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ABSTRACT: Cohesive-frictional and rough powders are the subject of this study. The behavior under isotropic
compression is examined for different material propertiesinvolving Coulomb friction, rolling-resistance and
contact-adhesion. Under isotropic compression, the density continuously increases according to Bauers expo-
nential law, see Ref. (Bauer 1999). However, at a certain pressure/density, the behavior qualitatively changes
and the system enters a second branch – again acoording to Bauers law, but with different parameters. In
conclusion, the material behavior changes between two states that are both, separately, described by a simple
exponential function. The phenomenology and origin of the transition between the two states is discussed.

1 INTRODUCTION
Cohesive-frictional and rough powders show pecu-
liar flow behavior due to the fact that several con-
tact forces/torques are equally important. Friction,
rolling-resistance, and contact-adhesion are active at
the same time and lead to macroscopic cohesion and
macroscopic friction that is not proportional to the mi-
croscopic contact parameters. Besides many experi-
ments, Molecular Dynamics (MD) or Discrete Ele-
ment Models (DEM), which solve the equations of
motion for all particles in a system, are used to un-
derstand these granular media. While experiments
and continuum theory deal with macroscopic material
parameters, for the particle simulations, the (micro-
scopic) contact forces are the only physical laws that
have to be defined beforehand (Luding 1998; Bartels
et al. 2005; Dintwa et al. 2005; Luding 2006). The
present simulation results are based on the contact
model in the paper by Luding (Luding 2006; Luding
2008).

For powders, as an example, the particle properties
and interaction laws are inserted into a discrete par-
ticle molecular dynamics and lead to the collective
behavior of the dissipative, frictional, adhesive many-
particle system. From the particle simulation, one can
extract, e.g., the coordination number or the pressure
of the system as a function of density (Bauer 1999;
Brendel et al. 2003; Morgeneyer et al. 2006; Oquendo
et al. 2009), but also velocity gradient, viscosity and
other macroscopic material properties.

In the following, normal interactions, like adhe-
sion and elasto-plastic contact deformations are used
as well as friction, rolling- and torsion resistance in

tangential direction. Examples of an isotropic com-
pression test are given for which the previously de-
fined contact model parameters are varied so that the
compaction process is affected. Especially of interest
is the pore-number plotted against the applied pres-
sure, which is an important ingredient for hypoplastic
type constitutive models (Bauer 1999; Oquendo et al.
2009).

2 SOFT PARTICLE SIMULATIONS

Particle simulations are referred to as discrete element
models (DEM). For details see Refs. (Cundall and
Strack 1979; Bashir and Goddard 1991; Herrmann
et al. 1998; Thornton 2000; Thornton and Zhang
2001; Vermeer et al. 2001; Lätzel et al. 2003; Luding
2006; Luding 2008). The elementary units of granular
materials are mesoscopic grains, which deform under
stress. Since the realistic modeling of the deforma-
tions of the particles is much too complicated, we re-
late the interaction force to the overlapδ of two parti-
cles. In tangential direction, the forces also depend on
the tangential displacement since the beginning of the
contact. If all forces and torques acting on a particle,
either from other particles, from boundaries or from
external forces, are known, the problem is reduced to
the integration of Newton’s equations of motion for
the translational and rotational degrees of freedom.

2.1 Normal Contact Force Laws

Two spherical particlesi andj, with radii ai andaj ,
respectively, interact only if they are in contact so that
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their overlap

δ = (ai + aj)− (ri − rj) ·n (1)

is positive,δ > 0, with the unit vectorn = nij =
(ri − rj)/|ri − rj| pointing from j to i. The force
on particle i, from particle j, at contactc, can be
decomposed into a normal and a tangential part as
f c := f c

i = fnn+f tt, wheren · t = 0. The tangential
force leads to a torque as well as rolling and torsion,
as discussed below.

The simplest normal contact force model, which
takes into account excluded volume and dissipation,
involves a linear repulsive and a linear dissipative
force

fn = kδ + γ0vn , (2)

with a spring stiffnessk, a viscous dampingγ0, and
the relative velocity in normal directionvn = −vij ·

n = −(vi − vj) ·n = δ̇.
This so-called linear spring dashpot (LSD) model

allows to view the particle contact as a damped har-
monic oscillator, for which the half-period of a vi-
bration around an equilibrium position with a certain
contact force, can be computed (Luding 1998). The
typical response time on the contact level is

tc =
π

ω
, with ω =

√

(k/m12)− η2
0 , (3)

the eigenfrequency of the contact, the rescaled damp-
ing coefficientη0 = γ0/(2mij), and the reduced mass
mij = mimj/(mi + mj). From the solution of the
equation of a half period of the oscillation, one also
obtains the coefficient of restitution

r = v′

n/vn = exp(−πη0/ω) = exp (−η0tc) , (4)

which quantifies the ratio of normal relative velocities
after (primed) and before (unprimed) the collision.
For a more detailed discussion of this and other, more
realistic, non-linear contact models, see Ref. (Luding
1998).

The contact duration in Eq. (3) is also of practi-
cal technical importance, since the integration of the
equations of motion is stable only if the integration
time-step∆tMD is much smaller thantc. Note thattc
depends on the magnitude of dissipation: In the ex-
treme case of an overdamped spring,tc can become
very large (which would render the contact behavior
artificial (Luding et al. 1994a)). Therefore, the use of
neither too weak nor too strong dissipation is recom-
mended.

Here we apply a variant of the linear hysteretic
spring model (Walton and Braun 1986; Luding 1998;
Tomas 2000; Luding 2006; Luding 2008), as an
alternative to the frequently applied spring-dashpot
models. This model is the simplest version of some

more complicated nonlinear-hysteretic force laws
(Walton and Braun 1986; Zhu et al. 1991; Sadd et al.
1993; Tomas 2000), which reflect the fact that at the
contact point, plastic deformations may take place
and attractive (adhesive) forces exist.

The adhesive, plastic (hysteretic) force-law was
introduced and described in detail in Ref. (Luding
2008), so that we do not repeat it here. Its parame-
ters arek1, k2, kc and the range of plastic deformation
relative to the particle diameter,φf .

2.2 Tangential Contact Force Laws
For the tangential degrees of freedom, there are three
different force- and torque-laws to be implemented:
(i) friction, (ii) rolling resistance, and (iii) torsion
resistance, as described in Ref. (Luding 2008). The
unique feature of this tangential contact model is the
fact that a single procedure (subroutine) can be used
to compute either sliding, rolling, or torsion resis-
tance. The subroutine needs a velocity as input and
returns the respective force or quasi-force. Below, the
sliding/sticking friction model will be introduced in
detail, while the rolling and torsion resistance then
only have to be discussed where different from the
sliding model, i.e., with respect to the material param-
eters and the action of forces and torques.

The material parameters for friction involve a static
and a dynamic friction coefficientµs andµd, a tan-
gential elasticitykt, and a tangential viscous damp-
ing γt. For rolling and torsion resistance, the prefac-
torsµr, andµo are used, similar to the friction coef-
ficient – and also a dynamic and a static coefficient
with the same ratio as for friction is defined. Further-
more, there is a rolling- and torsion-mode elasticity
kr andko, as well as the rolling- and torsion-viscous-
dampingγr andγo, as specified below in table 2.

2.3 Background Friction
Note that the viscous dissipation takes place in a two-
particle contact. In the bulk material, where many par-
ticles are in contact with each other, this dissipation
mode is very inefficient for long-wavelength cooper-
ative modes of motion (Luding et al. 1994b; Luding
et al. 1994a). Therefore, an additional damping with
the background can be introduced, so that the total
force on particlei is

f i =
∑

j

(

fnn + f tt
)

− γbvi , (5)

and the total torque

qi =
∑

j

(

qfriction + qrolling + qtorsion
)

− γbra
2

i ωi , (6)

with the damping artificially enhanced in the spirit of
a rapid relaxation and equilibration. The sum in Eqs.
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(5) and (6) takes into account all contact partnersj
of particle i, but the background dissipation can be
attributed to the medium between the particles. Note
that the effect ofγb andγbr should be checked for each
simulation in order to exclude artificial over-damping.

3 COMPACTION SIMULATION RESULTS
In this section, a “compression” test is presented,
where the particles are initially positioned on a
square-lattice in a cubic system with periodic bound-
ary conditions, in order to avoid wall effects. The sys-
tem is first allowed to evolve to a disordered state,
by attributing random velocities to all particles. The
density is then increased by slowly increasing the
particle size while the system volumeV = L3, with
L = 0.025 m, is kept constant. During the simula-
tion, the particles are growing and quantities like den-
sity (or pore-number), coordination number, energies
and pressure are reported. We tested for a few cases
(with low friction) that this leads to similar behavior
as keeping particles at constant size and reducing the
volume, however, this need more detailed study, espe-
cially for the larger values ofµ andµr.

3.1 Model System
The systems examined in the following containN =
1728 particles with equal radiia. In the simulations,
the radii change according to the relation

da

dt
= gra , (7)

with the relative growth rategr = 0.2, if not explicitly
specified. The growth is stopped when a target volume
fractionνmax, is reached, where the volume fraction is
defined asν = NV (a)/V , with the particle volume
V (a) = (4/3)πa3. The particle massm(a) = ρV (a),
with the fixed material densityρ, changes with the ra-
dius during the growth period. The volume fraction
changes with time according to the relation

dν

dt
=

3ν

a

da

dt
= 3νgr , (8)

which leads to the evolution of the volume fraction
ν = ν0 exp(3grt) as function of timet.

3.2 Particle and Contact properties
The particle and material parameters are summa-
rized in table 1 and a typical set of material param-
eters is given in table 2. The choice of numbers and
units is such that the particles correspond to spheres
with initial radiusa0 = 5µm, growing up to a maxi-
mum radius at volume fractionνmax = 0.75 of amax =
11.7µm.

The stiffness magnitude (this is not the material
bulk modulus, but a contact property) used thus ap-
pears small, but for small fragile materials it is not

Table 1:The units and the microscopic particle and con-
tact model parameters.

Property Symbol
Time Unit tu
Length Unit xu

Mass Unit mu

Initial particle radius a0

Growth rate gr

Particle radius a
Material density ρ
Elastic stiffness k = k2

Plastic stiffness k1/k
Adhesion “stiffness” kc/k
Friction stiffness kt/k
Rolling stiffness kr/k
Torsion stiffness ko/k
Plasticity depth φf

Coulomb friction coefficient µ = µd = µs

Rolling “friction” coefficient µr

Torsion “friction” coefficient µo

Normal viscosity γ = γn

Friction viscosity γt/γ
Rolling viscosity γr/γ
Torsion viscosity γo/γ
Background viscosity γb/γ
Background viscous torque γbr/γ

unreasonable. Note that – due to the contact model –
the effective stiffness and cohesion depend on the vol-
ume fraction and the external pressure. The material
deformation (overlap) behavior can only be realistic if
the simulations are performed so slow that rate effects
are small and overlaps are not becoming too large.

Using the parameterk = k2 in Eq. (3) leads to a
typical contact duration (half-period) of, initially,tc ≈
2.2710−4 tu = 2.2710−10 s, and at maximum size,
tc ≈ 8.1810−4 tu = 8.1810−10 s, for a normal colli-
sion withγ = 0. Accordingly, an integration time-step
of tMD = 210−12 s is used, in order to allow for a ‘safe’
integration of contacts. Note that not only the nor-
mal “eigenfrequency” but also the eigenfrequencies in
tangential and rotation direction have to be considered
as well as the viscous response timestγ ≈ m/γ. All
of the eigenfrequencies should be considerably larger
thantMD, whereas the viscous response times should
be even larger, so thattγ > tc > tMD. The discussion of
all the effects due to the interplay between the model
parameters is far from the scope of this paper, how-
ever.

3.3 Compression simulations

When compressing the system (by growing the parti-
cles) the first quantity of interest is the density (vol-
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Table 2:The microscopic material parameters used (Val-
ues in units of timetu, length xu, and massmu) if not
explicitly specified. The third column contains the values
in SI units.

Symbol Values SI units
tu 1 1µs
xu 1 10 mm
mu 1 1 mg
a0 5.10−4 5.10−6 m
a(t) = a0e

grt

ρ 2000 2000 kg/m3

k = k2 100 108 kg/s2

k1/k 0.2
kc/k 1.0
kt/k 0.2
kr/k = ko/k 0.2
φf 0.05
µ = µd = µs 1
µr = µo 0.1
γ = γn 210−4 210−4 kg/s
γt/γ 0.25
γr/γ = γo/γ 0.25
γb/γ 0.10
γbr/γ 0.05

ume fraction)ν or equivalently the pore-number

e =
1

ν
− 1 (9)

The second quantity is the pressure that is reached
during compression, plotted as a function of the den-
sity in Fig. 1 for two different combinations of fric-
tion and rolling-resistance parameters. Note that we
plot the dimensionless pressure that is approximately
the average overlap relative to the particle size, i.e., a
dimensionless pressure of 0.1 corresponds to an aver-
age contact deformation of order of 10%. Thus, at the
highest pressure, due to the wide distribution of con-
tact overlaps and forces, some particles are consid-
erably deformed and feel accordingly extremely high
forces.

During compression, the pressure remains at a very
small level, until it starts to increase strongly and non-
linearly from a certain volume fraction on. There are
two regimes: (i) an initial, nonlinear regime for small
pressures, and (ii) an almost linear regime for large
pressures. The slow simulations (red, solid lines) lead
to a somewhat smaller pressure than the fast simula-
tions (green, dashed lines), showing the dynamic ef-
fect of the rather fast compression rate withgr = 0.2.
However, since the difference between fast and slow
compression is only a few percent for low pressures,
and much smaller for high pressures, in this study, we
will present the fast compression results only.
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Figure 1:Dimensionless pressurepd/k, with d = 2a, plot-
ted as function of the density for simulations with (Left)
µ = 0.01, µr = 0.1, and (Right)µ = 1.0, µr = 0.01, and
the other parameters as in 2. The growth rate is given in
the inset, where the negativegr = −0.2 corresponds to un-
loading after the maximal density was reached.

3.4 Parameter Study

In the following, the friction coefficientµ and the
rolling- and torsion-resistance coefficientsµr = µo

are varied. The pore-numbere is plotted against the
pressure in Fig. 2 for various simulations.

From the top panel one can conclude that small
friction coefficients are always related to rather high
densities, i.e., small pore numbers. Larger and larger
friction coefficients, however, are not always suffi-
cient to guarantee a lower and lower packing density,
i.e., higher and higher pore number. The simulations
collapse forµ ≥ 1.

From the bottom panel, one observes similarly that
larger and larger rolling- and torsion-resistance leads
to smaller densities, i.e., larger pore-numbers. On
the other hand, extremely high rolling- and torsion-
coefficients do not necessarily lead to lower densities.
The simulations do not change anymore forµr ≥ 0.5.

The reason for this is a different reorganization dy-
namics. Increasing the friction (rolling resistance) co-
efficients, allows for higher pore numbers, however,
above a certain value, the packing is not stabilized
and finds other deformation modes to collapse. For
example, when sliding is avoided (largeµ), the pack-
ing still can roll into denser positions, and similarly,
when rolling is avoided (largeµr), the packing can
slide into denser configurations.

3.5 Analytical form of the porosity

In this subsection we fit the data from the simulation
with gr = 0.02, µr = 0.1, andµ = 0.01 using the ana-
lytical form

e(p) = e0 exp
([

p

hs

]ns

)

, (10)
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Figure 2:Pore numbere plotted against pressure for data
with gr = 0.2 andEk/Ep < 0.1. The particle and contact
parameters are given in table 2, only the values of the fric-
tion coefficient are varied at constantµr = 0.1 (Top), and
the values of rolling- and torsion-coefficients are varied at
constantµ = 1 (Bottom).

with the hardnesshs, the maximal pore-numbere0,
and a power law with exponentns.

Remarkably, the data are not fitted by one law only,
but by two. Specifically, by fitting in the pressure
rangesp ∈ [20 : 200], p ∈ [500 : 2000], we obtain the
parameterse0 = 0.605, 0.505, hs = 1620, 4750 N/m2,
andns = 0.766, and0.823, respectively, see Fig. 3.

We exclude the possibility that the two regimes
come from crystallization of the structure due to the
monodisperse particle size distribution, by studying
the pair-correlation function (Luding 2007) at dif-
ferent densities/pressures during compression (data
not shown). The short range order (up to 4-5 parti-
cle diameters) occurs at a pressure level well below
p = 100 N/m2, in Fig. 3. For higher pressures, in-
cluding the transition regime, there is no significant
change anymore of the established structure and thus,
the transition cannot be related to a transition in struc-
ture. We rather relate the transition between the two
regimes to the elasto-plastic contact model, as will be
discussed in more detail elsewhere. (Luding 2007).
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Figure 3:Pore numbere plotted against pressure (in units
N/m2) for data withgr = 0.02, µ = 0.01, andµr = 0.1.
The two lines represent the fits to the low and high pressure
regimes.

Given the good quality of the fit using two Bauer
exponential-laws, finally, we note that the power law
form proposed recently for more dynamic uni-axial
compression (Brendel et al. 2003; Morgeneyer et al.
2006), does not agree that well with our data.

4 SUMMARY AND CONCLUSION
The present study contains compression tests of ad-
hesive, frictional, rough powder particles. While ad-
hesion is not varied here, both friction and rolling-
resistance coefficients are changed systematically. All
other parameters are chosen with exemplary values,
since the full set of contact models presented involves
a too large number of parameters. The most relevant
parameters still have to be identified and their inter-
play has to be better understood.

The compression behavior is well fitted by two
exponential laws with different parameters, indicat-
ing two different contact mechanisms active dur-
ing compression. Using friction and rolling-/torsion-
resistance, stable static packings could be reached
with rather low densities (volume fractions) at small
pressure, somewhat aboveνmin ≈ 0.4.

Eventually, the quantitative validation of the simu-
lation contact models and the corresponding parame-
ters the issue. The measurement of low packing frac-
tions in adhesive, frictional fine powders is one of the
possible experiments to be examined in more detail –
a challenge for particle contact modeling.
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