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 1   Introduction 

 Collision detection is a basic computational problem arising in systems consisting of 
many objects, particles or atoms. It is fundamental to many applications, including 
computer games, physically based simulations and others. 
 The Discrete Element Method (DEM) is a very enticing simulation technique for 
computing the motion of a large number of particles in granular media [1]. Since a large 
number of particles imply a long computation time, for realistic systems, high 
performance computing is mandatory. The performance of computations relies on 
several factors, which include the physical model and the contact detection algorithm 
used. 
 The simple straight-forward approach works by checking each pair of particles for 
collision. This requires O(N2) collision checks for N particles and is not practicable. 
More efficient collision detection methods use a two-phase approach to reduce the 
computational costs [2]. 
 
 2   Data structures 

 There are four groups of the broad phase collision detection methods based on 
different data structures: spatial sorting methods [3], grids (or cell-based methods) 
[4,5], trees [6] and Delaunay triangulation [7,8]. The choice of algorithm depends on 
several factors (i.e. system size, volume fraction, homogeneity, boundary conditions, 
polydispersity, dynamics) and should be taken accordingly to the considered problem. 
It is not enough to know about the average theoretical complexity and memory 
consumption of the algorithm, but it is necessary to analyze how an algorithm works 
with existing data. For example, while for the simulations of monodisperse 
homogeneous systems the Linked Cells method [5] performs as O(N) and has near 
O(N) memory consumption for the dense systems, it becomes less efficient with 
increasing polydispersity [9] and consumes a lot of memory for the dilute and non-
homogeneous systems (if no special techniques of storing grid cells are used). In this 
work we briefly analyze three methods, which are related to different data structures: 
hierarchical grid, Delaunay triangulation and Octree. Our interest is to simulate dilute, 
intermediate and dense particles systems with mono-, bi- and polydisperse size 
distributions, therefore, the algorithm should perform well for all cases, so that it can be 
applied for a wide range of cutting edge physical problems: segregation, clustering, 
jamming, fragmentation, two-phase flow and others. 
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 2.1   Hierarchical grid 

 We propose a hierarchical hashed grid (HHGrid) algorithm [10] based on 
hierarchical spatial hashing, for details see Refs. [2,11]. The algorithm is adjusted for 
DEM simulations, by taking into account that all particles are in motion. We improved 
the collision scheme so that less particle pairs have to be checked and the number of 
checks is independent of hash collisions. Furthermore, we analyzed how to select good 
parameters according to the particle size distribution. Finally, several DEM simulations 
with realistic physical systems are performed as test-cases [10]. 
 The algorithm is robust, consumes O(N) memory for all type of systems, considered 
by us, performs as O(N) and most important, works well for systems with wide 
polydispersity. It can be easily used with periodic boundaries, be simply parallelized 
and can accommodate unbounded systems due to the hashing approach. Adding and 
deleting particles from the system is fast, therefore parts of huge industrial dynamic 
systems like conveyer belts, silos, or pneumatic conveying systems and especially 
systems with fragmentation can be simulated too. 
 
 2.2   Weighted Delaunay triangulation 

 Delaunay triangulation (DT) is another attractive data structure. First, it can be used 
not just for contact detection, but also for several purposes, i.e. strain calculation [12], 
space meshing and others. Second, it has an advantage that selecting parameters 
according to the radii distribution is not necessary, because the particle size is included 
directly in the calculation. Third, it consumes O(N), namely, (44-80)·N bytes of memory 
[13] (depends on storage data structure). In contrast, cell-based methods require to 
store a d-dimensional grid, whose size depends on the size of the system, so that 
additional techniques have to be used (i.e. hashing) to decrease memory consumption. 
 Simple Delaunay triangulation may miss contacts for polydispersity higher than 
~2.41 in 2D and 3D (for a proof see Ref. [14]). Weighted Delaunay triangulation (WDT) 
can detect contacts whenever a condition on the maximum overlap for the particles      
1 ≤ i ≤ N is satisfied [8], with no overhead against simple Delaunay: 

    2222 ,},...,1{),( jiji RRxxjiNji +>−⇒≠∈∀ ,  (1) 
where xi is the position and Ri is the radius of particle i. We can assume that (1) is 
always true since interparticle overlap is usually very small in realistic DEM simulations. 
 Despite the fact that DT has higher theoretical complexity than HHGrid, we found 
that a flipping algorithm for maintaining triangulation [15] increases performance 
dramatically in 2D. Unfortunately in 3D flipping can get “stuck”, and when this happens, 
triangulation should be rebuilt from scratch. The “stuck”-ing frequency highly depends 
on the input data [16]. Although the DT algorithm is not robust, because triangle 
orientation and “InCircle” tests are used, we found that the algorithm did not fail for our 
data and hope that the effect of nonrobustness can be neglected for DEM simulations. 
Furthermore DT cannot be easily parallelized and handling periodic boundary 
conditions is not as simple as for cell-based methods. Adding and especially deleting 
particles is expensive, so for handling dynamic systems WDT can be inefficient. 
 
 2.3   Octree 

 Tree data structures seem to be very similar to hierarchical grids, but there are 
many small details, that potentially cause problems, which set them apart, i.e. the 
existence of a root incurs computational and memory costs; access to neighbors is 
difficult; unbounded systems can not be easily accommodated; cell size (subcubes are 
used to generate the data structure) at different level cannot be easily adjusted to the 
particle size distribution. Within this study we use the pointer-based Octree algorithm, 
as described in Ref. [11], to compare performance with the two previous methods 
HHGrid and WDT. 
 



 3   Results 

 Here we present a performance comparison between different contact detection 
methods for molecular dynamics simulations of homogeneous systems with walls in 2D 
and 3D with soft spherical elastic particles. For the purpose of comparison for all 
methods a common C++ framework was developed. The CGAL external library was 
used for the construction of the WDT. 

 
Fig.1. Log-log plot: CPU time comparison in 2D, uniform polydispersity 1:10, 

 volume fraction 0.55 for N ≤ 5.105, 0.35 for N > 5.105. 
 

 As can be seen from Fig.1, the use of a flipping algorithm increases performance of 
WDT dramatically as compared to rebuilding the triangulation from scratch every time 
step. Note, that CGAL implies an overhead due to its interval arithmetic, but it is not 
more then 2-3 times, while the performance gain is ~12 times. The results (3D) in Fig.2 
show that HHGrid is fastest, while WDT (without flipping) is slowest, both with linear 
scaling, as in 2D (for N ≥ 4.104). Octree is slower than HHGrid, partly because no 
particular optimization was performed. 

 
Fig.2. Log-log plot: CPU time comparison in 3D, uniform polydispersity 1:10, 

 volume fraction 0.6. 
 



 4   Summary 
 Hierarchical grid contact detection is fast, flexible and memory efficient. It can be 
applied for a wide range of physical problems (see Ref. [10]). Its performance is 
governed by the choice of parameters, as described in Ref. [10]. WDT is not as fast but 
with use of the flipping algorithm it becomes very competitive – at least in 2D. WDT 
adjusts to the particles size distribution by itself and can be used for several purposes 
simultaneously. Whereas theoretically, the flipping procedure in 2D converges in at 
most O(N2) steps, we found that in practice it is ~O(N). The WDT flipping algorithm in 
3D has to be examined in more detail. We have not found advantages of the Octree 
data structure for contact detection in DEM simulations. A more detailed comparison, 
based on realistic physical systems with different N, high polydispersity and various 
volume fractions can be found in Ref. [14]. 
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