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Abstract

Ultrafine, cohesive powders are the subject of the joint research project. While shear experi-
ments and contact force measurements were performed by the project partners, the realistic contact
force models were developed in a common effort. The algorithms for their implementation are pre-
sented here, involving elastic-plastic repulsion, dissipation, adhesion, friction as well as rolling- and
torsion-resistance.
In model powder systems, the effect of the contact properties on an isotropic, homogeneous com-
paction test is discussed with respect to the packing densities. With contact forces involving sliding,
rolling and torsion frictions, packing volume fractions down to 0.42 were achieved. Some longer
ranged van der Waals adhesion forces added to the contact forces can lead to volume fractions con-
siderably smaller, and to fractal-like agglomerates.
Keywords
granular materials, molecular dynamics (MD) and discrete element model (DEM) force-laws, fric-
tion, rolling- and torsion resistance, adhesion, plastic deformation, low density compaction

1 Introduction

Ultrafine, cohesive powders show peculiar flow be-
havior, including macroscopic cohesion and a yield
stress that has to be reached, before flow sets in.
Besides many experiments, Molecular Dynamics
(MD) or Discrete Element Models (DEM), which
solve the equations of motion for all particles in a
system, are used to understand these granular me-
dia. While experiments and continuum theory deal
with macroscopic material parameters, for the par-
ticle simulations, the (microscopic) contact forces
are the only physical laws that have to be defined
beforehand [3, 8, 9, 13, 20].

1.1 Project Overview

The project “Modellierung der Scherdynamik
kohäsiver, feindisperser Partikelsysteme” in the
framework of the DFG research group “Verhal-
ten Granularer Medien” was dealing with shear
experiments [32–35], constitutive modeling and
[14–17, 19, 23, 26], discrete element simulations
[2, 6, 7, 16, 18, 34, 35]. These three subjects are
also adressed on pages 83, 99, and 143 of this pro-
ceedings, respectivey. Tools to perform a so-called
micro-macro transition are examined [14, 36] with

the goal to relate the macroscopic flow behavior
to the microscopic contact properties. The con-
tact force measurement, see [11] and the paper on
page 89 of this proceeding, and the contact force
models [13, 20, 23, 24] are essential for the DEM
simulations and are the main subject of this pa-
per, see also the papers on pages 75, 83, and 89 of
this book. This involves advanced contact models
for elasto-plastic, adhesive normal forces and fric-
tion, rolling- and torsion-resistance; contact mod-
els for temperature dependent sintering are dis-
cussed elsewhere [24].

1.2 Contact Modeling

For powders, as an example, the particle proper-
ties and interaction laws are inserted into a dis-
crete particle molecular dynamics and lead to the
collective behavior of the dissipative, frictional, ad-
hesive many-particle system. From the particle
simulation, one can extract, e.g., the coordination
number or the pressure of the system as a func-
tion of density, but also velocity gradient, viscos-
ity and other macroscopic material properties. In
the following, normal interactions, like adhesion
and elasto-plastic contact deformations are intro-
duced as well as friction, rolling- and torsion re-



Proceedings Issue: Behavior of Granular Media (2006)

sistance in tangential direction. All models are
discussed for disks and spherical model particles.
Examples of a compression test are presented for
which the previously defined contact model pa-
rameters are varied and the compaction process
is affected – see also the closely related project
“Verdichtung und mechanische Eigenschaften von
kohäsiven Schüttgütern”.

2 Soft Particle Molecular Dynamics (MD)

Particle simulations like MD are also referred to as
discrete element models (DEM) [4, 5, 10, 12, 29, 30,
36]. They complement experiments on small “rep-
resentative volume elements” (REVs). Alternative
methods like contact dynamics (CD) or cell- and
lattice gas-methods are not discussed here.

2.1 Discrete Particle Model

The elementary units of granular materials are
mesoscopic grains, which deform under stress.
Since the realistic modeling of the deformations
of the particles is much too complicated, we re-
late the interaction force to the overlap δ of two
particles, see Fig. 1. In tangential direction, the
forces also depend on the tangential displacement
since the beginning of the contact. Note that the
evaluation of the inter-particle forces based on the
overlap may not be sufficient to account for the
inhomogeneous stress distribution inside the par-
ticles and possible multi-contact effects. Conse-
quently, the results presented here are of the same
quality as the simplifying assumptions about the
force-overlap relations made.

2.2 Equations of Motion

If all forces f i acting on the particle i, either from
other particles, from boundaries or from external
forces, are known, the problem is reduced to the
integration of Newton’s equations of motion for the
translational and rotational degrees of freedom:

mi

d2

dt2
ri = f i + mig , and Ii

d2

dt2
ϕi = qi (1)

with the mass mi of particle i, its position ri

the total force f i =
∑

c f c
i acting on it due to

contacts with other particles or with the walls,
the acceleration due to volume forces like grav-
ity g, the particles moment of inertia Ii, its an-
gular velocity ωi = dϕi/dt and the total torque

qi = qfriction
i + q

rolling
i + qtorsion

i , as defined below.
The equations of motion are thus a system of
D+D(D−1)/2 coupled ordinary differential equa-
tions to be solved in D dimensions, with D = 2 or
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Figure 1: (Top) Two particle contact with overlap δ in
normal direction. (Bottom) Schematic graph of the piece-
wise linear, hysteretic, adhesive force-displacement model
in normal direction.

D = 3. With tools from numerical integration,
as nicely described in textbooks as [1, 27], this is
a straightforward exercise. The typically short-
ranged interactions in granular media, allow for
further optimization by using linked-cell (LC) or
alternative methods in order to make the neigh-
borhood search more efficient. In the case of long-
range interactions, (e.g., charged particles or van
der Waals type forces) this is not possible anymore,
so that either a cut-off or more advanced methods
for optimization have to be applied – for the sake
of brevity, we use a cut-off for van der Waals forces
and the LC method below.

2.3 Normal Contact Force Laws

Two spherical particles i and j, with radii ai and
aj , respectively, interact only if they are in contact
so that their overlap

δ = (ai + aj) − (ri − rj) · n (2)

is positive, δ > 0, with the unit vector n = nij =
(ri − rj)/|ri − rj | pointing from j to i. The force
on particle i, from particle j, at contact c, can be
decomposed into a normal and a tangential part
as f c := f c

i = fnn + f tt, where n · t = 0. The
tangential force leads to a torque as well as rolling
and torsion, as discussed below.

2.3.1 Linear Normal Contact Model

The simplest normal contact force model, which
takes into account excluded volume and dissipa-
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tion, involves a linear repulsive and a linear dissi-
pative force

fn = kδ + γ0vn , (3)

with a spring stiffness k, a viscous damping γ0,
and the relative velocity in normal direction vn =
−vij · n = −(vi − vj) · n = δ̇.
This so-called linear spring dashpot (LSD) model
allows to view the particle contact as a damped
harmonic oscillator, for which the half-period of
a vibration around an equilibrium position with a
certain contact force, can be computed [13]. The
typical response time on the contact level is

tc =
π

ω
, with ω =

√

(k/m12) − η2
0 , (4)

the eigenfrequency of the contact, the rescaled
damping coefficient η0 = γ0/(2mij), and the re-
duced mass mij = mimj/(mi + mj). From the
solution of the equation of a half period of the
oscillation, one also obtains the coefficient of resti-
tution

r = v′

n/vn = exp (−πη0/ω) = exp (−η0tc) , (5)

which quantifies the ratio of normal relative ve-
locities after (primed) and before (unprimed) the
collision. For a more detailed discussion of this
and other, more realistic, non-linear contact mod-
els, see Ref. [13].
The contact duration in Eq. (4) is also of practi-
cal technical importance, since the integration of
the equations of motion is stable only if the inte-
gration time-step ∆tMD is much smaller than tc.
Note that tc depends on the magnitude of dissipa-
tion: In the extreme case of an overdamped spring,
tc can become very large (which would render the
contact behavior artificial [21]). Therefore, the use
of neither too weak nor too strong dissipation is
recommended.

2.3.2 Adhesive, Elasto-Plastic Contacts

Here we apply a variant of the linear hysteretic
spring model [13, 31, 37], as an alternative to the
frequently applied spring-dashpot models. This
model is the simplest version of some more compli-
cated nonlinear-hysteretic force laws [28,31,37,38],
which reflect the fact that at the contact point,
plastic deformations may take place and attrac-
tive (adhesive) forces exist. The adhesive, plastic
(hysteretic) force-law can be written as

fhys =

{

k1δ if k2(δ − δ0) ≥ k1δ
k2(δ − δ0) if k1δ > k2(δ − δ0) > −kcδ
−kcδ if − kcδ ≥ k2(δ − δ0)

(6)

with k1 ≤ k2, see Fig. 1. The first and the third
case are for un- and re-loading, respectively, while
the second case is for both un- and re-loading and
will be discussed in more detail below. During
the initial loading the force increases linearly with
the overlap δ, until the maximum overlap δmax is
reached (which has to be kept in memory as a his-
tory parameter). The line with slope k1 thus de-
fines the maximum force possible for a given δ.
During unloading the force drops from its value at
δmax down to zero at overlap δ0 = (1− k1/k2)δmax,
on the line with slope k2, so that δ0 resembles the
plastic contact deformation. Reloading at any in-
stant leads to an increase of the force along the line
with slope k2, until the maximum force is reached;
for still increasing δ, the force follows again the
line with slope k1 and δmax has to be adjusted ac-
cordingly.
Unloading below δ0 leads to negative, attractive
forces until the minimum force −kcδmin is reached
at the overlap δmin = (k2 − k1)δmax/(k2 + kc). This
minimum force, i.e., the maximum attractive force,
is obtained as a function of the model parameters
k1, k2, kc, and the history parameter δmax. Further
unloading leads to attractive forces fhys = −kcδ on
the adhesive branch with slope −kc. The highest
possible attractive force, for given k1 and k2, is
reached for kc → ∞, so that fhys

max = −(k2−k1)δmax.
Since this would lead to a discontinuity at δ = 0,
it is avoided by using finite kc.
The lines with slope k1 and −kc define the range
of possible force values and departure from these
lines takes place in the case of loading and un-
loading, respectively. Between these two extremes,
unloading and reloading follow the line with slope
k2. Possible equilibrium states are indicated as
circles in Fig. 1, where the upper and lower circle
correspond to a pre-stressed and stress-free state,
respectively. Small perturbations lead, in general,
to small deviations along the line with slope k2 as
indicated by the arrows in Fig. 1.
A non-linear un/reloading behavior would be more
realistic, however, due to a lack of detailed experi-
mental informations, the piece-wise linear model is
used as a compromise. One reasonable refinement,
which accounts for an increasing stiffness with de-
formation, is a k2 value dependent on the maxi-
mum overlap. This also implies relatively small
and large plastic deformations for weak and strong
contact forces, respectively. The model, as pro-
posed recently [25], requires an additional model
parameter,

δ∗max =
k2

k2 − k1

φf

a1 + a2

2
, (7)

with the dimensionless plasticity depth, φf , de-
fined relative to the average radius. If the pen-
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etration is larger than a fraction φf of the (av-
erage) particle radius, the constant stiffness k2 is
used. Note that a limit to the slope k2 is needed
for practical reasons. If k2 would not be limited,
the contact duration could become very small so
that the time step would have to be reduced below
reasonable values.
For smaller penetration, k2(δmax) interpolates be-
tween k1 and k2:

k2(δmax) =

{

k2 if δmax/δ
∗

max ≥ 1
k1 + (k2 − k1)δmax/δ

∗

max

if δmax/δ
∗

max < 1
, (8)

and the constant k2 in Eq. (6) is replaced by the
variable k2(δmax) from Eq. (8).
While in the case of collisions of particles with
large relative velocities – and thus large deforma-
tions – dissipation takes place due to the hysteretic
nature of the force-law, reasonably strong dissipa-
tion of small amplitude deformations is achieved
by adding the viscous, velocity dependent dissipa-
tive force from Eq. (3) to the hysteretic force, such
that fn = fhys + γ0vn.
In summary, the adhesive, plastic, hysteretic nor-
mal contact model contains the five parameters
k1, k2, kc, φf , and γ0 that respectively account
for loading-reloading-stiffness and plastic deforma-
tion, adhesion, plastic overlap-range of the model,
and viscous dissipation 1 .

2.3.3 Long Range Normal Forces

Medium range van der Waals forces can be taken
into account in addition to the hysteretic force such
that fn = fhys + γ0vn + fvdW with, for example,
a Lennard-Jones Potential, leading to the force as
function of distance:

fvdW(r) = −(4ε/r0)
[

6(r0/r)
7 − 12(r0/r)

13
]

.
(9)

In order to have a continuous force-displacement
relation and to limit the range of the force, usually,
a cut-off is introduced, so that

fvdW = fvdW(r) − fvdW(rc) , for r < rc , (10)

and fvdW = 0 elsewhere. The new parameters
necessary for this force are an energy scale ε, a
typical length scale r0 and the cut-off length rc.
As long as rc is not too large as compared to the
particle diameter, the neighbourhood-search meth-
ods for short range interactions still can be still
applied – only the linked cells have to be larger
than twice the cut-off radius. When r0 is smaller

1The hysteretic model contains the linear contact model
as special case k1 = k2 = k

than the particle diameter, the repulsive part of
the force becomes irrelevant due to the repulsive
contact model.

2.4 Tangential Contact Force Laws

For the tangential degrees of freedom, there are
three different force- and torque-laws to be imple-
mented: (i) friction, (ii) rolling resistance, and (iii)
torsion resistance.

2.4.1 Sliding

For sliding and static friction, the relative tangen-
tial velocity of the contact points,

vt = vij − n(n · vij) , (11)

is to be considered for the force and torque com-
putations in subsection 2.5, with the total relative
velocity of the particle surfaces at the contact

vij = vi − vj + a′

in × ωi + a′

jn × ωj , (12)

with the corrected radius relative to the contact
point a′

α = aα − δ/2. The forces on the contact-
ing particles are computed from the accumulated
sliding of the contact points along each other, as
described in detail in subsection 2.5.1. Both fric-
tional force and torque are active when the two
particles are rotating in parallel and are sliding
along each other.
In general, the two particles are rotating together
2 with an angular velocity ω0 = ωn

0 +ωt
0, with the

tangential plane component

ωt
0 =

n × (vi − vj)

a′

i + a′

j

. (13)

Inserting ωi = ωj = ωt
0, from Eq. (13), into Eq.

(12) leads to zero sliding velocity, proofing that
the formulation is objective, i.e., independent of a
rotation of the system of reference.
Since action should be equaled by reaction, the
tangential forces are equally strong, but opposite,
i.e., f t

j = −f t
i, while the corresponding torques

are parallel but not necessarily equal in magnitude:
qfriction

i = −a′

in × f i, and qfriction
j = (a′

j/a
′

i)q
friction
i .

Note that tangential forces and torques together
conserve the total angular momentum

Lij = Li + Lj + mir
2
icmω0 + mjr

2
jcmω0 , (14)

with the rotational contributions Lα = Iαωα, for
α = i, j, and the distances rαcm = |rα − rcm| from

2Rotation can be either due to a rotation of the reference
system or because of a non-central collision.
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the particle centers to the center of mass rcm =
(miri+mjrj)/(mi+mj), see Ref. [13]. The change
of angular momentum consists of the change of
particle spins (first term) and of the change of
the angular momentum of the two masses rotat-
ing about their common center of mass (second
term):

dLij

dt
= qfriction

i

(

1 +
a′

j

a′

i

)

+
(

mir
2
icm + mjr

2
jcm

) dω0

dt
,

(15)
which both contribute, but exactly cancel each
other, since

qfriction
i

(

1 +
a′

j

a′

i

)

= −(a′

i + a′

j) n × f i (16)

and

(

mir
2
icm + mjr

2
jcm

) dω0

dt
= (17)

mij (ri − rj)
2 n ×

(

d
dt

vi −
d
dt

vj

)

a′

i + a′

j

=

mij

(

a′

i + a′

j

)

n ×

(

f i

mi

−
f j

mj

)

=

(a′

i + a′

j) n × f i ,

when the relations for force, angular momentum,
etc., as introduced above are inserted.

2.4.2 Rolling

For rolling resistance, a rolling velocity

v0
r = −a′

in × ωi + a′

jn × ωj , (18)

defined just in simple-minded analogy to the slid-
ing velocity [20], is not objective in general [9]
– it is objective, however, in the special cases of
(i) equal-sized particles [20] and (ii) for a particle
with radius ai, rolling on a fixed flat surface with
a′

jωj = 0.
Since the rolling velocity quantifies the distance
the two surfaces roll over each other (without slid-
ing) it is equal for both particles by definition. An
objective rolling velocity is obtained by replacing
the particle radii in Eq. (18) by the reduced ra-
dius, a′

ij = a′

ia
′

j/(a′

i + a′

j), so that

vr = −a′

ij (n × ωi − n × ωj) . (19)

This definition is objective since any common rota-
tion of the two particles vanishes by construction.

Furthermore, it is equivalent to Eq. (18) for a sin-
gle particle on a flat surface with a′

ij = a′

i and
ωj = 0. For the special case of equal sized parti-
cles, Eq. (18) and Eq. (19) differ by a factor of two
– the former accounts double for the rolling dis-
tance and velocity – so that Eq. (19) appears more
reasonable. A more detailed discussion of this and
alternative discussions and interpretations is be-
yond the scope of this paper, rather see [9] and
the references therein.
The rolling velocity will activate torques, acting
against the rolling motion, when two particles are
rotating anti-parallel with spins in the tangential
plane. These torques act against rolling and are
equal in magnitude and opposite in direction, i.e.,
q

rolling
i = −q

rolling
j = aij n×f r, with the quasi-force

f r. This quasi-force is computed in analogy to
the friction force as function of the rolling velocity
vr in subsection 2.5.2; the quasi-forces for both
particles are equal and do not act on the centers of
mass. Therefore, the total momenta (translational
and angular) are conserved.

2.4.3 Torsion

For torsion resistance, the relative spin along the
normal direction

vo = aij (n · ωi − n · ωj)n , (20)

is to be considered, which activates torques when
two particles are rotating anti-parallel with spins
parallel to the normal direction. Torsion is not
activated by a common rotation of the particles
ω0 = (ωi + ωj) /2, which makes the torsion resis-
tance objective.
The torsion torques are equal in magnitude and
directed in opposite direction, i.e., qtorsion

i =
−qtorsion

j = aij f o, with the quasi-force f o, com-
puted from the torsion velocity in subsection 2.5.3,
and also does not change the translational momen-
tum. Like for rolling, the torsion torques conserve
the total angular momentum.

2.4.4 Summary

The implementation of the tangential force com-
putations for f t, f r, and f o as based on vt, vr,
and vo, respectively, is assumed to be identical,
i.e., even the same subroutine is used, but with
different parameters as specified below. The differ-
ence is that friction leads to a force in the tangen-
tial plane (changing both translational and angular
momentum), while rolling- and torsion-resistance
lead to quasi-forces – and thus to torques only –
changing the particles’ angular, but not the trans-
lational momentum. For more details on tangen-
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tial contact models, friction, rolling and torsion,
see Refs. [3, 8, 9, 20].

2.5 The tangential contact model

The unique feature of this tangential contact
model is the fact that a single procedure (sub-
routine) can be used to compute either sliding,
rolling, or torsion resistance. The subroutine needs
a velocity as input and returns the respective force
or quasi-force. Below, the sliding/sticking friction
model will be introduced in detail, while the rolling
and torsion resistance then only have to be dis-
cussed where different from the sliding model, i.e.,
with respect to the material parameters and the
action of forces and torques.

2.5.1 Sliding frictional Model

The tangential force is coupled to the normal force
via Coulombs law, i.e. f t ≤ µsfn, where for the
limit case one has dynamic friction with f t = µdfn.
The dynamic and the static friction coefficients fol-
low, in general, the relation µd ≤ µs. The static
situation requires an elastic spring in order to al-
low for a restoring force, i.e. a non-zero remaining
tangential force in static equilibrium due to acti-
vated Coulomb friction.
If a repulsive contact is established, and thus one
has fn > 0, the tangential force is active. In
the presence of adhesion, Coulombs law has to be
slightly modified in so far that fn is replaced by
fn + kcδ. With other words, the reference crite-
rion for a contact is no longer the zero force level,
but it is the adhesive, attractive force level along
−kcδ. Coulombs law in the presence of adhesion
thus reads f t ≤ µs(fn+kcδ) for the static case and
f t = µd(fn + kcδ) for the dynamic, sliding case.
If a contact is active, one has to project (or better
rotate) the tangential spring into the actual tan-
gential plane, since the frame of reference of the
contact may have rotated since the last time-step.
The new tangential spring is:

ξ = ξ′ − n(n · ξ′) , (21)

where ξ′ is the old spring from the last iteration.
This action is relevant only for an already existing
spring; if the spring is new, the tangential spring-
length is zero anyway, however, its change is well
defined even for the first, initiation step. In order
to compute the changes of the tangential spring, a
tangential test-force is first computed as the sum of
the tangential spring force and a tangential viscous
force (in analogy to the normal viscous force)

f t
0 = −kt ξ − γtvt , (22)

with the tangential spring stiffness kt, the tangen-
tial dissipation parameter γt, and vt from Eq. (11).
As long as |f t

0| ≤ f s
C , with f s

C = µs(fn + kcδ), one
has static friction and, on the other hand, if the
limit |f t

0| > f s
C is reached, sliding friction is ac-

tive with magnitude fd
C = µd(fn + kcδ). (As soon

as |f t
0| becomes smaller than f d

C , static friction is
active again.) In the former, static case, the tan-
gential spring is incremented

ξ′ = ξ + vt ∆tMD , (23)

to be used in the next iteration in Eq. (21), and
the force f t = f t

0 from Eq. (22) is used. In the lat-
ter, sliding case, the tangential spring is adjusted
to a length which is consistent with Coulombs con-
dition

ξ′ = −
1

kt

fd
C t , (24)

with the tangential unit vector, t = f t
0/|f

t
0|, de-

fined by Eq. (22), and thus the magnitude of the
Coulomb force is used. Inserting ξ′ from Eq. (24)
into Eq. (22) leads to f t

0 ≈ fd
Ct − γtvt. Note that

f t
0 and vt are not necessarily parallel in three di-

mensions. However, the mapping in Eq. (24) works
always, rotating the new spring such that the di-
rection of the frictional force is unchanged and, at
the same time, limiting the spring in length ac-
cording to Coulombs law. In short notation the
tangential contact law reads

f t = f tt = +min
(

fC , |f t
0|

)

t , (25)

where fC follows the static/dynamic selection rules
described above. The torque on a particle due to
frictional forces at this contact is qfriction = lc

i ×f c
i ,

where lci is the branch vector, connecting the center
of the particle with the contact point.
The four parameters for the friction law are kt,
µs, φd = µd/µs, and γt, accounting for tangen-
tial stiffness, the static friction coefficient, the dy-
namic friction ratio, and tangential viscosity, re-
spectively. Note that the tangential force de-
scribed above is identical to the classical Cundall-
Strack spring only in the limits µ = µs = µd, i.e.,
φd = 1, and γt = 0. The sequence of computations
and the definitions and mappings into the tangen-
tial direction can be used in three dimensions as
well as in two.

2.5.2 Rolling Resistance Model

The three new parameters for rolling resistance are
kr, µr, and γr, while φd is used from the friction
law. The new parameters account for rolling stiff-
ness, the static rolling “friction” coefficient, and
rolling viscosity, respectively. In the subroutine
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called, the rolling velocity vr is used instead of
vt and the computed quasi-force f r is used to
compute the torques, qrolling, on the particles, see
above.

2.5.3 Torsion Resistance Model

The three new parameters for rolling resistance are
ko, µo, and γo, while φd is used from the friction
law. The new parameters account for torsion stiff-
ness, the static torsion “friction” coefficient, and
torsion viscosity, respectively. In the subroutine,
the torsion velocity vo is used instead of vt and the
projection is a projection along the normal unit-
vector. The computed quasi-force f o is then used
to compute the torques, qtorsion, on the particles.

2.6 Background Friction

Note that the viscous dissipation takes place in a
two-particle contact. In the bulk material, where
many particles are in contact with each other,
this dissipation mode is very inefficient for long-
wavelength cooperative modes of motion [21, 22].
Therefore, an additional damping with the back-
ground can be introduced, so that the total force
on particle i is

f i =
∑

j

(

fnn + f tt
)

− γbvi , (26)

and the total torque

qi =
∑

j

(

qfriction + qrolling + qtorsion
)

− γbra
2
i ωi ,

(27)
with the damping artificially enhanced in the spirit
of a rapid relaxation and equilibration. The sum
in Eqs. (26) and (27) takes into account all contact
partners j of particle i, but the background dissi-
pation can be attributed to the medium between
the particles. Note that the effect of γb and γbr

should be checked for each simulation in order to
exclude artificial over-damping.

3 Compaction Simulation Results

In this section, a compression test is presented,
where the particles are positioned on a square-
lattice in a cubic system with periodic boundary
conditions, in order to avoid wall effects. The sys-
tem is first allowed to evolve to a disordered state,
by attributing random velocities to all particles.
The density is then increased by slowly increasing
the particle size while the system volume V = L3,
with L = 0.025m, is kept constant. During the
simulation, the particles are growing and density,
coordination number and energies are reported.

3.1 Model Parameters

The systems examined in the following contain
N = 1728 particles with equal radii a. In the sim-
ulation, the radii change according to the relation

da

dt
= ga , (28)

with the growth rate ga = 2.10−7 ms−1, if not ex-
plicitly specified. The growth is stopped when a
target volume fraction ν = NV (a)/V is reached,
with the particle volume V (a) = (4/3)πa3. The
particle mass m(a) = ρV (a), with the material
density ρ, changes with the radius during the
growth period.

Property Symbol

Time Unit tu
Initial particle radius a0

Growth rate ga

Particle radius a(t) = a0 + gat
Material density ρ
Elastic stiffness k = k2

Plastic stiffness k1/k
Adhesion “stiffness” kc/k
Friction stiffness kt/k
Rolling stiffness kr/k
Torsion stiffness ko/k
Plasticity depth φf

Coulomb friction coefficient µ = µd = µs

Dynamic to static Friction ratio φd = µd/µs

Rolling “friction” coefficient µr

Torsion “friction” coefficient µo

Normal viscosity γ = γn

Friction viscosity γt/γ
Rolling viscosity γr/γ
Torsion viscosity γo/γ
Background viscosity γb/γ
Background viscous torque γbr/γ
Lennard Jones energy ε
Lennard Jones distance r0/(2a)
Lennard Jones cut-off rc/(2a)

Table 1: The microscopic contact model parameters.

A typical set of material parameters is given in
table 2. The choice of numbers and units is such
that the particles correspond to micro-meter sized,
(overly) soft aluminum spheres. The stiffness mag-
nitude (this is not the material bulk modulus, but
a contact property) used thus appears much too
small for this material – however, dependent on
the volume fraction (or the external) pressure, the
material deformation (overlap) can be realistic if
the simulations are performed so slow that rate ef-
fects are small and overlaps are not becoming too
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Symbol Values t-rescaled

tu 1 s 1µs
a0 0.5 µm
ga 0.2 µm/s 0.2m/s
a(t) = a0 + gat
ρ 2000 kg/m3

k = k2 10−7 kg/s2 105 kg/s2

k1/k 0.2
kc/k 1.0
kt/k 0.2
kr/k 0.2
ko/k 0.2
φf 0.05
µ = µd = µs 1
φd = µd/µs 1
µr 0.1
µo 0.1
γ = γn 2 10−13 kg/s 2 10−7 kg/s
γt/γ 0.25
γr/γ 0.25
γo/γ 0.25
γb/γ 0.10
γbr/γ 0.05
ε 0. 10−15 J 0. 10−3 J
r0/(2a) 0.5
rc/(2a) 1.5

Table 2: The microscopic material parameters used if not
explicitly specified. The third column contains those values
that are different due to rescaling of the unit of time, i.e.,
when seconds are read as µs.

large. A simple rescaling of time brings the ma-
terial parameters into the reasonable range – see
rightmost column in table 2.
Using the parameter k = k2 in Eq. (4) leads
to a typical contact duration (half-period) tc ≈
2.27 10−4 s, for a normal collision with γ = 0.
Accordingly, an integration time-step of tMD =
2 10−6 s is used, in order to allow for a ‘safe’ in-
tegration of contacts. Note that not only the nor-
mal “eigenfrequency” but also the eigenfrequen-
cies in tangential and rotation direction have to be
considered as well as the viscous response times
tγ ≈ m/γ. All of the eigenfrequencies should
be considerably larger than tMD, whereas the vis-
cous response times should be even larger, so that
tγ > tc > tMD. The discussion of all the effects due
to the interplay between the model parameters is
far from the scope of this paper, however.

3.2 Compression simulations

When compressing the system (by growing the
particles) the first quantity of interest is the den-
sity (volume fraction) ν. For a set of friction-

less hard spheres, the maximum volume fraction
is νmax ≈ 0.74, when all spheres are optimally
arranged on a crystal lattice. Random packings
can reach volume fractions between 0.63 and 0.69,
dependent on the degree of local crystallization.
When friction is switched on and also the other
force laws are used, much smaller volume fractions
are expected, see Fig. 3 below.
Before the results of the compression simula-
tions can be discussed, one first needs a criterion
whether a packing is stable and quasi-static or not.
From one compression simulation, the ratio of ki-
netic to potential energy, e = Ekin/Epot, and the
coordination number (number of contacts per par-
ticle) are plotted in Fig. 2.
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Figure 2: Energy ratio e and coordination number C plot-
ted as function of the volume fraction during the continuous
growth of the particles. The parameters are given in table
2.

Since the increase of C above two is correlated to
the rapid drop of e below values of order unity,
the densities are reported when e = 1, 10−1, 10−2,
and 10−3. For fixed friction coefficient, µ = 1,
see Fig. 3 (Top), increasing rolling- and torsion-
coefficients lead to lower and lower densities. For
the higher values of µr and µo, reorganization can
appear more violently during ongoing compaction,
leaving the system with somewhat higher density.
For fixed finite rolling- and torsion coefficients,
µr = µo = 0.1, see Fig. 3 (Bottom), the density is
close to the reference without tangential forces and
torques. With increasing friction coefficient µ the
density drops. But the highest values of µ ≥ 0.5
do not necessarily lead to lower densities, as one
could have expected. Again, the more violent re-
organization events could be responsible.
Based on the variation of the friction-, rolling-, and
torsion-coefficients, the lowest volume fraction to
be expected for a stable packing can be extrapo-
lated from Fig. 3 (Top) to be about νmin ≈ 0.42.
Too small friction coefficients are always related
to rather high densities, and large friction alone
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Figure 3: (Top) Densities (volume fractions) at which the
energy ratio reaches the values e as given in the inset. The
parameters are given in table 2, only the values of rolling-
and torsion-coefficients are varied while µ = 1 is kept con-
stant. The lines are a guide to the eye and the points at top-
left are the reference data for µ = µr = µo = 0. (Bottom)
Rolling and torsion-coefficients are fixed at µr = µo = 0.1
and the friction coefficient µ is varied. Lines and solid
points are the same as in the top panel. For both pan-
els, the open triangles are the data from Ref. [20], where
Eq. (18) was used, while in this study, Eq. (19) is applied.

is not sufficient for low packing density: larger
rolling and torsion resistance leads to smaller den-
sities. On the other hand, extremely high friction-
coefficients do not necessarily lead to lower densi-
ties due to a different reorganization dynamics.

3.3 Agglomeration with long range attraction

While a compaction procedure similar to the above
was discussed in Ref. [20], the focus is here agglom-
eration, i.e., the formation of stable, low density
clusters of adhesive, frictional particles – using all
the interaction laws discussed before.
With some attractive long range force, the mini-
mal packing density can be considerably decreased
relative to the lowest densities achieved with con-
tact forces only [20]. Due to the attractive forces,
small clusters form, collide with each other and

Figure 4: Snapshot from a simulation with long range
attractive forces at volume fraction ν = 0.21. The agglom-
erate is stable at this density, but does not fill the com-
plete system. The greyscale indicates the distance from
the viewer – more distant particles are darker. The lines
indicate the (periodic) boundary of the system.

form larger, fractal-like structures, see Fig. 4. The
attractive forces and the contact forces together
stabilize the agglomerate structure.

4 Conclusion

The present study is a summary of the soft par-
ticle force models involving elastic-plastic contact
deformation, adhesion, friction, and rolling- as well
as torsion resistance. On top, a longer ranged at-
tractive potential (like van der Waals) can be su-
perposed, leading to stable fractal-like agglomer-
ate structures. A set of exemplary parameters is
given and several criteria and rules for parameter
selection are discussed. Using friction and rolling-
/torsion-resistance, stable static packings could be
reached with rather low densities (volume frac-
tions), somewhat above νmin ≈ 0.4. When also
an attractive, longer ranging force was added, the
minimal possible density was in the range from
0.2 to 0.4, but more systematic studies are needed
here.
The set of contact models presented – even though
many simplifying model assumptions are made –
still involves a rather large number of parameters.
Some of them are less important for physical prop-
erties and behavior of the system than others – the
latter, most relevant parameters have to be iden-
tified and their interplay has to be better under-
stood. Eventually, the validation of the simulation
contact models and the corresponding parameters
the issue.
The measurement of low packing fractions in ad-
hesive, frictional fine powders is one of the pos-
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sible experiments to be examined in more detail
– a challenge for particle contact modeling. The
qualitative particle-modeling approach of the early
years has developed into the attempt of quantita-
tive predictive modeling.
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