can often be a good ap-
proximation to physically realistic size distributions. Uniform
size and uniform volume distributions are selected in orderto
check the speed-up of the multilevel grid for polydisperse sys-
tems with relatively few small particles (uniform size), orrather
many small particles (uniform volume). The uniform volume
distribution approximates the experimentally obtained size dis-
tribution of a concrete mixture [24].

Figure 3 shows the particle systems with different particle
size distributions forN = 125001 and volume fraction (the ra-
tio between the volume of the particles and the volume of the

system)ν = 0.62. Note, that particles of the monodisperse case
are ordered (near to walls), since the volume fraction is above
0.55 [28, 31, 32].

4.2. Experimental setup

The systems are prepared in two stages. Starting from a ran-
dom uniform distribution of points in a cubical box, the ra-
dius of the particles grows linearly with time. We use non-
overlapping spheres [33], with an Event-Driven code [34],
whose growing rate conforms to and conserves a prescribed
size distribution. Initial velocities are set randomly in order to
keep the system dynamic and random, for details see Ref. [34].
When the target volume fraction is reached, the growth process
is stopped.

With the final configuration from the first step, the simula-
tion switches to the relaxation stage with “soft” particles, i.e.,
particles move according to interparticle forces [1]. The linear
elastic normal contact force model is used [35], which leadsto a
certain contact duration. The integration time step is computed
according to the smallest contact duration [35, 36]. At the be-
ginning of this stage the velocities of the particles are scaled in a
way that a collision between two of the smallest particles would
reach an average maximum overlap of one percent of their ra-
dius. We let the simulations run for a few collisions per particle
for equilibration before making the measurement of the perfor-
mance, in order to have contacts (overlaps) between particles in
the system.

(a) (b)

(c) (d)

Figure 3: Particle systems withN = 125001 andν = 0.62 with (a) monodis-
perse size distribution, (b) bi-disperse size distribution, ω = 10, where the
volume of all small particles is almost (±2%) equal to the volume of all big
particles, (c) uniform size distribution,ω = 50, and (d) uniform volume distri-
bution,ω = 50. Colour is by relative size for the cases (c) and (d).
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4.3. Experimental results
To verify the prediction of Eq. (7) we perform two series

of experiments, one for varying number of hierarchy levels,
and one for different numbers of particles. In the first series,
we want to confirm that the multiplier next toN is L(m+ K).
For this, using a fixedN, we calculate the value ofm for each
L ∈ [1, 50] utilizing the method given in Appendix A, and
measure the total CPU time of simulations where the hierarchi-
cal grid is used withL levels, and the cell sizessh are computed
in accordance with our hypothesis (1). To present the total CPU
time, we use the slowdown factor SF, that is the total CPU time
divided by the smallest CPU time for a given system. In Fig. 4
the results of this experiment are shown for systems with uni-
form size (US) and uniform volume (UV) distributions with
N = 125001,ν = 0.62 andω = 50. The analytical prediction
(7) is also plotted withK = 0.3, scaled in such a way that SF=
1 corresponds to the minimum of the right hand side of Eq. (7).
Note that even though the prediction (7) is for CPU time spent
only for contact detection,TCD, the total CPU time for fixedN
also scales asTCD. This is because the CPU time spent in the
force calculation and integration does not depend on the grid
parameters used. From the experimental results shown in Fig.
4 it can be seen that: (i) for the system with uniform size distri-
bution the optimal number of levels isL = 2, and the speed-up
compared to the Linked-Cell method (L = 1) is about 30%,
so it does not present a major advantage; (ii) in the case of
uniform volume distribution the fastest CPU time is achieved
using L = 8, and the speed-up over the Linked-Cell method
(L = 1) is of about 220 times. This brings us to the conclusion
that for particle systems with relatively few small particles, the
use of hierarchical grid algorithm is not essential; however, for
the systems with rather many small particles the hierarchical
grid algorithm is highly advantageous. Furthermore, it canbe
seen that the analytical prediction (7) is in very good agreement
with the experimental results. We have also performed the same
type of experiment for systems with different volume fractions,
namely,ν = 0.1 andν = 0.4, and in all these cases the predic-
tion matches very well with the experimental results.

In the second series of experiments we confirm that the CPU
time spent for contact detection scales linearly with the number
of particles. Figure 5 shows the total CPU time relative to the
monodisperse case,Trel. Polydisperse systems with uniform
volume distribution are considered, since it was shown above
that for uniform size distributions the use of hierarchicalgrid
algorithm is not essential. The results for bi-disperse systems
are also shown, withL = 2 and cell sizes equal to the diameters
of the each kind of particles. It can be seen that the CPU time
scales asO(N), sinceTrel is approximately constant (±10%)
for each type of system, and because the Linked-Cell method
for monodisperse particles isO(N). Secondly, the CPU time
is close to the monodisperse case (Trel = 1), and the largest
difference is about 50% in the polydisperse case withω = 10.
Furthermore, the CPU time decreases with increasingω at con-
stant volume fraction. This is since the mean free path of the
system decreases withω, which determines the number of con-
tact neighbors found, hence the computation time. It must be
noted that for largeω we cannot create representative samples

with few particles, so we cannot compare all the systems for
everyN used in the monodisperse case.
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Figure 4: Slowdown factor for different numbers of levels for systems with
N = 125001,ν = 0.62 andω = 50 with uniform volume (UV) and uniform size
(US) distributions. The prediction of Eq. (7) is used withK = 0.3 for plotting
solid lines. Note that the data can be obtained only for integer values ofL.
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Figure 5: The total CPU time scaled by the total CPU time of a monodis-
perse system with the same number of particles and volume fraction, simulated
for the same number of iterations. We show results for bi-disperse (Bi) and
polydisperse uniform volume (Poly) size distributions. Extremely wide size
distributions cannot be properly realized for too smallN.

5. Summary and Conclusions

A hierarchical grid algorithm for contact detection in sys-
tems with arbitrarily polydisperse objects’ sizes was developed.
DEM simulations were carried out to assess the performance
of the algorithm, which contains as adjustable parameters the
number of hierarchy levels and the cell sizes at each level. A
method to find the optimal parameters for an arbitrary polydis-
perse size distribution of objects was suggested and confirmed
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by numerical experiments. With the optimal parameters our
simulations can run orders of magnitude faster than when using
the (single level) Linked-Cell method. With this algorithmwe
are able to simulate objects which have large size ratios with al-
most the same computational time as in the monodisperse case.
With parameters selected using our method the performance of
the algorithm scales linearly with the number of particles for
any width of the size distribution tested. Our work opens the
door to simulate realistic polydisperse systems, making possi-
ble a complete new range of simulations.

Acknowledgments

The authors would like to thank S. Gonzalez and A. R.
Thornton for helpful discussions. This research is supported by
the Dutch Technology Foundation STW, which is the applied
science division of NWO, and the Technology Programme of
the Ministry of Economic Affairs (STW MuST project 10120).

Appendix A. Calculation of m(L, PSD)

Assume that particles are sorted by size in increasing order,
so thatr i > r j for i > j. We iteratively increase the value ofm
by δm≪ 1 starting from zero. Then for everym we distribute
particles by levels as following: Starting with the first level, i.e.,
h = 0, and from the smallest particle, i.e.,i = 0, we allocate the
i-th particle at levelh. We increase the level indexh if for some
i the number of particles per cell at current level exceedsm:

Nh(i)
Nc

h(i)
> m, (A.1)

whereNh(i) is the number of particles already allocated at level
h (including the particlei) andNc

h(i) is the number of cells at
levelh. The number of cellsNc

h(i) is calculated from the size of
particle i, e.g., for a 3D cube with size ofS, Nc

h = (0.5S/r i)3.
This process is finished when all particles are allocated. There-
fore, we obtain the number of levels for a givenm. Differ-
ent m can lead to the sameL value. In this case, we select
m(L,PSD) with the minimum value, so the last level contains
more particles. For numerical experiments in section 4 the use
of δm= 10−3 for the system withω = 50 with uniform volume
distribution andL = 7 led to about±2% variation of the number
of particles per cell at different levels.
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