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ABSTRACT

Results from molecular dynamics simulations are analyzed with a continuum approach. It is
shown that for strongly confined fluids the Navier-Stokes equations for incompressible, New-
tonian fluids are not applicable over the whole channel. Nearthe walls, a Knudsen layer is
formed and interesting oscillatory structures are seen, the fluid behaves non-Newtonian in these
regions.

1. Introduction

Molecular dynamics simulations have become an important tool for the study of microscopic
fluid properties. A channel geometry is often used to study the inhomogeneous behavior of
strongly confined fluids (Koplik & Banavar6, Bitsaniset al. 1, Travis & Gubbins7) which be-
have different from Newtonian fluids. Our understanding of these non-Newtonian fluids is
still very limited, while gaining a deeper insight is becoming increasingly important with the
rise of microfluidic and nanofluidic applications, such as lab-on-a-chip devices. Similar phe-
nomenology (i.e. layering, anisotropy) is observed in manyparticle systems (van Gunsteren
et al. 3, Ghoshet al. 2). In this study, liquid argon is confined between two walls with normal
in the x-direction (Fig. 1). When an atom leaves the system iny- or z-direction, it re-enters
at the opposite side due to periodic boundary conditions. Both walls consist of two layers of
argon atoms (each layer containing 128 atoms) fixed in a001-face centered cubic (fcc) lattice.
The fluid-wall interaction is equal to the fluid-fluid interaction and the number density of the
system isρ∗ = 0.8 (corresponding to a volume fraction ofν = 0.415 based on atom diameter
σ). Physical quantities are nondimensionalized by using thelength, energy and mass scales of
liquid argon, which areσ = 3.405 × 10−10 m, ǫ = 1.67 × 10−21 J andm = 6.626 × 10−26 kg
respectively. A constant body forcef ∗ acts on the fluid in negativez-direction, causing it to
flow. The mutual interaction of the neutral spherically symmetric argon atoms is modeled via a
two-body Lennard-Jones (LJ) potential. From the interaction potential, the force between two
atoms can be calculated:
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with r the distance between two atom centers. The force is truncated atrc = 2.5σ in order to
reduce calculation time for pair interactions. Furthermore, the force is shifted withFLJ(rc) in
order to maintain a continuous force at the location of truncationF (r) = FLJ(r)−FLJ(rc) and
FLJ(r ≥ rc) = 0.

From the positions, velocities and interatomic forces, other physical scalar or tensorial quanti-
ties can be calculated (e.g. shear rate, stress and viscosity) (Hartkampet al. 4). The position and
momentum of each atom are used to calculate the forces actingon them and then their position
and velocity after an increment (∆t) in time via the Velocity Verlet algorithm. The body force



Figure 1: Liquid argon (grey, 2304 atoms) confined between solid argon walls (red, 512 atoms).
The width of the channel is defined as shown on the right.

leads to an acceleration of the fluid, while viscous effects retard the flow until a steady state is
reached. Local thermostats near the walls keep the energy (and thus the temperature) constant in
time (T ∗ = 1.0 for the simulations presented here, which is equal to a temperature ofT = 121 K
for argon) (Ghoshet al. 2). Atoms are initially positioned on a001-fcc lattice. The lattice melts
during the equilibration, followed by a steady state flow. The steady-state simulation results
are averaged by means of4000 snapshots over a period of time of4000τ . Furthermore, spatial
averaging is employed over the directions parallel to the solid walls, whereas, thex-direction
(perpendicular to the solid walls) is divided into equally spaced bins of widthb = 0.083. The
channel isW = 16.245σ in width andH = 13.68σ in length and height. The fluid in the
channel consists ofN = 2304 argon atoms.

The Knudsen number of the flow, which is the ratio between the mean free pathλ and the
characteristic length scaleLW = W/3, is Kn = (

√
2πσ2ρ∗LW )−1 = 0.052. Typically, flows

with a Knudsen number in the regime0.001 ≤ Kn ≤ 0.1 can be analyzed with conventional
fluid dynamics equations such as the Navier-Stokes equations. However, the no-slip boundary
condition does not hold ifKn ≥ 0.01. A region forms near the wall, called the Knudsen layer,
where the flow can not be analyzed by the conventional approach, an additional slip boundary
condition is needed. The thickness of this layer depends on the Knudsen number, but is typically
of the same order of magnitude as the mean free path.

Section 2 treats the conservation of momentum, applied to the system which is considered here.
In section 3, the computational results are compared to the Newtonian theory and the results are
briefly discussed.

2. Equations of fluid motion

The equations of fluid motion for an incompressible and Newtonian fluid are given by:

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇p + µ∇2
v + f , (2)

with ρ being the density,v the velocity vector,p the pressure,µ the shear viscosity andf the
external force on the fluid per unit volume.

For the system discussed here, the equations of motion can besimplified considerably. The
system properties are (kept) constant in they- andz-direction and the fluid is confined inx-
direction. The force vector is:f = {0, 0,−f}, with f = ρ∗f ∗, whereρ∗ is the number density
and f ∗ is the body force on each particle. The body force on the fluid causes a streaming
velocity profile in the negativez-direction.

After substituting the force vector and the velocity field, all the terms in the conservation of



x- andy-momentum drop out1, leaving only thez-component of the momentum conservation
Eqn. (2), which reduces to a Poisson equation:

∂2vz

∂x2
=

f

µ
. (3)

The macroscopic fields are obtained from molecular dynamicssimulations in the canonical en-
semble (NVT). The averaged results satisfy Eqn. (3) if the fluid in the nanochannel behaves in-
deed incompressible and Newtonian. Velocity is an almost parabolic function of thex-location,
due to the boundary conditions, besides wall effects.

3. Results and discussion

Fig. 2 shows the streaming velocity inz-direction as function ofx and the first and second
derivative with respect to thex-direction. The derivatives are obtained from the velocityprofile
via a central difference scheme. The velocity profile is approximately quadratic in the bulk,
corresponding to linear and constant first and second derivatives respectively. However, the
fluid deviates from this behavior near the walls of the channel. The predicted Knudsen layer
can be identified where the trend in the streaming velocity deviates from a quadratic profile.
This region is especially clear from looking at the first and second derivative of the velocity
profile. The apparent slip in velocity corresponds to a slow decay to a zero shear rate at the
sides of the channel. In addition to the Knudsen layer, oscillatory structures are seen in each of
the profiles. The magnitude of these oscillations are maximal near the walls and decay towards
the bulk.
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Figure 2: (left) Velocity profile in negativez-direction across the channel and (middle) first and
(right) second derivatives with respect tox. The red solid lines represent the parabolic velocity
profile withf/µ = 0.0408 [(ms)−1].

Fig. 3 shows the right-hand side of Eqn. (3) (left) and the difference between the right- and
left-hand sides (right). The shear viscosity is defined as the ratio between the shear stress and
the shear rate. The ratio between the force per volume and theshear viscosity (Fig. 3 (left))
forms a plateau in the bulk of the fluid and clearly deviates from this plateau near the walls of the
channel. The strong oscillations in the center of the channel are an artefact due to the calculation
of the shear viscosity; the shear rate is approximately zeroin the center of the channel, leading
to unphysical results for the shear viscosity, which shouldbe ignored.

1This is true for a homogeneous fluid, which is not necessarilyin agreement with the outcome of the molecular
dynamics simulations.



−8 −6 −4 −2 0 2 4 6 8
−0.02

0

0.02

0.04

0.06

f /
 µ

x
−8 −6 −4 −2 0 2 4 6 8

−0.2

−0.1

0

0.1

d2  v
z/d

 x
2  −

 f 
/ µ

x

Figure 3: (left) The ratio between force and shear viscosity. (right) The difference between the
left- and right-hand side of the conservation ofz-momentum.

The difference between both terms in the conservation of momentum (Fig. 3 (right)) is a mea-
sure for the error that is made by treating the fluid as Newtonian. In the bulk region, the dif-
ference between both terms fluctuates around zero, which indicates that the fluid behavior is
Newtonian in the bulk region, apart from statistical noise.The deviation from zero near the
walls is larger in magnitude and opposite in sign compared tothe average value of both indi-
vidual terms in the bulk, indicating that the made assumptions do not hold in this region due to
the Knudsen layer and the oscillatory structures close to the wall. The behavior of the curvature
near the wall can not be compensated by a positive viscosity.This indicates that important con-
tributions to the constitutive relation are missing, as will be studied in future work (Hartkamp
et al. 4). The Navier-Stokes equations with a slip boundary condition are also questionable near
the walls due to the layering which extends a fewσ into the fluid, see Hartkamp & Luding5.
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