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Footprints in Sand: The Response of a Granular Material to Local Perturbations
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We experimentally determine ensemble-averaged responses of granular packings to point forces, and
we compare these results to recent models for force propagation in a granular material. We use 2D
granular arrays consisting of photoelastic particles: either disks or pentagons, thus spanning the range
from ordered to disordered packings. A key finding is that spatial ordering of the particles is a key
factor in the force response. Ordered packings have a propagative component that does not occur in dis-
ordered packings.
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Granular systems have captured much recent interest
due to their rich phenomenology and important applica-
tions [1]. Even in the absence of strong spatial disorder of
the grains, static arrays show inhomogeneous spatial stress
profiles called stress (or force) chains [2]. Forces are car-
ried primarily by a tenuous network that is a fraction of
the total number of grains.

A fundamental unresolved issue concerns how granular
materials respond to applied forces, and there are several
substantially different models. A broad group of conven-
tional continuum models (e.g., elastoplastic, etc.) posit
an elastic response for material up to the point of plastic
deformation [3]. The stresses in portions of such a system
below plastic yield have an elastic response and satisfy
an elliptic partial differential equation (PDE); those parts
that are plastically deforming satisfy a hyperbolic PDE.
Several fundamentally different models have recently been
proposed. The q model of Coppersmith et al. [4] assumes
a regular lattice of grains, and randomness is introduced
at the contacts. This model successfully predicts the
distribution of forces in the large force limit, as verified by
several static and quasistatic experiments and models
[4–6]. In the continuum limit, this model reduces to the
diffusion equation, since the forces effectively propagate
by a random walk. Another model [the oriented stress
linearity (OSL) model] of Bouchaud et al. [7] has a
constitutive law, justified through a microscopic model,
of the form szz � msxz 1 hsxx (in 2D) in order to
close the stress balance conditions ≠sij�≠xj � rgi . This
leads to wave-like hyperbolic PDEs describing the spatial
variation of stresses. In later work, these authors consid-
ered weak randomness in the lattice [8], and proposed a
convection-diffusion (C-D) equation. A model proposed
by Kenkre et al. [9] combines pure wave propagation
and diffusion in the telegraph equation. Recently, Luding

et al. [10] and Bouchaud et al. [11] have proposed models
that account for force fluctuations on both the length scale
of grains and on the length scale of stress chains.

The range of predictions among the models is perhaps
best appreciated by noting that the different pictures
predict qualitatively different PDEs for the variation of
stresses within a sample: e.g., for elastoplastic models an
elliptic or hyperbolic PDE; for the q model, a parabolic
PDE; and for the OSL model without randomness, a
hyperbolic PDE. The impact of equation type extends to
the boundary conditions needed to determine a solution:
e.g., hyperbolic equations require less boundary informa-
tion than elliptic equations. The importance of resolving
which of these models applies under what circumstances
was recently emphasized by de Gennes [12].

Here we explore these issues through experiments on a
2D granular system consisting of photoelastic (i.e., bire-
fringent under strain) polymer particles [6] that are ei-
ther disks or pentagons. By viewing the particles through
an arrangement of circular polarizers (a polariscope) it is
possible to characterize the stress on the particles [6]. We
record polariscope images with a digital camera that has
a resolution of 0.045 cm per pixel, whereas the typical
particle is slightly less than 1 cm. Near a contact, the
stresses within a particle are very nonuniform, and lead to
a series of light and dark bands in the polariscope image
intensity, I, with the density of bands increasing monotoni-
cally with the force at the contact. We exploit this fact to
produce a force calibration in terms of G2 � j=Ij2, where
we compute G2 as a function of position at the pixel scale.
G2 is sensitive to the density of bands, and hence to the lo-
cal contact force. We obtained a calibration of G2 vs mean
force on a disk by three mutually consistent ways: (1) by
applying known forces to the boundary of a small number
of particles and at the same time measuring �G2�, (2) by
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applying various uniform loads to the upper surface of a
large rectangular sample (width larger than height to avoid
the Janssen effect), and (3) by measuring the hydrostatic
force vs depth, z. The inset of Fig. 1 shows results for the
second technique. The body of Fig. 1 shows examples of
the third technique for two different samples, as well as the
calculated profiles for the hydrostatic pressure, rgz (lines)
using the known densities, r. Note that there are no free
parameters for these lines. These calibrations are effective
until the forces are so large that it is no longer possible to
resolve the bands clearly, a condition that does not occur
in these studies.

We used two different particle types, disks and pen-
tagons, in order to construct packings of varying degrees
of spatial order or disorder. For monodisperse disks, we
obtained a highly ordered packing. With bidisperse dis-
tributions, we modified the disorder in a controlled way
[13] characterized by the parameter A � �a�2��a2�. The
brackets refer to averages over the sample for powers of the
disk diameters a. To vary A, we used mixtures of two disk
diameters: a1 � 0.7 cm and a2 � 0.9 cm. Both types of
disks had a thickness of 0.64 cm. The pentagons had the
same thickness as the disks, and a side length of 0.7 cm.
A sample, typically �60 particles wide and 25 particles
high, was placed in a nearly vertical plane. To keep the
sample from collapsing, it rested against a smooth powder-
lubricated glass plate that was inclined from the vertical by
a small angle, &3

±, hence minimizing the friction with the
plate. The sample rested on a rigid metal base, and was
confined at the sides by rigid metal bars. The samples
were prepared by gently adding particles to the upper sur-
face until the full amount of particles was in place.

0 5 10 15 20
0

5

10

15

20

25

Disk  Exp.

Pentagon Exp.

Disk Theory

Pentagon Theory

0 1 2 3 4 5

0
1

0
2

0
3

0

(Dash Line) Pentagon=5.62

(Solid Line) Disk=5.45

F
o
rc

e
/L

e
n
g
th

 (
N

/m
)

Depth (cm)

Force/Length (N/m)

G
  

p
e

r 
P

ix
e

l 
(a

.u
.) Fit Line Slope (a.u.m/N)

2

FIG. 1. Hydrostatic pressure due to gravitational force alone
versus depth determined from G2. The expected slopes of the
stress-height curves are calculated from the known packing frac-
tion (g � 0.91 for disks; g � 0.75 for pentagons). Inset shows
the multiparticle G2 calibration by applying known loads to the
upper surface of the layer.

Figure 2a shows a typical raw polariscope image (I)
in the absence of any applied force, besides gravity. In
this image and the image shown in Fig. 2b, bright regions
correspond to large forces, and are the stress chains noted
above. The stress at the bottom of the sample is larger
than at the top due to gravitational head, and the mean
stress was a linearly increasing function of depth.

We measured the system point-force response by plac-
ing a known weight carefully on top of one particle in
the approximate center of the sample, producing a local
vertical force (Fig. 2b). We then removed the weight.
For the monodisperse and pentagonal packings described
below, we used only responses where the particles re-
mained undisturbed by this process. For polydisperse disk
samples, some small rearrangement of the surface grains
always occurred, however. For each realization, we com-
puted the square gradient, G2, at the pixel scale, and ob-
tained the stress difference between successive images of
G2 (Figs. 2c and 2d), containing only the response from
the point perturbation, with the linear hydrostatic head ef-
fects removed. We refer to this difference as DG2.

We repeated this process for many different rearrange-
ments of the particles, typically 50 times for each set of
particles. The images of Figs. 2c and 2d show that the re-
sponses for DG2 are complicated and differ significantly
from realization to realization. There are at least two
approaches to address the large variability among realiza-
tions: (1) Obtain information on an ensemble of realiza-
tions; or (2) perturb the system over a larger number of
grains in order to obtain a larger-scale averaging. Here
we pursue the first option. Below, we compare these aver-
age responses to continuum models which do not generally

FIG. 2. Images for pentagons showing (a) the force pattern due
to hydrostatic head. (b) The combined response to gravity and a
point source. (c) The response to a point force, DG2, obtained
by subtracting the G2 version of (a) from (b). (d) Similar to (c),
but with a different grain configuration. The bars correspond to
the length scale of 5 cm. Note that the images do not extend to
the side boundaries. Parts (a) and (b) are images of intensity, I ,
and parts (c) and (d) are images of DG2.
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FIG. 3. Mean response from DG2 for 50 trials of a 50 g point
force for (a) a uniform hexagonal packing of disks, (b) a bimodal
packing of disks with A � 0.99, and (c) pentagons. The size
of each image is about 18.0 3 13.5 cm2. The bars correspond
to a length of 5 cm.

contain any information on the particle size. However, the
particle size is the smallest length scale for which such
comparisons seem reasonable.

In Fig. 3, we show using grey scale the average re-
sponse, DG2, for monodisperse disks, a mixture of disks,
and pentagons, for a point load of 50 g. In Fig. 4, we show
more quantitative data for the force response, DG2, along
a series of horizontal lines at depths, z (measured from the
top). These data show clear differences depending on the
packing geometry. The monodisperse packing shows two
peaks emerging from the central source, broadening with
z, but remaining clearly identifiable. For the bidisperse
packing, the peaks are also present, but much less sharply
resolved. Data for the pentagons show no evidence for
wave-like stress propagation. There is some noisy struc-
ture for the pentagon response at the greatest depths. We
believe this is due to the fact that it is relatively difficult
to rearrange the interlocked pentagonal packing at large
depths; hence chains tended to appear there in nearly the
same places. In any event, this effect occurs only deep in
the pile.

A key question is then which model best describes these
results. The answer clearly depends on the amount of spa-
tial order in the packing. For the ordered (monodisperse)
packing, the C-D model proposed by Claudin et al. [8] pro-
vides reasonable agreement with the data, as shown by the
fit lines of Fig. 4. However, there are clear departures be-
tween the data and fits to the C-D model, since the central
peak persists to depths for which the C-D model predicts
no such feature, and the two side structures fall to the noise
level for h . 8d. The recent models proposed by Luding
et al. [10] and by Bouchaud et al. [11] predict the presence
of the central feature, and thus offer improved fits (details
to be discussed elsewhere).

For the disordered packings, best characterized by pen-
tagons, the one central peak might be described by either
diffusion or by elasticity. It is possible to distinguish which
of these is best from the width, W �z	, of the response
peak. For a diffusive model, W should grow as

p
z. For

an elastic layer, the response to a point force is a modified
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FIG. 4. Photoelastic response (force per length-stress in 2D)
to a point force vs horizontal distance, x, at various depths, z,
from the source. (a) For ordered disks, (b) for bimodal disks,
and (c) for pentagons. Also shown are fits of the response
to the convection-diffusion model. In all fits, the C-D model
parameters are c, the dimensionless velocity and D, the diffusion
coefficient in units of pixels (1 pixel � 0.45 mm). Inset part (c):
W vs z for the response for pentagons.

035506-3 035506-3



VOLUME 87, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 16 JULY 2001

Lorentzian with W ~ z for moderate z. We show in
the inset of Fig. 4c data (on log scales) indicating that
W ~ z over the experimental range when z . d, as in an
elastic response.

The pentagon results, including the linear dependence
of W on z, are consistent with recent experimental work
by Reydellet et al. [14] for 3D disordered packings,
with numerical simulations by Moreau [15], and with
the recent theoretical work of Bouchaud et al. [11],
who find a crossover to an elliptic response beyond a
length scale controlled by the level of disorder. Recent
experiments have also been carried out by Rajchenbach
[16], who used cuboidal blocks of photoelastic material
in a similar arrangement to that used here. These experi-
ments showed a parabolic outer envelope of the response.
Since it is difficult to know the nature of the intergrain
contacts and the extent of their order or disorder, it is
also difficult to place these measurements in the present
context.

To conclude, we have measured the force response
of 2D granular packings to local force perturbations.
There are large variations for any given response, and we
consider averages over many realizations. For packings
with strong spatial order, the mean response has a strong
propagative part, and convection-diffusion or more recent
models [10,11] give a reasonable description. As the
amount of disorder increases, the propagative component
diminishes, and the response is most like that of an
elastic material. Interestingly, the connection between
order or disorder and the force response may provide
a way to characterize the disorder in granular samples,
something that may be important for understanding
experiments where the amount of disorder of a packing
was clearly important [17]. These results raise additional
questions for future work such as the need to inves-
tigate the vector character of force propagation (e.g.,
forces applied at arbitrary angles to a surface, forces
applied in the interior). Another important issue con-
cerns the statistical variability that can be expected in a
single realization.
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