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Abstract 
A study of the transport coefficients of a system of elastic hard disks, based on the use of Helfand-Einstein 

expressions is reported. The pressure, the viscosity, and the heat conductivity are examined for different 

density and system-size. While most transport coefficients agree with Enskog theory below the disorder-

order transition, a striking power law divergence of the viscosity with density is obtained at this density. The 

other transport coefficients show a drop in that density regime, relative to the Enskog theoretical prediction. 

The deviations are related to shear band instabilities and the contept of dilatancy. 

Introduction 

Transport coefficients characterize the different mechanisms in non-equilibrium fluid states. At the 

macroscopic level, they are introduced by phenomenological equations, like the Navier-Stokes 

equations for a simple fluid, which predict the time evolution of mass, momentum and energy [1]. 

Each transport coefficient is related to the propagation of one (or more) of these microscopic 

quantities, bridging therefore the hydrodynamic and the microscopic scale. In the case of low 

density gases, the macroscopic equations have been justified, their range of validity has been 

determined, and explicit expressions for the transport coefficients have been obtained using the 

Boltzmann kinetic equation as starting point [2-4]. At higher but moderate densities, the Enskog 

equation has also proved to give a quite accurate description of a gas of hard spheres or disks.  

 

In the last years, there has been a revived interest in 

transport processes in systems composed by hard 

particles motivated by the study of granular media in 

general, and granular gases as a special case [5,6,7]. If 

dissipation is added to the hard disk system, one has a 

granular gas [3] and one typically observes density 

inhomogeneities, as displayed in the figure to the left: 

Low density (white) co-exists with extremely high 

densities. The color-code indicates the collision rate, 

being higher in the denser regions (red). The 

challenge of current research is to predict the transport 

coefficients for such systems, not only for low 

densities but also for the highest densities possible. 

 

A remarkable and fundamental development in the 

statistical mechanics theory of transport processes was the derivation of expressions for the 

transport coefficients based on equilibrium time-correlation functions. These are the so-called 

Green-Kubo formulas, and they involve different microscopic fluxes [8]. These expressions are of 

general validity and have been extensively used for the analysis and modelling of transport in 

denser systems. In particular, they are applied to compute transport coefficients from molecular 



dynamics simulations. Alternative formal expressions for the transport coefficients are provided by 

the Einstein-Helfand formulas [8], the simplest of which being Einstein's formula for the self-

diffusion coefficient in terms of the second moment of the displacements. The Einstein-Helfand 

expressions for the other transport coefficients involve moments of corresponding dynamical 

variables, which are the time integrals of the microscopic fluxes appearing in the Green-Kubo 

relations. Considerations about long-time tails in the correlation functions have only recently been 

considered by Kumaran [9], who proposed a cut-off wavelenght, above which the correlation 

functions become integrable. 
 

Results 
 

Right: Schematic plot of the non-dimensionalized 

transport coefficients pressure, viscosity, and heat 

conductivity, in an elastic hard disk system, as 

function of density (area fractionI ν). For small 

densities ν<<1, all coefficients accord with the 

predictions from kinetic theory for hard sphere 

gases. For higher densities around νc=0.70, the 

system of disks shows a transition from a disordered 

to an ordered state.  
 

Pressure and the heat conductivity drop at νc=0.70 due to the increased mean free path in an 

ordered configuration and, eventually, diverge at νmax=0.9069. Most interestingly, the shear 

viscosity diverges at much smaller density, close to the crystallization density, at νη=0.71. For 

higher densities, in the solid-like regime for ν >νη, shear seems impossible. 

This power-law divergence of viscosity at νη~νc, with values above Enskog theory already 

becoming visible at intermediate densities, ν>0.5, renders viscosity different from all other 

transport properties studied. Note however, that the results presented here were obtained from 

“non-sheared” systems.  

The divergence of viscosity can in fact be understood as the reason for shear-band formation [6,7]: 

A sheared system at high densities typically splits into sheared bands (with lower density) and 

compressed, denser, ordered bands. From a different point of view, our observations are also 

consistent with the concept of dilatancy: A dense packing, with ν >νη, can only be sheared by first 

experiencing dilatancy so that density drops. 
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