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MODELS AND SIMULATIONS OF GRANULAR MATERIALS

Stefan Luding, Theoretische Polymerphysik, Rheinstrafe 12,
D-79104 Freiburg, Germany
e-mail: lui@tpoly1.physik.uni-freiburg.de

Abstract

We study models for granular materials using both event driven (ED) and molecular
dynamics (MD) methods. In the MD simulations we implement linear as well as nonlinear
interaction laws. For multiparticle interactions we detect that MD calculations lead to an
anomalous energy loss. We elucidate this effect and the conditions under which it occurs.

As a toy-model for dissipative granular materials, we investigate a one-dimensional
column of beads undergoing external vibrations and display the cross-over from a
condensed to a fluidized state of the column. We find clustered states at high dissipation and
for a large number of beads. Recent experimental data support the appearance of a fluidized
regime at low dissipation and of a Feigenbaum-type bifurcation scenario at high dissipation.

Furthermore, we present a series of simulations on systems of smooth beads
enclosed in 2D boxes. We focus on the fluidized regime, where the height of the center of
mass of the system scales relative to the restitution coefficient €, the number of beads N, and
the typical velocity of the bottom plate. The comparison of MD and ED results leads to
impressive agreement, whereas the functional dependence differs from the results in 1D-
systems.

Using a MD algorithm we display the limitations of this numerical method. We show
that previously reported convection patterns obtained through MD may be due to
microscopic interactions. MD calculations often involve parameters which lead to large
contact times between beads and to large density fluctuations. In turn, they enhance the

occurrence of convection rolls, a numerical finding without experimental counterpart.
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dimension of the system

gravitational acceleration

number of particles in the system

amplitude of the sinusoidal motion of the bottom plate

frequency of the sinusoidal motion of the bottom plate

period of the sinusoidal motion of the bottom plate: T = 1/f

angular frequency of the sinusoidal motion of the bottom plate: w = 2mwf
dimensionless acceleration of the bottom plate: o = Aoooz/ g

restitution coefficient for the collision of two particles

restitution coefficient for the collision of one particle with the bottom plate
positive penetration depth of two particles during collision

effective dissipation parameter

effective mass for the collision of two particles: m,.q = mymo/(my+m,)
spring-constant of the elastic restoration

dissipative constant in normal direction

dissipative constant in tangential direction

exponent of non-linearity of the elastic restoration force
exponent of non-linearity of the viscous dissipative force
angular frequency for a linear interaction law: wq = (K/mred)l/ 2

dissipative constant for bead-bead (u = D) or bead-wall interaction (u = D,/2)
angular frequency of damped linear interaction: w = (oag -uz)l/ 2

molecular dynamics time-step

contact time

elasticity constant

viscosity constant

dimensionless dilatation

dissipation time (typical time-scale, in which the average energy is dissipated)
height of the center of mass

height of the center of mass at rest

distance vector from the center of particle i to the center of particle j, nj=ri-%

relative velocity, v;; = 7;



normal vector of contact, n;; = #;; / Il?ji
tangential vector of contact, £;; = (—niy]-,nf]‘-)
total energy

kinetic energy

relative energy

mean free path

average time between events

width of the container

number of beads per layer in a 2D system at rest

number of layers of a 2D system at rest



1. Introduction and Background

In nature we find numerous examples of non-cohesive granular materials like sand
and pebbles. In the industrial world powder processing is also of crucial interest. In recent
years much effort has been invested to understand the behavior of granular media.
Summaries on the present situation can be found, for example in [1-3].

Non-cohesive granular materials are characterized as assemblies of solid,
nonuniform particles, which interact via contact forces and are kept together by gravity. If
the contact between the particles is broken, their interaction ceases. Such systems, situated
halfway between solids and liquids, exhibit surprising properties; these properties reveal that
the granulates are being an intriguingly specific class of materials. The basic physics of these
materials is still not well understood [2,3]. Some of the fascinating features are displayed in
effects such as size-segregation [4-9], heap formation under vibration [10-13], and bulk
dilatation [14,15]. Those properties which resemble a fluid include convection rolls [16-18],
surface fluidization [19,20], and surface waves [18,20,21]. In granular media, we find
surprising sound wave propagation properties [22,23], as well as density wave formation
[24,25] or the so-called 'decompaction' [26] in dissipative granulates.

The a priori assessment of macroscopic parameters from the consideration of local
contact and dissipative interactions represents a difficult problem because of the high level
of disorder involved. Evidently, it is extremely difficult to probe into the dynamics of
granulated particles on scales comparable to their dimensions. Nonetheless great advances
have been made monitoring model systems on short scales [13,19]; model systems which,
for example consist of rather large spheres instead of extremely asymmetric grains. Above
all, such systems are by far more accessible than powders or sand, and they provide a means
for investigating the basic features in the complex behavior of real granulates. The
measurement of fundamental quantities such as the local densities and the energy transfer
between grains also requires more attention.

Numerical simulations [27-36] are tools to study complex dynamics, tools which
adequately complement the experimental findings [13,19,36-38], and the more analytical
approaches [39-43], and thus it is crucial to develop reliable computer algorithms that
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correctly reproduce the macroscopic phenomenology. Simulating granular media
realistically for dimensions D>1 is an arduous task. Among the many methods used we
address time-driven Monte-Carlo [34,44] and molecular dynamics (MD) simulations [45-
48] as well as event-driven (ED) algorithms [30-33,36,49]. We also mention cellular
automata methods [24,44] and random walk approaches [44,47].

At the moment the majority of simulations use molecular dynamic techniques [35]
which involve ad hoc microscopic assumptions like linear spring/dashpot interaction laws
[28,45,48], nonlinear interaction laws [52-57], hysteretic interactions [58-60], static as well
as dynamic friction [53,55-57] and also nonspherical geometries [5S1]. We first mention the
work by Cundall and Strack [28] who follow the motion of the particles via a molecular
dynamics scheme. Moreau and Jean [29,61] solve the problem numerically, by using a time-
discretization procedure to assess the systems' dynamics via a set of non-smooth equations.

Other procedures are event-driven, like the one described recently by Lubachevsky,
who presented an algorithm to create a random packing of billiard balls [30], and the
method of Bernu and Mazighi, who calculated the behavior of a horizontal array of beads
colliding with a wall [31]. McNamara and Young investigated the same model [32] and
discussed the "cooling" of one-dimensional granular media [33]. ED simulations, based on
binary collisions, are hampered by the fact that at a certain threshold of energy loss, the
frequency of collisions between the beads is bound to diverge and clusters will form. Thus a
description has to be elaborated for the occurrence of connected clusters [36,62].

Different simulation methods (i.e. MD as well as ED methods) were used to
investigate simple assemblies of interacting beads. The forces used in the MD simulations
can be related to the momentum restitution coefficient; the last quantity is of utmost
importance in calculations that focus on collisions of hard spheres (ED). A simple 1D toy
model shows that the appearance of anomalous behavior in MD simulations depends on
large fluctuations in the distances between beads, in their energy loss, and in the dilatancy
threshold, i.e. the connection to collective motion. This behavior is due to the MD model
forces acting on the beads and may subsist even at the limit of very 'hard' interactions. It
was called the "detachment effect” {63] because under certain conditions the particles
separate completely. This effect is different from the so-called decompaction evidenced in
2D dissipative granular systems [26]. Decompaction is due to the friction with the walls and
not due to the elastic properties of the material. It is important to notice that in spite of the
wealth of recently obtained computer results on complex systems, bench-mark experiments
with straightforward simulation algorithms are still rare. Recent publications [58,59,63]
discuss the specific contact laws which govern the dynamic constitutive behavior. Non-
linear hysteretic interaction laws have been proposed [58,59] and the computational studies

are compared with experiments of quasistatic arrangements. It seems that linear as well as
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non-linear interaction laws together with velocity dependent damping are not a reasonable
model for dry granular media [59]; therefore, we compare the MD method with an ED
procedure and discuss their differences. In MD simulations the contact time of two particles
is a parameter of preeminent importance, whereas in ED simulations the contact time is
implicitly zero. The effects stemming from the contact time in MD calculations may vanish
when we use ED simulations.

One may focus on the problem of fluidization [36,62,64], as opposed to problems
characterizing convection [45,48,65]. Convection is connected to a flow of mass, whereas
for fluidization the flow, averaged over time, may vanish. We note that the behavior of the
fluidified state is complex, especially when large fluctuations and large density gradients
occur. Fluidization may be readily observed by putting sand on a loudspeaker or on a
vibrating table [10,11,16,19,66]. A vibrating medium conveys energy to the sand which is
then dissipated through collisions among the grains. The density of the material is, even
under strongly dissipative conditions, reduced, so that the system can behave like a fluid in
many ways. Thus, under certain circumstances convection cells may appear or heaps may
form spontaneously [10,11,16]. When, for example, particles of different sizes are put on
the vibrating plate the larger ones tend to rise; this leads to a spatial segregation of the
particles according to the size of the particles and the geometry of the system [3]. However,
there are still open questions on the reasons for this effect; convection [67] as well as steric
effects [9,44] may cause segregation.

A convenient way to achieve the separation of convection and fluidization is to take
a basically one-dimensional model, i.e. a column consisting of N beads [36]. One-
dimensional models mediate between the one-bead problem in 1D [68-70] and situations
involving many beads in dimensions larger than one [13,22,28-30,34,46,64,71]. The one-
bead problem was studied extensively both from the experimental [69] as well as from the
analytical and simulational [68-70] points of view and many physical effects such as period
doubling can be found. Another way of studying fluidization involves using a 2-dimensional
model without shear forces and rotational motion [64], since these effects seem important
for the occurrence of convection and heaping.

A one-dimensional [36,62] and a two-dimensional model system [64] both with
more than one particle show the fluidization of vibrated granular materials, yet different
kinds of dimension-dependent behavior are found. The aim of such simple models is to have
both a transparent theoretical situation [49], as well as an experimentally viable arrangement
[62]. Consequently we present 1D and 2D situations which we analyse using ED and MD
simulations, the aim being to find the circumstances under which the results obtained
through the two methods agree. As we proceed to show, we find that the mean height of

the center of mass of the system, i.e. the potential energy, scales with respect to the
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restitution coefficient, to the number of beads and to the velocity of the bottom plate.

Recently, experimental evidence of spontaneous convection rolls was reported on
3D granular materials [12,18] as well as on 2D model media [13]. Based on MD simulations
two independent groups of authors [45,48] presented spontaneous convection in vibrating
granular materials; their calculations were related to effects found experimentally in hard-
sphere systems. MD simulations often use parameters which lead to contact times larger
than experimentally obtained and thus to large density fluctuations. The question arises as to
what extent MD methods accurately reproduce hard-sphere collisions, especially in
situations in which the systems consist of many particles. For a specific example, i.e. a
simple linear "spring-dashpot" microscopic interaction, the magnitude of the observed
convection depends drastically on the parameters of the MD simulation [64]. Convection
almost disappears when the contact time approaches its physical value. We interpret this
effect in terms of the anomalous energy dissipation and the large density fluctuations, called
"detachment effect" [63].

In Sec.2 we discuss the basic physical conservation laws and introduce the numerical
procedures used in this study. Using simple toy-models, the connection between both
methods is discussed in Sec.3. We devote Sec.4 to the investigation of a 1D vibrated model
system. In Sec.5 we concentrate on 2D systems where fluidization as well as convection

appears. Finally, we summarize and discuss our findings in Sec.6.
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2. Simulation Aspects

In this section the primary physical equations are discussed. Furthermore, different
simulation methods, i.e. event-driven (ED) and molecular dynamics (MD), are introduced.
Since problems with the computing time may occur in ED simulations if the collision

frequency is large we elaborate a method to account for the appearance of clusters [36,62].

2.1. Physical framework

A classical textbook in the field of the collisions of particles is Goldsmiths' IMPACT
[74]. Goldsmith follows the ideas of 'stereomechanics' to describe the collision of two
particles in terms of momentum and energy and to determine the final state of the system.
The linear and angular momentum laws for one particle are expressed by the vector

equations for the changes

t
Ap = Amy = mv — mv = JOC Fdt (1a)

Mm=1’m—[w0=J;°erdt . (1b)

m is the mass and [ is the moment of inertia about the axis of rotation of the body. v and w
are the linear and the angular velocities; r is the moment arm, F is a force, F,, is the
component acting on the center of mass, and ¢ is time. To satisfy Eq.(1a) let us assume a
time-dependent force, F;,(¢), acting on the particle during contact. The force changes the
momentum by Ap. Thus, one arrives at the condition for a constant Ap: the shorter the
contact time ., the larger F,,. Since the experimentally observed times of contact are
usually small one may neglect, in first order, small static loads such as weights.

We give the momentum conservation law as a vector

11
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where the sum goes over the i rigid bodies of the system. my is the total mass and

Vem = (1/mt0t)zi m;v; is the velocity of the center of mass (cm). The conservation of

linear momentum, Eq.(2), requires the forces acting during the collisions of objects to not
affect the motion of the center of mass of the system. Hence, the collisions of particles only
lead to a momentum exchange among the components of the system, but due to dissipative
effects, i.e. solid friction or plastic deformation, energy may be lost.

The elementary units of which granular materials are composed are mesoscopic
grains, whose surface is rough on the microscopic scale. Solid friction is the immediate
consequence: When two touching grains are at rest with respect to each other a finite force
Fy is needed to trigger relative motion (static friction), while when the grains move against
each other a finite force Fgy is needed to maintain the motion (dynamic friction). As a rule
Fq is less than F; furthermore, both Fy and Fg depend only on the normal force and are
independent of the relative velocity and of the area of contact (Coulomb law). The crucial
consequence of solid friction is that on the level of the elementary units, namely of the
grains, the system does not conserve energy. A further source of energy dissipation is the
plastic deformation of the grains due to the normal forces during collisions.

In order to account for the energy loss during collisions, it is convenient to
introduce the so-called restitution coefficient €, where e =1, and ¢ =0 correspond to
perfect elasticity and to complete plasticity respectively. In general the restitution coefficient
is material and velocity dependent. To describe the frictional properties of the contact
surfaces one may introduce the dynamic coefficient of friction ¢. ¢ = 0 and ¢ = o describe
the change in the tangential relative velocity of bodies with perfectly smooth and completely
rough surfaces respectively. In this study we assume mostly small ¢-values and thus neglect

the rotation of the particles.

We now turn to a discussion of the central collision of two spherical bodies with
masses my and my. The momenta PO just before and PV just after the collision in the

center of mass reference frame are given by:

P - my (V) = Ve ) = =1 (Vy = Ve ) = Myeg (V) = v2) (32)

P - my(Uy = Ve ) = =M (Up = Ve ) = Myeq(uy ~tp) (3b)

Myeq = Mymy [(my +my) is the reduced mass and v and u are the velocities just before and

12



2.1. Physical Framework

just after the collision. Using Egs.(3a) and (3b) together with the definition of the

momenium restitution coefficient
e =-PO/PO o () — 1))y - vy) (4)

we find the velocity of particle j after the collision

uj=vcm(1+a)—svj . (5)

The change in kinetic energy AEy;, for the central collision of two particles, expressed in
terms of the restitution coefficient and of the initial relative velocity v; —v, can be

calculated as:

AEy, = ED - ) 6)

I
l
™

%mred(l - 2)(\)1 - V2)2.

Obviously AEy;, vanishes for e = 1 (the elastic case).

One usually has to follow Egs.(2) and (6) for the simulation of granular media. A
convenient way to do this is to neglect the time particles are in contact. Following Eq.(5)
this leads to a macroscopic, ED procedure. Another possible way is to introduce contact
forces and thus to integrate Eq.(1a). This technique is commonly applied in molecular

dynamics simulations of different physical systems.

2.2. An event-driven procedure in 1D

For the sake of simplicity we first discuss the ED procedure in the one-dimensional
case. In Fig.1 we give an example for the one-dimensional model system. The bottom plate
is driven by a sinusoidal motion with amplitude Ao and frequency f (angular frequency
= 2mf); hence its position at time ¢ is:

zo(t) = Agsin(wt) . (7)

13



2.2. An event driven procedure in 1D

z (1)
20
3 (® Fig.1
Model system with a vibrating
. bottom plate; here three beads
z (t) = A sin(wt) are shown.

An important dimensionless parameter is a, the maximal acceleration of the bottom plate

divided by the acceleration of gravity g:

2
_ Agw ‘ (8)
8

o

In the ED simulation one monitors a sequence of events. Between events Newton's
equation of motion for each object is solved analytically. An object is an individual bead, the
vibrating bottom plate, or a cluster of beads such as a collection of beads in physical contact
and moving with the same velocity. An event is defined for an object either by a sudden
change in momentum, i.e. a collision, or by the taking off from the bottom plate when the
upward acceleration is greater than the gravity denoted by g. In 1D, the N beads are
numbered from the bottom starting with ¢ = 1; for the bottom plate we set i = 0. Each object
i follows its own trajectory between events because we assume dissipation to occur only
upon collision. Due to the one-dimensional nature of the model, the order of the beads
never changes and we can even dispense with accounting for the diameter d of the beads.
This fact permits the simplification of the notation in the 1D-simulations; we use diameter-
independent coordinates z;(f) connected to the diameter dependent coordinates 7; ()

through
zi() = ()~ (i-1d-d/2 . ©)

With At denoting the elapsed time since the time ¢, the position of particle i at time #y+At¢

is:

z;(At) = 2j o+ Vi oAl - %‘—g(At)2 , (10)

14



2.2. An event driven procedure in 1D

where z; o and v; g are the coordinates and velocities of particle i at time .
We now compute the time after the next event happens between object i and i-1.
Events occur whenever z;(Af)=z;_1(Af) and lead to a time step:
2,0 ~Zi-1

Ar; = 2070 oris 1 (11)
Vi, 0 ~Vi-1,0

The problem with the calculation of Ay, i.e. finding the root of z1(Af)=zp(A?), is solved
using a numerical root finding procedure that is based on both Newton's rule and Brent's
method [75].

Formally the event times Af; are stored in an event-time array T. If At; <0 the
objects move away from each other. If At; = 0 the particles are in contact, a case which will
be discussed later in this subsection. The positive Af; are now of interest the smallest of
which Afy,;, determines the occurrence of the next event. Once the next event is identified
we compute the positions and velocities of all objects at this time lo+Aly;y, carry out the
transformation corresponding to the event, and update the event-time array; then we look
for the following event.

The simulations take care of the energy loss in collisions through the restitution
coefficients ¢ and €ps for particle-particle- and particle-bottom plate collisions respectively;
furthermore, this is the only way we account for energy losses in ED simulations. In the
reference frame of the center of mass of a colliding pair with equal mass, the incoming
velocities are +V and -V and the outgoing velocities are -V and +eV. Using a matrix
formalism [31-33, 36], we find:

1-¢ 1+¢
Ui Vi1 > 2 (Vi) . (12)
( U ]=Ci—1,i( . ): 1re 1-¢ ( . }(l—z,...,N) N
] ] > 5 i

where v; and u; are the velocities of bead i just before and after the collision in the system's
frame of reference. Calculating u; leads to Eq.(5) directly with i = 2. A similar form also
holds for collisions with the moving bottom plate which is assumed to have infinite mass.
Bead 1 in the reference frame of the plate has a velocity V just before the collision and the
velocity -gpV after the collision. In the collision matrix scheme [31] it follows that

o Yo Lo 03w (13)
(uljzco’l(vlj{l”p “EPJ(W)

in the system's frame of reference.

15



2.2. An event driven procedure in 1D

We proceed by noting that in some regions of the parameter space, i. e. for high
dissipation, which corresponds to low e, or at times when the acceleration of the bottom
plate is small, the time intervals between the events may become very short. If a series of
such small time intervals occurs, the computing time, which is proportional to the number of
events, may become very large. In the following we show how to deal with this problem.
We focus on simulations for this with low restitution coefficients. We start with a column of
N =10 beads. As initial conditions we take an equidistant separation between beads of here
1 mm and a random distribution of velocities of -1 ms™! < vi<l ms™!. For the restitution
coefficients we let ¢ = 0.6 and ep =1, which is typical for aluminum beads and a bottom
plate made of glass. The trajectories of the beads are recorded as a function of time as well
as the times A«1) between events. The events are numbered sequentially: m = 1,2,3,... .
This situation is depicted in Fig.2. In the upper part of the picture we plot the actual
positions of the beads. The diameter of the beads is as noted before disregarded; the dotted

g 10 v T T I

g s :
~— ]
N 0 — ]
— : : |
N 0 2f ! ‘ S
| Py P b, pp P P> P ]

8 ~~ b P Re TR BN e b TN
{ () 10-“4 - b £t Te > ED e SN ~]

E N >
g - 5
N _

4 107° :
i 1 i i I ]

0.00 0.02 0.04

Fig.2:

Motion of 10 beads where the restitution coefficients are ¢ = 0.6 and ep =1 (see
text for details). The upper part displays the trajectories and the dotted line
indicates the bottom plate; the lower part gives the time intervals A7£":7-1)
between events.
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2.2. An event driven procedure in 1D

line represents the position of the bottom plate. Since the order of particles does not
change, the trajectory of one particle does not cross the trajectory of another, but the
slopes, i.e. the velocities, change abruptly at the time of a collision. The time intervals
A1) between events are given on a logarithmic scale in the lower part of the picture
and are represented by triangles. One should notice that a sudden decrease in the time
intervals between events is apparent in Fig.2 for ¢ = 0.044 s. Moreover, at this moment both
the distances between the beads involved in the events, Az; = z;-z; ;, as well as their relative
velocities, Av; = v;_1-v;, become very small with Av; > 0 before and Av; < 0 after a collision.
The event-driven algorithm obviously runs into a situation which is computationally very
time-consuming. Furthermore, it is of little physical interest to follow the procedure on such
short time and length scales, because when the times between events become very small,
our macroscopic description of the dissipation via & and €p becomes questionable.

A means of avoiding such problems is to introduce a cut-off-velocity v.. The idea is
to merge objects which after the event have a relative velocity |Au;| < v, into a cluster, while
at the same time one conserves the momentum of the center of mass. The description
therefore leads from independent objects before the event to a new object, a cluster, in
which the objects have zero relative distance between them and of course have the same
velocity after the event. We are justified in proceeding in this way by the results of Refs.[31-
33], in which it was found that in the case of high dissipation clusterization occurs; this
implies that there is a complete loss of relative momentum.

We choose v, to be orders of magnitude smaller than the typical velocity Agw of the
system with typical values of Ag = 10> m and f=20 s’l, which lead to Agw = 0.125 ms"l;

5o that Ve <<Agw. By varying v, we ascertained that

we usually take v, around 107 ms™
the specific choice of v does not change the results of the simulation, as long as v, and Agw
differ by orders of magnitude.

The shift in our point of view, consisting of replacing individual beads by clusters,
must be now supplemented by a procedure which determines how collisions of such clusters
with the bottom plate, with another individual bead, or with another cluster have to be dealt
with. For beads in contact or almost in contact with each other a collision with an external
bead leads to a cascade of events involving other inner beads. The basic idea is to take a
relative velocity scheme and assume that the next event in the cascade is the one for which
the relative velocity Av; = v;.1-v; is maximal. This procedure is based on the fact that, as
described above, we run into problems when using time differences to establish the order in
which the collisions happen. The algorithm that follow express this idea is described in

Appendix A.
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2.3. Event driven procedures for D>1

2.3. Event driven procedures for D>1

In this subsection we introduce an event-driven simulation method for dimensions
larger than one. For D>1 we are interested in systems where the times between events are
rather large; therefore, we do not discuss cluster-dynamics here.

In ED simulations the components of the system under analysis, the beads, evolve
independently unless an event takes place. An event is understood as a collision between
two particles or the collision of one particle with a wall: both situations are characterized by
a sudden change in particles' momentum.

In the previous subsection a simple ED algorithm was described which updates the
whole system after each event. Because of the small number of particles involved, the
procedure works quite well in 1D. The situation changes in higher dimensions, since one
then has to account for larger numbers of particles. A way to deal with the matter was put
forth in Ref.[30]. The ED algorithm implemented there does not update the state of the
system after each event. This requires a double-buffering data-structure where the 'old'
status, i.e. time, position, velocity, and partner, as well as the 'new' status, i.e. new time,
position, velocity, and partner, of each particle is recorded. If an event happens the 'new'
status becomes the 'old' one and the subsequent 'new' status has to be computed. This
computation is performed only for the particles involved in the collision, because only their
velocities changed. In the computation of the 'new' status, the first step is to find the
presumable, new colliding partner and to calculate the 'new' event time; the second step is to
compute the positions and velocities after this 'new' event. A 'mew' status might be
preempted several times due to collisions of the partners with other components in the
system. To make the algorithm more efficient it is possible to apply the so called 'delayed
update' method; this means postponing examination and update of the position and the
velocity of a particle until its next event; one can also store the event-times in an ordered
heap-tree which simplifies finding the next event. For a detailed description of the algorithm
see Ref.[30].

We implemented this algorithm with a few changes. First, we included for our
purposes the forces of gravity and the vibrating bottom plate since the calculations in
Ref.[30] were used to compute close-packed arrangements of spheres in the absence of
external force fields. Furthermore, we implemented the dissipation through the restitution
coefficient for collisions as we discuss in the following. We also found it expedient to work
with fixed sphere diameters and dispensed with the idea of dividing the container into

several sectors.
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2.3. Event driven procedures for D>1

In our ED simulations, all events which consist of collisions between two particles
occur at times which can be calculated analytically. The same holds true for collisions of the
particles with the lateral walls, whereas the event times for particle collisions with the
moving bottom plate have to be computed numerically. We use a root-finding procedure as
in our 1D ED simulations [36,62] for this calculation.

We assume dissipation to occur only due to collisions in the following; furthermore,
the dissipation in our ED simulations is only assumed to be be due to the normal component
of the relative velocity. This is the limiting case of perfectly smooth particles. The restitution
coefficient € thus determines the normal relative velocity after collision in the reference

frame of the center of mass: ul(j") = —-svl(j”). v;j and u;; denote the relative velocities before

and after the collision and the normal component is vl(j”) = n;vi; with vij =v; —v;, and njj is
the normal direction of contact. For the restitution coefficient ¢, for collisions of particle i

with a wall one has in similar fashion: ul(”) = —swvi(").

2.4. The molecular dynamics method

Contrary to the ED simulations, where one defines the momentum restitution
coefficient and then applies Eq.(5), we introduce elastic and dissipative forces and then
solve Eq.(1a). Note that the force acting on the selected particle in Eq.(1a), in general
depends on all other particles in the system and leads to a coupled integral-equation system.
In the so-called molecular dynamics calculations we use a fifth order predictor-corrector
algorithm [35] for integration (see Appendix B).

In the MD simulations we follow the dynamics of a system of N spherical particles
with diameters d; (i = 1, ..., N). d; equals d for simulations with equal radii, or d; is chosen
randomly from a homogeneous distribution of width w around d. In the 1D-simulations the
particles are placed on a vertical line Thus only the lowest particle interacts with the bottom
plate. In the 2D-simulations the particies are put into a container of width £ and infinite
height. One may use either periodic boundary conditions or horizontally fixed walls. The
bottom plate in 1D or the container in 2D may carry out a sinusoidal motion according to
Eq.(7). Two particles (a particle and a wall) interact when their relative distance rij i
smaller than the sum of their radii (the radius of the particle). hj = jt;j' and r; points from

the center of i to the center of j. Three forces are active in this regime, d; + d j > 2n;. First,

an elastic restoration force:
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2.4. The molecular dynamics method

O _ _K[1(d +d.)=r|n:s
fa' =-K|z(d;+dj) -1 |ny; (14)

where n;; = r;; [r;; is the normal direction of contact and K is the spring constant. Second, a

frictional force in the normal direction:
£ - "“Dnmn[vij'nij]nij , (15)

where v;; is the relative velocity of particles i and j, D,, is the normal dissipation parameter

and the normalized mass is m,, = 2m,.q4. Third, a frictional force in the tangential direction:
;9= “Dtmn["ij ' fi']fi' (16)

where ¢;; = (—ni)]’-,nfj-) is the vector m;; rotated by 90° and D, is the tangential dissipation

parameter. In our linear-model simulations we include the forces Eqs.(14) and (15) in 1D
and Eqs.(14), (15) and (16) in 2D; however, we neglect the rotation of the particles as well
as static friction.

We introduce non-linear interaction forces for a more general and accurate
description of collisions. The nonlinear elastic restoration force is expressed as an extension
of Eq.(14):

i 1
S = k3@ v dpy-rg] Py 17

€

and the nonlinear dissipative force is expressed as an extension of Eq.(15):
] Y
£ = -Dymy[v; mi|[3(di +dj) -1z ] my (18)

where, again d; + d i >2n;.

We find that the basic difference between the ED and the MD methods is the way
contacts are modelled. In ED simulations the time in which colliding particles are in contact
is ideally zero. This is quite different from MD simulations where the duration of a collision,
i.e. the time the beads are in contact, does not vanish and in fact turns out to be quite

significant.
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3. Collisions

In this section we describe the behavior of colliding particles in the absence of
gravitation. We compare the simulation methods introduced in the previous section and then
discuss the conditions under which both methods lead to comparable results.

3.1. Two particle collisions

We examine the collision of two identical spheres with radius d; = d; = d and mass
m; = m; = m. The corresponding equations for a collision with a wall can be found by setting
d; =0, and m; = . The vector of contact r;j is then replaced by the normal vector to the

wall r;, that connects the center of bead i with the contact point.
3.1.1 Collisions with linear interaction models

We consider the collision of two particles in 1D. The situation is modelled, in the

simplest case, by a linear spring and a linear dashpot (LSD), so that setting
)’é=f(’)/mi—f(])/mj with f(’)=fe(ll)+f;1(’), according to Eqgs.(14) and (15); the

differential equation holds for the (positive) penetration depth x = (1/2) (d; + dj) - rjj:
F+2ut+odx=0 . (19)

In Eq.(19), for the collision of two particles i and j, one has u =D, and w = NI

with myeq = mm; / (mi +m j) being the reduced mass. The solution of Eq.(19) is:

x(t) = (vo/®) exp(—us)sin (Gor) (20)
with the corresponding velocity:

x(t) = (vo /@) exp(~ w)[—usin (o) + cos((bt)] . 1)
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3.1. Two particle collisions

In Egs.(20) and (21) vy = x(0) is the relative velocity before collision and & = w/m% - uz a

damped frequency. The contact time is given by
le=m/o , (22)

because the interaction ends when x(7) < 0. The coefficient of restitution ¢ is defined by
e =-X(,)/ %(0), see Eq.(4), so that

e =exp(-nu/®) . (23)

From Eqs.(20) and (21) the maximal penetration depth x;,x can also be derived; it fulfills
the condition X(Zp,x) = 0, so that &t,,, = arctan(®d/u) = arcsin(é/w( ) and

Xmax = (Vo /®)exp(—pty,x )sin (Olmax) (24)
= (vo /o) exp[(- n/@)arcsin (®/wg)] -

For the case of low dissipation, i.e. wg >> p, this leads to fy,y = £./2 and to
Xmax = Vo /g - (25)

'The maximal penetration depth xp,,y in the case of, say, steel particles is much smaller than
the particle diameter. In our linear model X, is proportional to vg, see Eq.(25). In the case
of high velocities (which occur for small dissipation and strong agitation) one obtains for
fixed wg, i.e. fixed K, rather large x,x-values; this is a problem in the linear model
underlying Eq.(25). K is a function of the Young modulus and the Poisson ratio, which are

inherent in the material and thus establish ¢, for the linear model and for a given material.
3.1.2. Collisions with nonlinear interaction models

Linear interactions are not accurate descriptions for rigid bodies, since the surface of
contact generally depends on the compression. Thus we consider, again, the collision of two

particles in 1D and use a nonlinear spring and a nonlinear dashpot. Setting
¥= f(’)/mi ——f(f)/mj with f®) - fe({) +fn(l) according to the (non-linear) Egs.(17) and

(18) the differential equation holds for the (positive) penetration depth x:
i+ 2w +odx™P o (26)

On phenomenological grounds, i.e. to obtain constants in units of the Young modulus
[kg mls?=N m'z] and of the viscosity [kg mlst=Ns m'z] we set K=Ed'"™P and
u=D, =nd1'Y/(2mred) and thus the following general compression-dissipation equation
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3.1. Two particle collisions

results:
y B
Mg+ nd@-) i+ Ed(%} x=0 . 27)

Here E and n are dependent on both material and shape; E depends on the Young modulus
and the Poisson ratio, while v} depends on both the compression and, in general, also on the
shearing viscosities. Note that the channel of energy loss in Eq.(27) is only viscoelastic; thus
neither a plastic, permanent deformation nor a loss due to residual vibrations stored in the
spheres after collision are included. Furthermore, the nonlinear terms are formulated as
functions of (x/d), where d is the diameter of the beads, in order to keep the structure of the
equation close to that of Eq.(19). As we proceed to show several models used in the
literature are special cases of Eqs.(26) and (27). The simplest form (B =y =0) connects
Eq.(26) with Eq.(19). For two spheres Hertz calculated the elastic interaction parameter £
due to a symmetrical deformation; in fact he found B = 1/2 [73]. Various recent studies used
this interaction law [50,53,84] together with a linear loss coefficient (y = 0). Kuwabara and
Kono [83] generalized the Hertz argument to deal with viscoelastic compression dependent
loss; they obtain y = 1/2. Taguchi [81] extended the expression by including a nonlinear
dependence of the dissipation on the velocity. In Appendix C we present scaling arguments
which permit estimations from Eq.(27), at the limit of low dissipation, the dependence of
the momentum restitution coefficient & on the initial velocity vy,

Eq.(C2) of Appendix C, with § = 1/2 and y = 0 reproduces Hertz' equation. One has
E = Y/ (3(1-52)) where Y is the Young-modulus and & is the Poisson-ratio. We calculate
the order of magnitude of f, for steel beads of diameter d=1.5mm. We use
Y=2.06x 1011Nm'2, G=0.28 and m =1.38x107> kg for steel and obtain a contact time
of 1, =4.6x 1()'63, for an initial velocity of Ims™' when dissipation is ignored; for
aluminum, for which one has ¥ =0.71x101'Nm™2,5 = 0.34 and m = 0.479 x 10~ kg one
again obtains a contact time #, of around 4.6 x10°%s. This estimate is less precise because
of the large dissipation of aluminum beads. We note that Hertz' expression, valid for low
dissipation, shows a weak dependence of 7, on the velocity, i.e. Io <V, s,

Furthermore, we stress the fact that once a reasonable ¢, value is chosen, one can
model the dynamics using even simple LSD interactions. This is the idea behind a significant
number of works on the problem. In the following, we shall mainly use the simple LSD
interaction laws.

Choosing a pair of values appropriate to the material for ¢ and t. fixes the
parameters u and wg in Eq.(19) unambiguously. Thus for spheres made of steel & = 0.9; for
spheres with diameter d = 1.5 mm we use f = 4.6 x 10"s which leads to wp =6.8x% 10°s71
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3.1. Two particle collisions

and to u=2.3 x10*s™%. For aluminum & = 0.6 so that using . = 4.6x107%s one roughly
has wg =6.8x 10°s7t and w~1.1x10%s™L. These values for wp and w are much larger than
what has been commonly used in earlier simulation approaches and lead, for an initial
velocity vg =1ms}, to a penetration depth of x .. z1.5x10'6m, which means 0.1
percent of the diameter. Other simulations [45,48], both with a different size and time
scaling, use wy- and p-values which lead to a penetration depth of a few percent of the
particle's diameter for particle velocities in the order of magnitude of the maximum velocity
of the vibrating box vy = Aqgw. Note that taking a very low value for 7, requires involved
computing power. The problem is knowing whether it is of much importance to use such

low contact times. We address this question in the following.

3.2. Many particle collisions (the 'Detachment Effect’)

We are now interested in probing into the collective behavior of arrays of beads in
simple one-dimensional toy-models. In this subsection we neglect gravitational effects and
discuss the collision of an array of beads with a static boundary or with other beads. This
situation is interesting since it allows us to compare MD results with those obtained using
the ED algorithms [31,32,36,49,62].

In Figs.3(a), 3(b) and 3(c) we plot the results of MD simulations for N = 10, ¢ = 0.9,
Vo= -0.2ms™! and le =7%10%s. The y-axis representss the reduced height, see Eq.(9).
Given € and 7, the values p and w are obtained using Eqs.(22) and (23); w and w fix via
K=m.4 co% and D, =u, the parameters to be used for binary collisions. In Fig.3(a) we
start from an initial separation between neigboring particles of 53 = 0 m; in Fig.3(b) we use
5o = 10"%m and in Fig.3(c) we use sy = 10°m. In Figs.3(d), 3(e) and 3(f) we plot the results
of ED simulations with N = 10, & = 0.9 and vy = -0.2ms™}; we again use sy = 0 m [Fig.3(d)],
5o = 10"%m [Fig.3(e)] and s¢ = 10°m [Fig.3(f)]. For ED simulations the contact time ¢, is
zero. Comparing Figs.3(a) and 3(b) with 3(d) and 3(e) respectively shows that the outcome
of MD simulations differs from the one for ED in the case of very small initial separations;
the final velocity of the particles' center of mass (cm) turns out to be larger in MD
simulations; further on the interparticle separations after the collisions are relatively ordered
for ED and quite disordered for MD simulations. Evidently this finding may be a means to
check the computational methods experimentally. On the other hand, for sufficiently large
initial separations [see Figs.3(c) and 3(f)] MD and ED simulations lead to qualitatively
similar results. We also note that the ED procedures lead to similar results both for sy > 0

and s = 0 whereas the situation is different for MD.
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3.2. Many particle collisions (the 'Detachment Effect’)
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Fig.3:

(a) MD trajectories of the centers of N =10 particles which collide with a fixed
boundary. Here £ = 0.9, 7, = . 7x107s, vo = -0.2ms™", and So = U0 m. The positions
are in reduced units, Eq.(9).

(b) The same as in Fig.3(a) but with s = 10°m.
(c) The same as in Fig.3(a) but with sy = 10~ m. Note the different axes.

(d) ED trajectories of the centers of N =10 particles; the parameters are as in
Fig.3(a); especially s = 0 m.

(e) The same as in Fig.3(d) but with s = 10°%m.
(£) The same as in Fig.3(d) but with s, = 10>m. Note the different axes.
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3.2. Many particle collisions (the 'Detachment Effect')
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Fig.4:

(a) MD trajectories of the centers of N =10 particles which collide with a flxed
boundary. Here = 1/2 and y = 0 in Eq.(27) such that s =0.86 and 7, = = 6x107%
for one binary collision with a relatwe velocity of 0.2 ms™L. All partlcles have the
same initial velocity vg = -0. 2ms ™ and So =0 m. The positions are in reduced
units, Eq.(9).

(b) The same as in Fig.4(a) but with s = 10°m.

(¢) The same as in Fig.4(a) but with s = 10"°m. Note the different axes.

(d) ED trajectories of the centers of N = 10 particles with ¢ = e(u) = 1-0.1 w02 (with

u=v, measured in units of 1ms™); the parameters correspond to Fig.4(a);
especially s5 = 0 m.

(e) The same as in Fig.4(d) but with sy = 10°m.
(f) The same as in Fig.4(d) but with s, = 10" m. Note the different axes.
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3.2. Many particle collisions (the 'Detachment Effect’)

In Figs.4(a-f) we show the same set of simulations, but here we use a non-linear
interaction law (see Figure caption for details). Comparing Figs.4(a) and 4(b) with 4(d) and
4(e) respectively we find that the outcome of MD simulations differs from the one for ED in
the case of very small initial separations; the final velocity of the particles' cm, as above,
turns out to be larger in MD simulations and the interparticle separations after the collisions
are relatively ordered for ED and quite disordered for MD simulations. For sufficiently large
initial separations [see Figs.4(c) and 4(f)] MD and ED simulations lead to qualitatively

similar results.

In Figs.5 and Figs.6 we present a distinct situation where no wall is involved, i.e. we
let four beads, with an initial velocity of vy = -0.2 ms™! and an initial separation s, coming
from the top collide with one other bead, with an initial velocity of vo=0.2ms’], coming
from the bottom. As above, the labels (a), (b) and (c) correspond to MD , the labels (d), (e)
and (f) correspond to ED results (see figure captions for details). In Figs.5(a-c) we use a
linear interaction model, [Eq.(19)], whereas for the simulations of Figs.6(a-c) we use a non-
linear interaction model [Eq.(26)]. In Figs.5(d-f) the restitution coefficient is taken to be
constant whereas in Figs.6(d-f) we use a velocity dependent restitution coefficient. The
parameters for MD simulations are chosen so that both, ED and MD methods lead to the
same restitution coefficient for pair collisions, i.e. € = 0.9 in Fig.5 and e = 1 - 0.1 Vo 175 4
Fig.6. Comparing Figs.5(a)-(c) with 5(d)-(f) respectively, and comparing Figs.6(a)-(c) with
6(d)-(f) respectively we find that the outcome of MD (a)-(c) differs from that of ED
simulations (d)-(f) only in the case of very small initial separations. As above the
interparticle separations after the collisions are ordered for ED and quite disordered for MD
simulations. For sufficiently large initial separations [see Figs.5(c) or 6(c), and 5(f) or 6(f)]
MD and ED simulations lead to qualitatively similar results independent of the interaction
laws used. Comparing Figs.5(a) and 6(a), note that the reduced trajectories of the four
upper particles initially coincide since here sq = 0, we find a difference between linear and
non-linear interaction laws. The beads are less separated after the collision in the case of
non-linear interactions, i.e. the second bead, counted from the top, is less separated from

the cluster.
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3.2. Many particle collisions (the 'Detachment Effect’)
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Fig.5:

(a) MD trajectories of the centers of N =5 particles, four of which are moving
downwards with v = -0.2 ms™, which collide with one particle, moving upwards

with vy = 0.2 ms™L. Here ¢ = 0.9, f.=0.7x107s and the separation of the upper

four particles is sy = 0 m. The positions are in reduced units, Eq.(9).
(b) The same as in Fig.5(a) but with s, = 10™m.
(¢) The same as in Fig.5(a) but with sy = 10m.

(d) ED trajectories of the centers of N =5 particles; the parameters correspond to

Fig.5(a); especially sg = 0 m.

(e) The same as in Fig.5(d) but with s, = 107%m.
(f) The same as in Fig.5(d) but with s = 10m.
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(a) MD trajectories of the centers of N = 5 particles, four moving downwards with
vy =-0.2 msl, which collide with one particle, moving upwards with
Vo = 0.2ms™!. Here f=1/2 and y =0 in Eq.(27) such that £ = 0.86 and .= 6x
10™s for one binary collision with a relative velocity of 0.2 ms™!. The separation of
the upper four particles is sg = 0 m. The positions are in reduced units, Eq.(9).

(b) The same as in Fig.6(a) but with s = 107m.
(c) The same as in Fig.6(a) but with sy = 10”m.

(d) ED trajectories of the centers of N = 5 particles; the parameters are as in Fig.6(a);
especially sg = O m.

() The same as in Fig.6(d) but with s, = 10"m.
(f) The same as in Fig.6(d) but with s, = 10 m.
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3.2. Many particle collisions (the 'Detachment Effect’)

3.2.1. The energy loss during collisions

To be more quantitative we introduce the effective restitution coefficient for many
particle collisions through e.p = ./E;/Eq , where Ep and Ey denote the initial and final

energies. Furthermore, we define the relative kinetic energy, also called 'granular

N .
temperature' [42], through E. =%-Ei=1ml-(vi —vcm)z; E.e1 is also a measure of the

typical separation of the beads after rebound.
In Fig.7(a) we plot €4 obtained from MD simulations [similar to those presented in
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Fig.7:

(a) Linear logarithmic plot of the effective restitution coefficient geff @s a function of
0 =5y /vol. - Here the MD calculation involved N = 10 particles colliding with a

fixed boundary. We have & = 0.9 and d = Imm, while Vg and [, are given in the
insert. The dashed line indicates the result of the LRV-procedure.

30



3.2. Many particle collisions (the 'Detachment Effect’)

Figs.3(a-c)] as a function of the parameters: initial separation Sp, initial velocity vy and
contact time £.; we rescale the axes so that the ratio of the external time beween events
$o/vo to the internal contact time ¢, shows up, i.e. we set G = so/(vote). In Fig.7 we have
N=10, d=1mm and €=0.9. The initial velocity Yo is varied between 14 ms™! and
0.008 ms™; t is varied between 2.2x107s and 2.5x10°%s. For each pair (v, f.), Sq is varied
between 10°m and 10m. In Fig.7(a) we plot e.g as a function of o. We find that all
results scale; they lie on a universal curve which only depends on . We also mention that a
simulation with random initial separation, i.e. each particle i at position z; = isq is shifted by
a random value taken from the interval between -sy/2 and sg/2, also falls on the same
curve. Two features are proeminent: first, when o << 1 [compare to Fig.3(a)] the energy
loss is very small. This leads to large interparticle distances after the collision with the plate,
a phenomenon which we call detachment effect. Second, for o >> 1 [compare to Fig.3(c)]
the MD solution gets close to the ED result [compare to Fig.3(f)] and the energy loss turns
out to be only slowly dependent on o [right side of Fig.7(a)]. The ED procedure leads to
Eeft = 0.34120.002 [the dashed line in Fig.7(a)] for various 8o values (sg =0, 10'7, 1076,
10, 104, 1073, and 102 m), N=10 and ¢ = 0.9. We varied vy between 20 ms™! and
0.01ms™L. Asa general remark, we note that the ED procedure [36,62] leads to practically
So and vy independent ¢, and we find that e g is considerably smaller than e. Contrary,
MD simulations lead to an e larger then ¢ for o >> 1.

Using MD methods we now analyse the case of a column with zero initial separation
(cluster) colliding with a wall and look into the energy loss as a function of both intern'll (s,
t.) and external (V) parameters. In Fig.7(b) and 7(c) we set so=0m, vy =0.2ms™ and
1. =0. 2x10™s and vary N and . In Fig.7(b) we plot the effective dissipation 1 - Eeff ON
double-logarithmic scales as a function of N for different ¢; we find that 1 - gt depends
nonlinearly on the number of particles and that the energy loss decreases with increasing N.
This is a rather surprising feature. In Fig.7(c) we plot the E../Eg where E_.; is the relative
energy and Ey is the kinetic energy after collision. The simulations are the same as in
Fig.7(b). For N=10 and & = 0.6 we find, as an example, E../E¢ to be 0.056. This means
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3.2. Many particle collisions (the 'Detachment Effect’)
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Fig.7:
(b) Log log plot of 1 - e as a function of N for sy = 0, vy = 0.05 ms™ and 1. = 0.2x
10™4s. N varies from 1, 2,5, 10, 20, 50 to 100, and & varies from 0.6, 0.8, 0.9, 0.95

to 0.975 from top to bottom for each N value. The dashed lines indicate the slopes
-0.5 (top) and -0.315 (bottom).

(c) Plot of Eoj/E} as a function of N. E, is the relative energy after the collision
and Ey is the kinetic energy after collision. The parameters are as in Fig.7(b). The
solid triangles correspond to € = 0.6.
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3.2. Many particle collisions (the 'Detachment Effect’)

We also determined the interaction time, #, for the whole column with the wall from
simulations with sp = 0 m. We find that #,_is proportional to the number of beads and to the
contact time; hence # = Nt.. This is consistent with viewing the cluster as a series of elastic
springs. Furthermore, we find that £, « v(z); by varying ¢ at the limit of low dissipation,
€ > 0.9, we find that e o . Thus the detachment effect is the result of model-dependent

dissipation properties. Inside the column the energy is dissipated in interactions involving
particles with high relative velocities. Since during the collision with the wall the column of
beads is compressed, the energy is dissipated preferentially between beads at the boundary
of the compressed and the relaxed regions. Maintaining the other parameters, the size of the
boundary area depends very little on N and leads to the nonlinear dependence on N. Even in
the case of very high dissipation, i.e. N =10 and ¢ = 0.6, detachment occurs, while ED
simulations (Sec.2.2 and Appendix A) lead to an gerr Which virtually vanishes, ie. to a

clustered column after collision.
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Fig.8:

(a) MD trajectories of the centers of N = 10 particles which collide with a fixed
boundary. Here ¢ = 0.9, ¢, = 0.7x10™s, vo=-0.2ms™! and Sp = 0m. The positions
are in reduced units, Eq.(9).
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3.2. Many particle collisions (the 'Detachment Effect’)
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Fig.8:
(b) Plots of the velocities v; of the particles during the collision presented in
Fig.3(a).

(c) Here we plot the relative velocities Av; = Vi - vi.p of the particles during the
collision presented in Fig.3(a). Avy = v{ is the velocity of the lowest particle, since
the velocity of the bottom plate v = 0.

To illustrate this, we plot a short time interval of the MD simulation already
presented in Fig.3(a). In Fig.8(a) we plot the reduced coordinates. The reduced height
becomes negative since the column is compressed; however, in Fig.8(b) we plot the
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3.2. Many particle collisions (the 'Detachment Effect’)

velocities of the particles. Note that due to the velocity dependent dissipation term for MD
calculations the amount of dissipated energy depends on the relative velocities. Therefore,
we plot in Fig.8(c) the relative velocities between neighboring particles. We observe
complex particle behavior inside the column; the compression extends from bottom to top
when the cluster hits the bottom plate. After the cluster is compressed the particles separate
from each other during the subsequent decompression. The particles separate sequentially

and lead to overall separation in the column.
3.2.2. The dependence of the detachment effect on the interaction law.
We carried out a series of simulations in 1D for different interaction laws and

different numbers N of particles which hit the wall. In Fig.9 we plot the effective restitution
coefficient as a function of N for sy=0, vy=0.05ms, d=1mm and for different
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Fig.9:

The effective dissipation, i.e. 1 - ey, plotted as a function of N for so =0 and
Vg = 0.05ms™L. Here N varies from 1, 2, 5, 10, 20, 50, 100 to 200. We used the
Hooke-interaction (B =y =0, triangles), the Hertz-interaction B=12, y=0,
squares) and the Hertz-Kuwabara-interaction (B = v = 1/2, circles). See text for
details.
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3.2. Many particle collisions (the 'Detachment Effect’)

interaction laws. Using the linear interaction law with B=y=0, Kim,q= 2x10° s, and
D, = 3.17x10% 571 we find that gefr increases with N. Using the Hertz-type interaction, i.e.
B=1/2, y=0, with K/m 4= 2x10" s2m™ 12 nd D, = 2x10°s1 or a more general
interaction, i.e. f =y = 1/2, with K/m,.4 = 2x10'2 572 m™/2, and D, = 10° s m™/2 we find
that e.g varies little as a function of N. The net result is that the detachment effect is weaker

for non-linear interactions; nonetheless there is still a fundamental difference from ED
algorithms, for which e is close to zero for N(1-¢) large [62].

3.2.3. The detachment effect in 2D

Paralleling the 1D MD simulations we performed 2D calculations on a system of
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Fig.10:

(a) Linear logarithmic plot of the effective restitution coefficient Eeff 1N tWO
dimensions, as a function of o = 5o /(votc). The parameters are € = 0.9, N = 130
and d = 1 mm; v and 1, are given in the insert.
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3.2. Many particle collisions (the 'Detachment Effect’)

particles which hit a wall. The initial velocity v is taken to be the same for all particles. At
the start we put all particles on a periodic, triangular lattice with a lattice-constant of
a=d+sp, width of n, =13 and height of ny, = N/13 lattice-points. Then we introduce
randomness by shifting each particle horizontally and vertically by a random amount
between -s( /2 and s /2. We ensured that no overlap exists in the initial configuration. We
let this system hit the wall and determine e, after the collision. The process is considered
to be over, when in a time interval of 2 N s /v no collision occurs, i.e. no contact exists.

In Fig.10(a) we plot the effective restitution coefficient gefr as a function of
o =3, / (votc) for N = 130 particles with d = 1 mm which collide with a wall. Here & = 0.9

and sy varies between 10m and 10'3m, Vg varies between 1 ms! and 0.01 ms™! and I,
varies between 0.22x10™s and 0.2x10™s. The transition from the dissipative regime
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Fig.10:

(b) Log-log plot of the effective dissipation 1 - Ecff as a function of ny, for 53 = 0 m,
vp = 0.05 ms™! and o= 2x107s. The height ny, varies in steps of one from np =2

to ny =21 for e = 0.9 (triangles) and for & = 0.6 (circles). The crosses represent the
1D-data of Fig.7(b).
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3.2. Many particle collisions (the 'Detachment E ffect’)

(large o) to the detachment regime (smail 0) is less sharp in 2D, in which the transition
takes place in the interval 0.1 <o <10, than in 1D, in which the transition takes place in the
interval 0.1 <o <1. Note that at both limits (small or large o) e.¢ does not depend on the
dimensionality, but only on the height ny, =N/ny, (in 1D ny=1) and on e. This is also
obvious from Fig.10(b), where we plot the effective dissipation 1 - €4 as a function of ny
for vanishing initial separation sy;. We use & = 0.6 (circles) and € = 0.9 (triangles) and
compare the 2D data with the 1D results (crosses), already displayed in Fig.7(b). From this
Figure we infer that arrays of particles with equal height behave similarly in 1D and in 2D,

as long as the particle separation is small.
3.2.4. Consequences of the detachment effect

The problem with numerical simulations is the computer time required. A basic
feature of the mechanical model considered by us for MD simulations is the contact time te
between two colliding beads, estimated in the above case to be around 4 us [Sec.3.1.2].
MD simulations update the system at fixed time intervals IMD <<, so that in theory one
should have some 10° to 107 updates to simulate one second. MD calculations commonly
circumvent the problem by making updates at much longer time intervals than neccessary
for 7, and try to compensate by reducing elasticity and dissipation. But if t, is increased, the
ratio o may be decreased into a regime where detachment occurs. This is the reason, why
one has to choose the parameters for the MD simulations carefully.

Even though no detachment connected with small energy loss occurs ED
simulations update (i) only when an event (collision) happens, and (i) mostly only the
colliding pair; thus ED methods demand less time for systems with rather longer times
between the events. We note that in situations in which the particles contact each other very
often, the computing time needed for ED algorithms becomes very large.

We demonstrated in this section that ED and MD simulations of simple toy-models
may lead to different results. The open question is now under which circumstances ED and
MD calculations of vibrated systems agree and, more importantly, under which

circumstances numerical simulations will reproduce experimental results.
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4. Results of Simulations in 1D

We now turn to a discussion of systems in 1D including gravitation and a
sinusoidally moving bottom plate. The parameters involved are the number of beads N, the
restitution coefficients ¢, and €, as well as the amplitude Ap, and the angular frequency
w=2mf. Some numerically established data are experimentally accessible and are compared

with the measurements.

4.1. The model system in 1D

We use a system of N beads in the numerical simulations in order to draw parallels
to recent experiments [36,62]. In the experiment the beads have a well-defined diameter of
d=2.99 mm and are enclosed in a celi, which is a vertical groove with width and depth of
both 3 mm, cut in a rectangular block of brass with a height of 85 mm; a glass window in
the front permits the visualization. A CCD-camera hooked up to an image processing
device was used to monitor the experiments. The horizontal bottom of the groove consists
of a glass plate, and the sound created by the collisions of the beads was recorded, through
a microphone which was connected to a memory oscilloscope. A schematic drawing of this
system was given in Fig.1.

Because of the geometry, the beads are aligned so that each bead interacts only with
its upper and lower neighbours or, for the lowest bead, with the vibrating bottom plate. In
the simulations we neglect the contacts the beads have with the walls of the groove and
assume that the kinetic energy is only lost due to the inelasticity of the collisions. The
fundamental parameter which describes this dissipation is the restitution coefficient ¢ of the
momentum for a collision between beads. In the simulations we account both for collisions
between two individual beads (binary collisions) as well as for collisions which involve
several beads in contact (clusters). The general numerical approach was introduced in
subsection 2.2. and some details of the procedure are described in Appendix A.

The restitution coefficient € is material dependent; collisions of the lowest bead with
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4.1. The model system in 1D

the bottom plate may also have a different restitution coefficient, which we denote by &p. In
order to examine the two limiting cases of high and of low dissipation, we experimented
with beads made of aluminum and made of stainless steel, respectively. We measured ¢ in a
rough manner by the rebound method and obtained £=0.60+0.05 for aluminum on aluminum

and £=0.90+0.05 for stainless steel on stainless steel.

4.2.  The behavior of 1 bead on a vibrating plate

We assume one particle on a vibrating bottom plate [Eq.(7)] in the gravitational
field. In the case of a collision of the particle with the bottom plate we follow Eq.(13) to
calculate the velocity of the particle after the collision. The one-bead problem has been
studied extensively in the past [68-70,79]. The situation of one particle with vanishing
restitution coefficient is interesting for the case of many particles with a non-zero restitution
coetficient because energy is dissipated due to frictional contacts and a large number of
collisions. If there are many particles a large amount of energy is dissipated. A cluster of
many particles with € = 0, thus may be substituted by one particle with ¢ = 0.

In general, the behavior of one particle on a vibrating plate, is characterized by the
phase @;, at which the particle leaves the bottom plate and the phase ¢;+1 of the next

contact with the bottom plate. Here we give an iterative scheme for the phases, when a
particle touches the bottom plate. At phase ¢;,1 = wl;,1, we set the position of the bottom

plate [Eq.(7)] equal to the position of the particle with initial position Agsin(@;) and initial
velocity v; in the gravitational field:

Piv1—P: & Pir1—P;

2
Agsin(Q;,1) = Agsin(g;) +v; - —5( = ) . (28)

(®i41—¢;)/w is the time elapsed since ¢; = ¢; /w. Together with the phase ¢;,; and the

new velocity v;, 1 just after contact with the bottom plate, we are able to calculate the phase
of the next contact ¢;,,, by simply iterating Eq.(28).

For the completely inelastic case (e = 0) the velocity after contact with the bottom
plate always equals the velocity of the bottom plate v; = Agw cos(p; ) if the acceleration of

the bottom plate is greater than the gravitational acceleration g, i.e. sin(¢;) = 1/a. Using

Eq.(28), inserting v; and dividing the whole equation by Ay we obtain
. . 2
SI(Pi41) = sin (@;) +co8(; N @i1 = 91) — 50 (Pre1 — ;) . (29)

Otherwise, if the acceleration at the moment of contact is less than &, the particle moves
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4.2. The behavior of 1 bead on a vibrating plate

together with the bottom plate until it lifts off tangentially at phase ¢, = arcsin /o).
Replacing ¢; by @1 and ¢;, 1 by ¢, in Eq.(29) we obtain

sin @y = 1+ Vo =1 (93 — 1) =1/2(3 - 91)%)/ (30)

for all ¢; with sin(¢p;) <1/o. Note that the phases in Egs.(29) and (30) depend on the
acceleration a and not explicitly on Ag or w. In Fig.11 we plot the scaled height of the
bottom plate sin(¢p,) and the motion of one particle as a function of the scaled phase
p=q@/2rn for a=2. p; and p, give the scaled phases ¢ and @, respectively. The
numerically computed values of ¢, as a function of « are plotted in Fig.12(a). We compare

Fig.11:
The scaled height, z/A, of the bottom plate (full line) and of one particle (dashed
line) as a function of the scaled phase p = /2 for o = 2 is plotted. p; is the scaled
phase /2w = 0.0833 where the particle lifts off and P> is the scaled phase
(y/2m = 0.825 where the particle hits the bottom plate again.

41



4.2. The behavior of 1 bead on a vibrating plate
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(a) The contact phase ¢,/25 (for lift-off at phase 1) as a function of a is plotted.

(b) We plot the dimensionless relative velocity just before contact V. /Apw as a
function of a, i.e. the velocity of the particle in Fig.12(a), relative to the bottom
plate at phase .

results, obtained through ED simulations (circles) with a numerical solution of Eq.(30) (full

line). From ¢, we compute the relative velocity Ve before contact at phase ¢,. v, is the
difference between the velocity of the bottom plate [vp = Agw cos(¢p, )] and the velocity of

the particle [v, = vy - %(@(;_CPQ] at phase ¢:

Ve = Ao (Cos @y — cospy + (g - Py)/ar) (31)

V. scaled by the typical velocity Agw as a function of o is plotted in Fig.12(b). The relative
velocity before collision has large values, when the particle hits the bottom plate at a phase
when the bottom plate moves upwards. Low Ve values correspond to phases when the
bottom plate moves downwards. The motion of one particle on a vibrating bottom plate is
characterized by the dimensionless acceleration a.. The motion of a cluster with an effective
restitution eqpp = 0, should therefore lead to similar behavior. We now turn to the discussion

of N particles with e > 0 on a vibrating bottom plate.
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4.3. The iransition from a fluidized to a condensed regime

4.3. The transition from a fluidized to a condensed regime

For restitution coefficients close to one and at high accelerations of the bottom plate
the individual motion of the beads looks erratic. This is what we call Jluidization. If the
input energy is decreased, the motion becomes more and more regular and the column of
beads eventually gets locked onto the excitation period. This is what we call condensation.
In Figs.13 we show three typical forms of column behavior depending on the input energy
of the system. The parameters used are N = 10, f=20 s'l, gp =1, and € =0.92. The
amplitude Aq varies from 4.97 mm in Fig.13(a) to 1.24 mm in Fig.13(b) and 0.932 mm in
Fig.13(c). In Figures 13(a), 13(b) and 13(c), « [Eq.(8)] is 8.0, 2.0 and 1.5 respectively. The
trajectories of the particles show the progressive condensation of the column. To illustrate
this change of behavior we use a grey code: light grey indicates high velocities and dark
grey low velocities. It is evident from Figs.13 that for lower acceleration values the motion
is collective; at higher acceleration values we find that the role of the fluctuations increases.
In the inserts of Figs.13 we show the frequency spectra obtained through a fast Fourier
transform (FFT) algorithm for the motion of the center of mass (cm). In the FFT algorithm
the position of the diameter dependent height of cm (hem) was evaluated 25 times per
period during a total of some 328 periods, within which 213 data points were obtained. At
still higher energies, the motion of the ¢cm displays a continuous spectrum, see Fig.13(a).
When the input energy decreases, the motion of the center of mass begins to show the
harmonics and the subharmonics of the excitation frequency, Fig.13(b). If the energy
decreases more, Fig.13(c), a Feigenbaum scenario is observed, a bifurcation cascade which

displays period doubling.
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(2) Motion of 10 beads for f = 20 s’l, a=8.0,e=0.92 and ep=1.
(b) Motion of 10 beads for f= 20571, o = 2.0, e =0.92 and ep=1.
(c) Motion of 10 beads for f=20 s'l, a=1.5¢=0.92 and ep=1.

The inserts displays the frequency spectrum for the motion of the center of mass.
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4.3. The transition from a fluidized to a condensed regime

4.3.1. The dilatation of a column of particles

The passage from a fluidized state [Fi g.13(a) - with the quasi-ballistic trajectories for
the momentum waves] to a state involving collective motions of the column is gradual, see
Figs.13(b) and 13(c). To monitor this behavior, we look at the mean dilatation of the
column <zy-z1> where z1 and zy are the height of the first and the N th particle. We recall
that the zj-coordinates are independent of the bead diameters, see Eq.(9). The mean
dilatation is a good indicator of clusterization. In Fig.14 we depict the dilatation using the

dimensionless quantity A:

A= (v -21) , (32)
A()OL

We display A as a function of o for N = 8, 10 and 12, while maintaining £=0.92. The
frequencies used are f=10, 20, 40, 80, 100, 200, 400 and 800s™! and we vary the
amplitude Ag. Note that for a given N, all the curves collapse on the same master curve. For
high energy input corresponding to large c-values A converges to a constant. Since at this
limit we have <z1> << <zy>, for fixed N the mean dilatation is proportional to the potential
energy; the scaling behavior, Eq.(32) thus indicates that <zy-z1> and hence the potential
energy are also proportional to Aga. Therefore, in the fluidized regime the potential energy
scales with Aozcoze In other words, at the fluidized limit a proper scaling parameter is the
squared velocity (Agw)? and not the acceleration a. If a becomes less (say for a<10) the
column behaves in a complex fashion and resonances may show up. But a is not the only
control parameter for the occurrence of condensation; for different N we find different
behavior for the same a-values. Thus columns with larger N show less dilatation. This is
due to the fact that the number of dissipative contacts increases with N; a system with larger
N displays a higher dissipation. Note that for a dissipative block or a completely inelastic
particle on a vibrating plate the pertinent control parameter is the relative acceleration o
[68-70]. As a result one has a very complex transition between the fluidized state and the
clustered regime, a transition which depends on N, on ¢ and also on a.
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Fig.14:

Mean dilatation A plotted versus o, obtained for systems with 8, 10 and 12 beads

and the restitution coefficients & = 0.92 and ¢, = 1.0. The frequencies used are
f=10, 20, 40, 80, 100, 200, 400 and 800 s™1.

In the fluidized regime, the erratic motion of particles and the large dilatation of the
column may suggest some analogy with the behavior of a dense gas column when
connected to a heat bath, and in general to thermodynamic concepts. Mazighi, Bernu and
Deylon [49] recently found an analytic description for a one-dimensional array of beads
where the bottom plate follows a triangular instead of a sinusoidal function. There they find,
using the dissipative Boltzmann equation, at the limit of low dissipation a density profile
which is nearly exponential. We remark that the function of the bottom plate is analogous to
a heat bath in providing, and sometimes taking away, energy from the system. Furthermore,
we like to point out that other thermodynamic and/or hydrodynamic ideas have been
advanced to describe a granular assembly [76-78]. Thus 1D columns of beads seem to be
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4.3. The transition from a fluidized to a condensed regime

good candidates with which to test the relevance of such an approach. But one has to pay
attention to the fact that even in such "one-dimensional" systems experimentally additional
effects, such as rotations, may appear and that important aspects of realistic three-
dimensional systems are neglected.

We are interested in the qualitative features of the density and of the kinetic energy
distributions. In Fig.15(a) we present the density of the beads as a function of the height.
The density is evaluated for N = 10, £ =0.92, and f=20 sL, Here we use the diameter
dependent coordinates /;(¢), introduced in Eq.(9), and a diameter of d = 3 mm. In Fig.15(a)
we show the density profiles p(h) for different a-values (here @ =2, 3,5 and 8). We have
also evaluated the corresponding kinetic energy profiles, by defining 8(h) = <v(h)2>. In
Fig.15(b) we plot 6 as a function of the height A.

With increasing o the density p becomes less and extends to higher A (fluidization);

furthermore, 0 basically decreases with increasing h; 0-curves belonging to different o-

p (mm™)

Fig.15:

(a) The number density profiles p(f) are shown for N = 10, ¢ = 0.92, &, = 1.0 and
f=20s"asa function of % withd =3 mm fora =2, 3,5 and 8.
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Fig.15:

(b) The kinetic energy-profiles B8(h) are shown for N = 10, ¢ = 0.92, e, = 1.0 and
f=20 s as a function of h withd = 3 mm for o, = 2,3,5 and 8.

values do not cross.

4.3.2. The dissipation time in the fluidized regime

The following study is meant to work out the characteristic features of the fluidized
regime and the conditions under which condensation and/or clusterization is obtained. We
consider the mean dissipation time Tp of the energy input in a steady state, taking the
energy ¢ to be zero when all beads are at rest and lie on the plate. tp is the ratio of the
average total energy <€> of the system in a steady state relative to the input (or

equivalently, the output) power <P>:

=8 (33)
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4.3. The transition from a fluidized t0 a condensed regime

Evidently tp measures the energy dissipation in the system: on the time-scale of tp
the kinetic energy which is introduced into the system by the motion of the bottom plate is
dissipated through collisions. We note that on the average the input power is positive:
Although some collisions of the bottom plate may take energy away from the column of

beads, on the average the bottom plate feeds energy into the System.
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Fig.16:

The dissipation time <ty is shown in a steady state. The plot gives Tp f as a function

of o for the same parameters as in Fig.14.

Fig.16 was obtained by following the simulations to times considerably larger than
Tp; displayed is the dissipation time Tp at steady state, as a function of o. The parameters of
the simulation are the same as those used to obtain Fig.14. We see that all data fall on a
master curve which depends on N. Thus tpf is proportional to o and therefore in the
fluidized regime:
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4.3. The transition from a fluidized to g condensed regime

o 2A0(0
4

T (34)

v

In Eq.(34) tp is proportional to the time of a ballistic flight with an initia] velocity of Agw,
but for the moment nothing is said about the prefactor, which will be a function of N and e.
The dissipation time is larger for smaller N, because this corresponds to a smaller number of
dissipative contacts. For small Tp f-values we observe (as in Fig.14) a wiggly structure
superimposed on the master curves. This is typical for the transition zone between the
fluidized and the condensed state.

4.3.3. Scaling behavior of the fluidized phase

Now we look at the scaling behavior of the relative height of the center of mass. In
the fluidized regime, this quantity is proportional to the total energy and it can be directly
measured from the experiments. As we have shown in the previous paragraph, a cross-over
between a condensed regime and a fluidized regime is evidenced when the dissipation time
is of the order of the excitation period. In this paragraph we work in the fluidized regime;
therefore, for each numerical result, we verified that the dissipation time was much larger
than the excitation period. Moreover, we make sure that the simulations have reached a
steady state before the average data were produced, i.e. we start the average at =10 tp
and end at ¢ = 50 .

We denote the height of cm by hemo when the system rests on the bottom plate; thus
hem=hemo is diameter independent. From dimensional analysis and according to Eq.(34), it is
obvious that the relative height of the center of mass should scale with a typical velocity
square (Agw)?, the prefactor being a dimensionless function F (NV,e).

2.2

Ap“w (35)

F(N,g) .

hem — cm0 =
To determine the function F(N,e) we carried out a series of simulations by varying o

(=10,...,10000), varying N (N=2,...,100) and varying e (e=0.9995,...,0.01); ep is either held

equal to one or set to Ep=E.
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Fig.17:

(a) The diameter independent height of the center of mass is plotted as a function
of (1-¢) for different N-values and for o = 10 and ep, = 1. Crosses, triangles and
squares correspond to N = 20, 10 and 5 respectively, while the dashed line gives a
slope of -1.

(b) The diameter independent height of the center of mass is plotted as a function
of N-1, for different e-values and for o = 10 and ep = 1. Crosses, Squares and
triangles correspond to 1 - ¢ = 10'3, 10'2, 1071 respectively, while the dashed lines
give a slope of -1.

In the following we will first find the behavior in the nearly elastic regime. The
height of cm diverges for e—>1, since in this case very little energy is dissipated per collision
and around this limit fluidization is more likely to occur. Fig.17(a) shows hem-hemo as a
function of (1 - e) for a = 10, gp=1and N =5,10 and 20. We obtain at the limit e—>1:

Pem = hemo < (1- E)_Bl (36)

with B1 = 1.00£0.02. The next step is to find the N-dependence of hem=hemo- Tt is obvious
that the cm is higher for smailer N and vice versa. We propose that hem=hemg should depend
on the number of dissipative contacts in the system which is N-1 for ep =1 and N for &p =&,
Fig.17(b) gives simulation results for hem=hemo as a function of N-1 for a =10, ¢p =1 and
e =0.999, 0.99 and 0.9. The simulations lead to:
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hczn - hcmO & (N = 1)_ﬁ2 (37)

with 5 = 1.0120.02, i. e. within our accuracy B1 = f3; = 1. Therefore, both the N and the ¢
dependence have the same exponent. We introduce the parameter X by setting:

X=(N-1)(1-¢) forep =1 (38a)

and

X=N(1-¢) fore, =e. (38b)

X seems to be the main variable of the problem as long as it is small. In Fig.18(a) we plot
hem=hemo divided by Ang /g as a function of X found from 4000 realizations of the
process using several parameter values. In the fluidized regime all data points fall on the
same master curve. Fig.18(a) is plotted in a log-log scale to show the behavior of hem-Pemos
at values X < 0.1 the master curve shows a slope of around -1. Using the points displayed,
we obtain F(N,e) = F(X) = 4/(3X) for F(N,e) introduced in Eq.(35), so that the height of the

cm for small X (X < 0.1) can be approximated through:

Aplw? 1 39
hcm(o) = hemo +%'—0§“‘"}“ . (39

On the other hand for X > 0.1 the data follow a master curve only for N >> 1 and high
acceleration. On Fig.18(b) we fit the data obtained for o =1000, N =20 and £ > 0.8 and
thus extend the validity of Eq.(39) to the range X < 2.8, by setting:

2.2
hem® = hie L4 A070" o(X) ’ (40a)
T 3 g X
with
PX) =1-aX -ax* . (40b)

where the constants are a; = 0.098 and ap = 0.073.

52



4.3. The transition from a fluidized to a condensed regime

ey - hemo

e 0) _
A02(A)2 /g hcn] hcmO
1.0 oy

0.5

0.0

Fig.18:

(a) The height of the center of mass hem=hemo as a function of X scaled by (Aooo)z/g
for different N-values (from 2 to 100), e-values (from 0.01 to 0.9995) a-values
(from 10 to 10000) and Ep=E€Orey=1.

(b) The height of the center of mass hemhemo as a function of X scaled by
hcm(0)~hcmo for different N-values (from 20 to 100), e-values (from 0.2 to 0.9995),
large a-values (a0 = 10000) and &p =& oI €p = 1. The dashed line gives a first order

polynomial Fit with root X = 3.17, the full line gives a second order polynomial Fit
with root X = 3.09.

This expression was obtained through a polynomial fit in the interval from 0 to 2.8.
As can be seen from Fig.18(b), for X > 2.8 the curve changes from concave to convex.
Egs.(40a) and (40b) extrapolate to an intersection with the real axis at X = X, = 3.09. A
linear data fit plotted as a dashed line in Fig.18(b) and carried out in the interval from 2 to
2.8 leads to an intersection at X =X =3.17. These findings suggest that in the absence of
additional effects clusterization occurs around X.=3.1. Indeed for X >X. one never
reaches a fluidized phase, regardless of the acceleration. On the other hand - in the
intermediate region, i.e. for 2.5 < X < 4, and for very large accelerations, a-values between
10% and 106, the simulations lead to the separation of the column into an array of beads
condensed at the bottom and of several beads fluidized at the top. Thus for X above X, the
dissipation inside the column is so important, that no complete fluidization ever occurs and
the lower part of the column stays condensed. This means that the motion of the lower
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beads is always correlated . We can relate our X value to the work of Bernu and Mazighi

. |

[31], who find X =t for a column of balls colliding with a wall (see Appendix E). Note
however, that the situation investigated by Bernu and Mazighi is different from ours: They
monitor the dissipation of the initial internal energy; we have a steady influx of energy into
the system. This difference may also be the reason why we obtain partially condensed states
for X > X{.

In a way similar to the above we establish the scaling behavior of the dissipation

time tp, obtaining:

tp = A2 PX) (41a)
g x*
where
¢ (X)=1-a3X -a X% . (41b)

Again the data were fitted in the interval from 0 to 2.8; the values of the parameters are
now asz = 0.087, ag = 0.065 and y = 1.5.

4.3.4. A crossover from the fluidized to the condensed phase

From Eq.(41) we infer a condition for fluidization in the range X <X,. In the
fluidized regime the time-scale of energy dissipation is much larger than one period. Thus
we use Tp f>> 1 as a criterion for fluidization. Translated in terms of the acceleration o this

gives:

X% (42)
P'(X)

A>>0, =2

For X — 0 we find a. — 0; this seems to be a problem, since for o < 1, a cluster that lies on
the bottom plate, never lifts off. It is in a stable state, i.e. it moves together with the bottom
plate. The transition from a cluster to a fluidized or condensed column of beads is only
possible for a > 1. Eq.(42) has to be understood as a condition for the stability of the dilute
regime. For o >> o a system with non-zero initial energy stays in the dilute state, For
a <oag =1 the system tends towards the situation of a cluster, moving together with the
bottom plate.

In Fig.19 we plot the a-X parameter-space and display o, as a function of X
(straight line). We have three regimes: In regime (1), for o >> O, the column is fluidized

whereas in regime (2) for large o-values a fluidized phase (at the top) coexists with a
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Phase diagramm in the a-X-plane. log;( o, Eq.(42), is plotted as a function of X
In regime (1), for a >> o, the system is fluidized and the shape of the density
profile depends on X. In regime (2) no overall fluidization is possible, i.e. X > X,
and in regime (3) the column of beads is condensed and the shape of the density
profile depends on both o and X,

condensed phase (at the bottom) phase. For small a-values, i.e. a < a, and in regime (3) all
beads are condensed or clustered. Fluidized here means the uncorrelated motion of the
beads, a condition which does not neccessarily lead to a Boltzmann like density profile of
exponential shape.

Varying o from large, i.e. o >> O, to small values, i.e. o << A, corresponds to a
transition from the fluidized to the condensed regime. In Fig.20 we plot the normalized
number density profiles for N = 10, f=100 s"l, gp = 1,X=0.72,ie. ¢ = 0.92, and « in the
range 10 < o < 1000. The shape of the density profile does not change for a =50 - the
system is fluidized. For o < 50 a transition from the fluidized to the condensed regime takes
place, i.e. the shape of the density profile depends on a. Decreasing o, and thus decreasing
the amplitude of the bottom plate, obviously decreases the height of the center of mass R
With decreasing 4., the condensed part of the column extends from the bottom to the top.
The condensed regime shows up with clear peaks for each bead.

On the other hand, varying X from small to large values also leads to a transition
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Fig.20:

Rescaled number density profiles p/pg as function of h/h,, with po = 1/he,,. We
use N =10, f=100s"1, & =1, X =0.72 and vary a, i.e. a = 10 [curve M)], a=20
[curve (2)], and o = 50, 100, 150, 200, 1000. Note that the curves for o = 50 have
almost the same shape.

from the fluidized regime to the condensed regime. In Figs.21 we plot the number density as
a function of the height for simulations with N = 20, o = 10000, f=10000s™ and ep = 1.
We vary ¢ in the range 0.99 > ¢ > 0.8, such that 0.10 < X < 3.8. In Figs.21(a-f) we find a
continuous transition from a dilute to a dense regime for increasing X. In detail, the shape of
the density profile changes from almost exponential [Fig.21(a)] to linearly decreasing (two
slopes) [Fig.21(b)]. For intermediate X-values an almost constant density shows up
[Figs.21(c) and (d)], whereas for large X-values condensed beads at the bottom coexist with
fluidized beads at the top [Figs.21(e) and (f)]. Due to the large a-values used here, i.e.
a >> 0, we never find a completely condensed regime.

Note that in Figs.20 and 21 the shape of the density profile changes with the X-
value, not with the a-value, as long as o >> a.. For X = 0.72 [Fig.21] the density profile is
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Fig.21:
Number density profiles p as a function of the height & for N =20, o = 10000,
f=10000s", €p =1 and varying 1-¢ = X/(N-1). The X-values are inserted in
the plots; note the different axes.

not of exponential shape. This means that the parameter X characterizes the shape of the
density profile, a fact, which is well corrobarated by additional simulations.
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4.4. The weakly dissipative regime (steel beads)

In this subsection we investigate the behavior of 4 column of steel beads undergoing
vibrations in the gravitational field using both simulations and experiments. We let the
bottom plate vibrate according to Eq.(7). We know from previous subsections that the
particles are fluidized for sufficiently large agitation. We present experimental results which
are reproduced by both ED and MD simulations,

4.4.1. A comparison of ED simulations with experiments

The following experiments were performed using steel beads. First we measured the
value of the restitution coefficient, by determining the height of rebound for a bead dropped
from a height of one meter on a smooth block of the same material. In this way we found
£=0.90+0.05.

With the help of a video-camera connected to an image processing device, we
accumulated images of the light dots formed at the center of the beads by a remote light
source. The results permit experimental access to the density profile of the column of beads,
From such profiles we extract the height of the center of mass hem (here a diameter-
dependent quantity). We compare these data to the corresponding computer simulations;
the best fits to all our experimental data are obtained for £=0.92+0.01, while we take e,=1.
The data obtained in three experimental runs with steel beads are presented in Figs.22(a-e),
the curves show A¢p, as a function of o and N. The first set of data is displayed in Figs.22(a)
and (b) where the frequency was set at f=16.5s"1and at =155 while the amplitude A
was varied. The second set of experiments was performed at amplitudes A(=3.42mm and
Ap=1.96mm, while the frequency was varied [see Figs.22(c) and (d)]. In the third set of
experiments we kept the amplitude A0=2.98mm and the frequency f=15 s™ constant and we
varied the number of beads N; the results are shown in Fig.22(e). In all these tigures we plot
the simulation results as small Squares, the experimental data as circles and the limiting
scaling laws for the fluidized regime as continuous curves; see Eq.(40). We are now in the
intermediate a-regime, in which the simulations exhibit a complicated resonant behavior as
discussed in the previous subsection. The scaling predictions of the fluidized phase agree
quite well with the experimental results. Although not all theoretical details are reproduced:
Thus the wiggly structure does not appear, possibly due to disturbances induced by the
friction with the walls, a fact which may destabilize the organization of the column and

therefore cause a disordered regime to occur more rapidly.
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(a) Experimental (circles), simulation (dots) and fit (full line) results for the height
of the center of mass fiem of N =10 beads (here diameter dependent with

d=3mm) as a function of a. The frequency is [=16.5s"1 and the restitution
coefficients are & = 0.92 and Ep =

(b) The same results as in Fig.22(a) but the frequency is here f= 15 571,

(¢) The same results as in Fig.22(a) but here we varied the frequency and held the
amplitude constant Ay = 3.42 mm.

(d) The same results as in Fi £.22(c) but the amplitude is here Ap = 1.97mm.

(e) The same results as in Fig.22(a) with 4y = 2.98mm, f=15s! and N = 8, 10,
12,14, 16 and 18. The simulations are here depicted by squares.
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Fig.23:

The number density p as a function of the height 4; compared are experiment
(circles) and simulation (line) for N = 10, f=21s" 49 =1.97 mm, £ = 0.92 and
ep = 1.

In Fig.23 we compare the experimental density profile (here N = 10, Ag = 2 mm and
/=21 s"l) with the simulation results in the fluidized regime for € = 0.92; we find that the

overall agreement is fair. Hence the experimental data can indeed be understood from
simulations, in which a single parameter (namely & = 0.92) is entered.

4.4.2. A comparison of ED and MD simulations

We now turn to MD simulations of Systems under strong agitation. In subsection
4.3.3 a scaling behavior for the center of mass hem Was found from ED simulations in the
case of high agitation «, low dissipation (1-¢) << 1 and a large number of particles N, ie.
X =N (1-e) < 2.8, see Eqgs.(40a) and (40b). We call this regime in the following the high
energy and low dissipation regime (HLR). In Fig.23 we display results of ED and MD
simulations of N = 10 particles with ¢ = 0.92 and f=20s1. In Fig.23 the crosses denote the
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ED and the circles denote the MD results. Furthermore, we compare the results with
Eq.(40), depicted as a dashed line. We average A, over more than 100 periods and set
to= 107% s, in the MD simulations. As a result we find that the ED and MD methods lead to

similar results.

0.06 —————————T——————
R
~ o
& | A
@9
e
N © i
o 0.04 5 @b_,.o
g5 _
3]

e
| 002}

CcIn

<

0.00

10

Fig.24:

hemhemo is plotted as a function of o for a 1D column of N = 10 particles with
e = 0.92 under vibration with f= 20 s and varying amplitude. We compare the

MD (circles) with the ED simulations (crosses) and with the expression Eq.(40)
(dashed line).

In Fig.25 we plot A, as a function of X obtained from simulations with different
numbers of particles N and with € = 0.92, f = 20 s'and o = 10. In Fig.26 we plot ., as a
function of X, but here we vary & and use N = 10, /=20 sl and o = 10. The contact time
for the MD simulations is ¢, = 4x10"s. The simulation results, MD (circles) as well as ED
(crosses) deviate from the fit (dashed line) for X > 2.4. This is due to the fact, that o = 10 is
too small to fluidify the column for this high effective dissipation; thus the system is not in
the HLR and thus Eq.(40) is not valid for X > 2.4 and o = 10.

Discrepancies between MD and ED simulations become apparent when the
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dissipation (or the number of dissipative contacts) becomes high and/or the acceleration o
becomes low. In contrast, the results of ED and MD simulations agree well in the HLR,
where we have large separations sy and a long time of free flight So/vo between the
collisions. The conclusion is that we can choose quite long contact times as long as the
condition o >> 1 is fullfilled.

The computer time needed for event-driven algorithms is proportional to the number
of events; ED algorithms are therefore most effective in HLR. MD algorithms consume
computer time proportionally to the simulated time and are therefore less effective in HLR.
On the other hand, the detachment effect will be strongest in the low-energy high-

dissipation regime. The particles are almost always in contact here. In this regime, where

0 < 1, we have to choose the contact times as well as the interaction models carefully.
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We plot hp-hemo as a function of X; we vary N, such that 6 < N < 36, and use
£=092, f=20s! and a=10. We compare MD (circles) with event-driven
simulations (crosses) and a high agitation fit (dashed line) Eq.(40).
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Fig.26:

We plot /e -hemp as a function of X; we vary ¢ such that 0.7 < € < 0.95 and use
N=10, f=20 st and a=10. We compare MD (circles) with event-driven
simulations (crosses) and a high agitation fit (dashed line), i.e. Eq.(40).

4.5. The strongly dissipative regime (aluminum beads)

We look for the behavior of a column of aluminum beads undergoing vibrations in
the gravitational field. The aim is to find out under which conditions MD and ED results are
comparable and when deviations in the computed macroscopic properties occur. We also
present experimental results; these are reproduced more effectively by ED than by MD
simulations.

4.5.1. Comparison with experiments

We report two experiments with aluminum beads. The restitution coefficient for
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aluminum beads was experimentally measured to be & = 0.60+0.05. Again the column
consists of N = 10 beads with a diameter of d = 3 mm. The behavior of the column of beads
is vastly different from what we found for steel beads; in fact the column behaves as a
condensed/clustered block. If microfluctuations exist in the positions, they occur at a scale

much smaller than the size of the beads.

In the first experiment, we found it convenient to measure the time between two
collisions of this block with the bottom plate; we denote this time by Tcqyj. The time Ty is
determined as a function of the normalized acceleration a, by recording the sound created
by the heap when colliding with the bottom plate. In Fig.27 we plot the experimental
findings and the results of two numerical simulations for N = 10, ¢ = gp = 0.6 and for N =1,
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0 5 10
X
Fig.27:

Times between collisions Ty with the bottom plate in experiments (circles) and
simulations (triangles) for N = 10 and f= 30 sL. Plotted is T, collf versus a. The
simulations use € = ep = 0.6.
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gp = 0 on the same diagram. The simulation results for these two cases virtually coincide in
the range displayed in the figure, and hence only lead to one curve (denoted by triangles).
The curve for N = 1 and & = 0 can be also achieved by using the iterative scheme [Eq.(30)]
for the motion of one completely inelastic particle.

We recall that in the one-bead problem a series of bifurcations occurs [68,69], which
involve a set of fundamental modes that are multiples of the lowest fundamental period
T = 1/f. Our experimental findings with aluminum beads, given in Fig.27, parallel this
picture in that the experiments clearly display the first two bifurcations, whose onset nicely
mirrors the simulation results. To what extent the bifurcation cascade can be monitored is
an interesting, still open, question since even in a dissipative one-ball system fully-developed

chaos should not show up [79].

The second experiment is monitored by a camera that moves horizontally at a
regular pace in front of the vibrating cell. The display is lighted using a stroboscopic flashing
light tuned to a frequency slightly different from the excitation frequency. In this way, we
obtain a (false) slowing down impression. An image processing device hooked up to the
camera records and accumulates the traces of the beads' centers of mass. One thus observes
the positions of the beads as a function of the phase of the excitation. On Fig.28(a) we show
such a picture for an acceleration of o =2 and a frequency of f=10sL. The column
appears to stay clustered in all cases considered by us. On Fig.28(b) we present a MD
simulation for the trajectory of the centers of mass of the beads for N =10, £ = 0.6, and
linear interaction-laws (8 =y = 0). On Figs.28(c) and (d) we present MD simulations with
non-linear interaction laws, § = 1/2, y = 0 [Fig.28(c)] and B =y =1/2 [Fig.28(d)]. The MD
calculations for linear as well as non-linear interaction laws may lead to large separations in
the positions of the beads. On the other hand an ED algorithm leads to clustered dynamics
for the above parameters and thus reproduces the experimental results. Comparing
Figs.28(b-d), we find a decreasing amplitude in the separations and also the pattern
(Separation-Clustering) is no longer strictly periodic in the nonlinear case [Figs.28(c,d)].
The reason for the small separation in Fig.28(d) is the dependence of the dissipation on the
velocity of contact (see Appendix C). The dissipation is small for small velocities and thus
the non-linear particles loose less relative energy during a collision than linear particles,
Since the relative energy is rather large o is also large. Thus the separation is rather large
after a collision of a column with the bottom plate and so the detachment effect appears to

be less dramatic.
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(a)

Vertical Height

Vibration Phase

Fig.28
(a) Experimental result of a 1D column of N = 10 aluminum beads under vibration
with f=10 s1, and o =2. Plotted is the vertical position as a function of the
vibration phase. @ indicates the position of a reference bead, glued some
fourteen bead diameters above the bottom plate. @ indicates the position of the
center of mass (dark dot) of the seventh bead. @ indicates the bottom plate.

(b) Trajectiories of N =10 particles as a function of time obtained from a MD
simulation with f= 10 s'l, a=2,e=00,1 = 3.6x107% and the interaction laws
are linear, i.e. f =y = 0.

{¢) Results of a MD simulation under the same conditions as in (b). The parameters
used are $ =1/2,y =0, K/m_.4 = 6.6x10' s2m™2 and D,= 4x10% 5L This leads
toe=0.6and .= 10°s for an initial velocity of vy = 0.66 ms™.

(d) Results of a MD simulation under the same conditions as in (b). The
parameters used are §=1/2, y=1/2, Kim 4 = 6.6x10'* s2m™/2 and D, =22x
10° 5”1, This leads to £ = 0.6 and . = 10”s for an initial velocity of vy = 0.66 ms™L.
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nomalous behavior of a vibrated column of beads

In order to explain the large separations that show up in MD simulations [Fig.28]
we present the MD trajectories of the centers of the beads calculated using N =10 and ¢
= 0.6 in Fig.29. The bottom plate moves according to Eq.(7) with an amplitude of
Ag=1.24d and a frequency of f=20 s7L; this leads to a maximal acceleration of 2g, i.e.
a = 2. The y-axis displays the reduced height according to Eq.(9). The value ¢ = 0.6 is
typical for aluminum beads. From previous studies we know, both from experiments and
from ED simulations [36,62], that such a collection of beads (N = 10, ¢ = 0.6) has a very
low effective restitution coefficient (e, = 0) and that the system forms a cluster whose

behavior mirrors that of a very inelastic single bead [70]. The MD results were obtained for
I, = 7x10_4s, 7><1O_55, 7><10“6s, and 2x107%s. Note that large fluctuations occur in
the inter-bead separations when ¢, is large [Fig.29(a)]; this is due to the fact that the contact
time of 10 particles with the bottom plate is roughly 15 percent of the period and is thus too
large to decouple the collisions from the vibration. An additional reason for the large
fluctuations is the ratio o = s, / (votc) of the time between events to the contact time. For
large 1, the value of o becomes small and thus detachment (together with weak energy
dissipation) is active. In Figs.29(c) and (d), where the contact time of the beads is much
shorter than the excitation period, we observe a periodic pattern which alternates between
condensed states, with almost zero relative energy, and states with large interbead
separations due to large relative energies. In the condensed state we find very small
separations, i.e. 0 << 1, and therefore the detachment effect is active, which means that the
next collision sequence occurs under very low energy loss. After this collision sequence the
separations between beads become be large, i.e. o> 1. Therefore in the next collision
sequence much energy is lost, so that the separations again decrease. This periodic change
from high to low o values and back again is the reason for the pattern observed in
Figs.29(c) and (d). Remember that for large #. values o stays small most of the time so that
the system remains in a high-energy state, in which detachment as well as large fluctuations

occur.
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4.5. The strongly dissipative regime (aluminum beads)
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Fig.29:

The MD trajectories [reduced coordinates z; Eq.(9)] of N = 10 beads with ¢ = 0.6
forAg=1.24d and f=20 st are plotted. The contact time values are inserted in
Figs.29(a)-(d).

An ED algorithm as introduced in Refs.[36,62] shows completely different behavior
in this parameter range. For N = 10 and ¢ = 0.6 the event-driven LRV-procedure leads to

gepp = 0, i.e. the inelastic collapse [32,33]; in other words, the energy of collision is always
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4.5. The strongly dissipative regime (aluminum beads)

dissipated inside the column, so that the particles stay clustered. This leads to a pattern for
the cm-trajectory similar to the one of a single, completely inelastic particle [70], i.e. the
relative energy always vanishes for these parameters.

The relative energy E. (‘granular temperature') is plotted in Fig.30 for some 20
periods of a MD simulation with N = 10, ¢ = 0.6, f=20s", o =2 and I, = 0&7><10'55, ie.
the simulation shown in Fig.29(c). Plateaus in E') correspond to free flights of all beads;
steps in E.; correspond to collisions of particles and Ere1 = 0 corresponds to a cluster of
beads. If such a cluster, with £, = 0, denoted by the dotted line, hits the bottom plate, a
peak in the relative energy appears, i.e. E,. = 0.02. These peaks occur in Fig.30 at times
t=0.64,0.79, 0.94, 1.19 and 1.34 and are denoted by a dashed line. The reason is that due
to the detachment effect a certain amount of the initial kinetic energy is transferred to
relative energy. However E . may get larger than these peaks which appear due to the
detachment effect. £, may vanish again when due to a large number of dissipative

collisions all relative energy is spent.

0.10 ———————————

S
\ 0.05 .
o

0.5 1.0 1.5

Fig.30:

The relative energy E ) in units of the mass is plotted as a function of time for the
parameters used in 29(c).
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4.5. The strongly dissipative regime (aluminum beads)

4.5.3. The detachment effect in MD simulations of aluminum beads

We now turn to a more quantitative description of the anomalous behavior, reported
above [see Fig.30]. Assume N particles, each with mass m; we focus on the situation, where
all relative energy is dissipated, i.e. the velocities of all particles in the cluster are equal, and
the cluster lies on the bottom plate. The cluster moves together with the bottom plate until
the acceleration becomes larger than g. We know from subsection 4.2. that this cluster lifts
off from the bottom plate at the phase ¢, = arcsin (1/a). The phase ¢y, at which the cluster
hits the bottom plate again is given by Eq.(30); the (positive) relative velocity v, = Vp - Vem
between bottom plate and cluster (v, is the velocity of the cluster in the system's frame of
reference) at phase @, is given by Eq.(31) [see Fig.12(b)]. We give a schematic picture of

the situation in Fig.31

Fig.31

Schematic picture of a cluster
(moving downwards with v_,,) that
collides with the bottom plate
(moving upwards with vp). After
the collision the particles are
time separated; each particle j has a
velocity vp + uj.

Assuming {. << T, i.e. the contact time is much smaller than the period of the bottom plate,
we may turn to the reference frame of the bottom plate; for the sake of simplicity we also
neglect the influence of gravity during such short time intervals. This situation, i.e. the
collision of a cluster with a wall, was discussed in subsection 3.7. There the effective
restitution coefficient €. was defined as ¢ eff =~/Ef/Eg where E and Ey are the energies
just before and just after the collision. This leads to an expression for E¢ that includes only

the parameters v, and e
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4.5. The strongly dissipative regime (aluminum beads)

Ep = %?N u;‘ (43)

2
= eeprEg
g2, Nm 2
Eeff 2m Ve
where u; is the velocity of particle j relative to the bottom plate. Evidently, u; has two
components, the velocity of the center of mass relative to the bottom plate Ucm - Vp and the

velocity relative to the center of mass Au; = Uj - Uey + V. Separating u; in BEq.(43) we get

E¢ =1’2’~2j.v=1(Auj+ucm—vp)2 (44)

= "Nzﬂ(ucm - vp)z + %Ej’ilAlﬁ

Note that the sum over the velocities relative to the center of mass vanishes, i.e.

E?{_l Auj=0. We derive the velocity of the center of mass, using the definition of the

relative energy E, .| = %Ej\i ’ AuJ2 , from Eqgs.(43) and (44):

.2 2 2Ey
Uem =Vp Tq/EcffVe — N,r; (45)

2Ere]

=V, +€ vV, [1-
eff "¢ 2 2
P Nme g v§

=V, + aeffvc(l-(I)/Z) ,

with @ = E,; /Er <<1. Thus the relative kinetic energy

Erel = (I)Ef (46)

= ek
2 2

= 08 E o2y
of the cluster does not depend explicitly on the velocity of the bottom plate. This is so
because v, is a function of a, see Eq.(31); from the simulations, presented in subsection
3.2., the values of e.(N,e) [Fig.7(b)] and ®NV,¢) [Fig.7(c)] can be obtained. As an example
we give e.(N=10, £=0.6)= 0.89 and d(N=10, £=0.6) = 0.056.

The kinetic energy of the column after the collision in the system's frame of

reference is now
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4.5. The strongly dissipative regime (aluminum beads)

Inserting Eq.(45) in Eq.(47) and only calculating terms of order & we obtain
2
Eyip = % (Vp + 8effvc) - %nl EeffVeVp P - (48)

Eq.(48) is consistent with Eq.(13) in the limiting case of one particle, i.e. N =1, ® = 0 and
Eeff = E.

In Figs.32(a) we plot the kinetic energy in units of the mass, i.e. the first term of
Eq.(48), and in Fig.32(b) we plot the relative energy in units of the mass, i.e. Eq.(46), as a
function of the acceleration a.. We present numerically calculated values (lines) as well as
values extracted from MD simulations (circles). The parameters of the simulations are
N=10,e=0.6, 1. = 7x107 s and f=20s"1. The numerical solution of Eqs.(46) and (48)
was carried out using MAPLE V; for details see Appendix D1. The relative energy,
obtained from Fig.30 for o = 2 has to be compared with the value of E\1(a=2) obtained
from Fig.32(b); we find that both values coincide, i.e. E e(a=2)=0.02.

The important consequence is that the periodic pattern we observed during MD
simulations with rather short contact times [Figs.29(c) and (d)] and linear interactions does
not vanish for smaller contact times. We were able to predict the relative energy E ) with
simple arguments and without using the contact time as a parameter. Thus the detachment
effect is model dependent; moreover using physically correct material parameters (together
with the corresponding contact time) does not stop the detachment effect. The detachment
effect occurs for small o-values and on the other hand could not be observed for large o-
values, i.e. o>1. Furthermore, the results of MD and ED simulations agree with
experiments in 1D as long as ¢ >> 1. In the following we will proceed to examine the
detachment effect in 2D model systems. The question is if detachment appears in 2D under

the same conditions as in 1D.
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Fig.32:
(a) The kinetic energy Ey;, of N = 10 particles with ¢ = 0.6 is plotted in units of the
mass after a collision with the bottom plate at phase ¢,. Circles give data extracted
from MD simulations; see text for details. The line gives the numerical solution of
Eq.(48).
(b) The relative energy £ is plotted in units of the mass for the MD simulation of
Fig.32(a). The line gives the numerical solution of Eq.(46).
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5. Results of Simulations in 2D

In the following we will discuss the behavior of N particles of diameter d and
restitution coefficient €. First we let the particles fill a box of width L, where in their state of
lowest energy they form a triangular lattice. The height of the center of mass of this

arrangement is

hemo = 5[5 23, + V52 |+ 21y ] @)

ny = L/d-1/2 is the average number of beads per layer in the presence of walls (L/d for
periodic boundary conditions). In Eq.(49) ny, = int(N/ny) is the number of full layers and
ng = N-npny is the number of beads in the uppermost layer. For N = 50, ny, = 12.5 and
d=10°m we find ny=4 and  n,=0, which leads to
hemo = (d/2)[1+3+/3/2]=1.8x107m.

We now turn to the discussion of typical time scales in 2D systems. In Sec.3.1.2 the
contact time was evaluated to be [, = 3x107%s for the collision of two steel beads with
diameter d = 1 mm (for details see Appendix C). At low dissipation and for the L.SD-model
fc is proportional to K A2 see Eq.(22), so that an increase of K by a factor of 100
decreases . by a factor of 10. Taking physically reasonable values for ¢, leads to extremely
high MD computing times. This is due to the fact that one has to insure that several time

scales of the system are well-separated. Ideally one should have:
IMp << . << T , (50)

where fjyp denotes the time between the simulation steps, /. is the contact time and T = I/f
is the period of the vibration. The MD simulations reported here were done with
IMD < 1. /40, while T is in the range 0.0025 s < T < 0.05 s. For convenience we used
values in the range 2.2 x 107s < lo<7 ><10'4s, by choosing K accordingly, i.e. ¢, < 7/100.
Here we let ourselves be lead by the model character of Eq.(19).

Another time variable to be aware of is the average time f,, between collision

events. One may approximate f., by ., =[/V, where [ is the mean free path. In 2D [ is

comparable to (hem-hemo)L/(Nd), where the quantities /ey, and heyo denote, as before, the
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5. Results of simulations in 2D

1/2
height of the cm and vV = <v2> is an average velocity. We now use the quotient

O =ley /tc = (hcm "hcmO)L/(Nd V) (51)

similar to the definition of o in Sec.3.2.1. The value of o is the ratio between the average
time of free flight and the contact time /.. For o >> 1 one almost exclusively finds that only
pairs of particles collide. For o << 1 the contact time f, is larger than the average time
between collisions. In other words, during the time ¢, there is a high probability for a bead
to interact with several others. In this case the use of the restitution coefficient € used to
describe the energy dissipation is questionable with e only being defined for two-particle
collisions only (see Sec.3.2). In several test runs we found the condition o >> 1 to render
the MD results independent of ¢.. For the calculations reported here we checked that o > 2
always holds; in fact, in most cases we even have o > 5.

Since we utilize both, MD and ED methods, we recall the connection between the
parameters K and p used in MD and the restitution coefficient € used in ED simulations, see
Eq.(23) in Sec.3.1.1.

In our simulations we have d =107 m, Kimgeq =2 ><109s'2, n=2x 1031 as
typical parameters. These parameters together with the above equations lead to & = 0.87
and f,=7x 10s so that we use IMD = 10%. The maximal penetration for these

1

parameters iS Xpax = 2.1 % 10°m for vo=1ms™, ie. xpax =0.02d. The restitution

coefficient ¢ is experimentally found to be only weakly velocity dependent; for velocities

1 6ne finds & = 0.6 for aluminum and & = 0.92 for steel, see Sec.4. We note

around 1 ms’
here that we are allowed to use the parameters given above only for systems in which all
velocities remain smaller than 1 ms™L. In systems in which larger velocities occur one has to

decrease the contact time to a reasonable value.

5.1. Simulations in the fluidized regime

In subsection 4.3. scaling behavior was reported for the position of the center of
mass of a 1D-column of beads undergoing external vibrations. The observation in 1D was
that in the fluidized regime the height of the center of mass (hy) obeys Eq.(40). In the
following we will present the corresponding scaling laws for 2D-arrays of beads.

5.1.1. Fluidization due to the vibrating bottom plate

In the following we will analyse the behavior of the height of the center of mass Ay,
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5.1. Simulations in the fluidized regime

as a function of the parameters Ag, f, N and e. Before recording the data used in the
averaging we let the bottom plate perform from 50 up to 1000 vibration cycles, in order to
ascertain that the system is near its steady-state. The displacements, velocities, and energies
are then determined by averaging over up to 4000 cycles.

Snapshots of the system with N =50 and £ =0.9 are plotted in Fig.33(a) for
different values of the dimensionless acceleration o = Aocoz/g of the box (here o =0, 1, 2,
5, and 10). The contact time used here was f; = 0.7x10™s. In Fig.33(b) we plot the
corresponding number-density profiles. For small a-values we find that most particles are

situated near the bottom of the box; the packing is dense. For large a-values, the particles

(a) )

a=0 a=2 a=5 o=10
Fig.33:

(a) Typical snapshots of MD simulations. We have N = 50 particles in a box of
width L=13 d. The parameters used are ¢ = 0.92, 1, = 0.7x 1074 s, f=40 !, and
a varies between 1 and 10. The snapshots are taken in the steady state at phase
ZETO0.

77
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Fig.33(b)
(b) Number density p is plotted as a function of the height 4. The parameters are as
in 33(a).

have long times of free flight between collisions. For the simulations in Fig.33 we calculated
o, as given in Eq.(51), and found o= 37, 52, 74, and 120 for o =1, 2, 5, and 10,

respectively.

At first using N = 50 and ¢ = 0.92 we perform simulations in which we vary both
the frequency f and the amplitude A of the vibrations. Results are displayed in Figs.34. In
Fig.34(a) we plot /ey -hemo as a function of o for several simulations, in which ¢, varies
between 7x107% s (Kfmpeg = 210752, 1 = 118.7 571y and 2.2x107 s (K/myeq = 2x101%2,
u=3752 s'l). The amplitude Ag varies from 0.1 d to 6 d and the frequency f varies from
2057t up to 400 1. The parameter sets for the symbols in Fig.34(a) are given in Table.1.

To examine the dependence of the results on size dispersity we perform two series
of simulations with frequency f = 40 s'!in which we vary Ag, so that 0.08 < Ap/d < 5.9;
here L/d = 13 and 1, = 7x10™%s. As the size distribution parameter we take w=0 (open
triangles) and w=0.05 (filled circles). Hence, for slight diameter fluctuations we observe no
difference in the behavior of Aqp,. For a > 10 these data increase superlinearly. We connect

this to the fact that for the parameters used, in this o-range the maximal penetration x4
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5.1. Simulations in the fluidized regime

becomes comparable to the radius of the particles, and thus the MD simulations no longer
reproduce the behavior of metallic particles. To ascertain this statement further we present
simulations (full triangles) obtained for 3.1 < Ag/d < 7.0, and w = 0, for the same values of
fand L/d. Contrary to the situation above we use a much smaller contact time, . = 7x10™s
here. In this case the linear regime extends to higher a-values. This result is reasonable, and
is supported by the fact that we find that the data converge when . is decreased; in the
following we will take care that the values of #; used are small enough.

To test that the algebraic dependence of /iy -ficmo On @, i.e. on A is not due to the
particular frequency used we carried out two series of simulations in which we set
f=100s1; the first uses 7, = 7x10™s and 0.01 < Apy/d < 0.32 (diamonds for a < 20), the
second one f; = 7x107s and 1.25 < Agld < 4.34 (diamonds for o= 50). Here we again find
an algebraic dependence of hicy-hicmo on o over two orders of magnitude in o. To find the
dependence of hgy-hemo on the frequency f we performed three series of simulations with
slightly varying A, so that 0.50 < Ag/d < 0.63 and varying frequency, 20 st < f<141s71
the contact times are here 2.2x107s < lo < 2.2x10™% (open circles). Note the different
slope of these results, which indicates that the dependence of hgy-hemg on f 2 is different
from that on Ag. Note that f 2is proportional to o = (A()(DZ)/g.

To demonstrate that the presence of the walls only plays a limited role in this
parameter range we also performed simulations under periodic boundary conditions, by
taking as the repeat unit a box of width L/d = 14. Because of this somewhat larger L-value,
we expect the results to change in the order of 10%. Paralleling the last simulations (open
circles) we varied Ag, f and 7. by taking 0.50 < Ag/d < 0.55 as well as 60 s < f<141 s'l,
and 2.2x10™ < £, < 7x107 s. The data for periodic boundary conditions (filled squares)
display behaviors similar to the data found for boxes with walls; as expected, the value of
hem-hemo is somewhat higher. To look at the behavior of the system at lower amplitudes we
performed for periodic boundary conditions (L/d = 14) an additional set of simulations with
Ap/d =0.16 and ¢, = 2.2x10* s, in which we varied f in the range 40 st< f<98 g1 (open
squares). Finally to test the behavior of the system for extremely small amplitudes (and high
frequencies) we performed a set of simulations in which we varied Aq such as to have 5x
10° < Ag/d < 107, while keeping fixed f=400s", L/d=14, and 1, = 2.2x10"%s

(crosses).

79



5.1. Simulations in the fluidized regime

o~ b“‘l LR ' 'Dg""”loo‘f\’
pb

1071 AN

Evp (a) et

-] i > H ]

D> o)

8 -2 L p” 8 —

N A

= - o® 000659 ++ B

3~ D{>E] Dgoo ++ |

1073 & bo O ot -

g E . o® Wy 3

3) [ 2 _|_+ ]

L O ++ A

Fq 10-—4:::.' L ||||||1l 1 ..l.n;.'
1 10 102 X

T "I""| ' LA B ' "l""’

£ I (v) z

107" | -

o = E

& i ]
O -2

< 10°F E

| ] ;
._3_

5 10 E

< 3 ]

10“4. 1||||||| 1 |1||1||I ! Lo Lo

107" 1 10 Aow

Fig.34:

(a) Log-log plot of hey-femo as a function of o = Aoooz/g for N = 50 and £ = 0.92;
the parameters corresponding to the symbols are given in Table.1. (p) indicates
periodic boundary conditions. The averages are taken at phase zero.

(b) The symbols of Fig.34(a) (small circles) and one series of ED simulations
(crosses) are plotted as a function of Agw in logarithmic scales. All results scale
and the dashed line has the slope 1.495. The parameters used in ED simulations are
N=50,f=100s", ¢ =092, ¢, =0.96, and 2 < o = 700.
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Ao/do 7D Lidy A0
> [0.08-59 |40 13 7x10
® (003-59 |40 13 w=0.05 | 7x10"
> 31-7.0 40 13 7x10°
> [001-032 1100 13 710

1.25-434 | 100 13 7x10°S
O |06 20-57 |13 2.2x10%

0.55 60-90 |13 7x10°5

0.50 100 - 141 | 13 2.2x10°
RS 60-90 |14 (p) 7x10°

0.50 100 - 141 | 14 (p) 2.2x10°5

0.16 40-98 |14 (p) 2.2x104
-4 [5x10%-10% [ 400 14 (p) 2.2x10%

Table.1

Parameters and symbols used in Fig.34(a).

In Fig.34(b) we replot the results of Fig.34(a) (except for the data where X, Was
found to be too large, see the discussion above). We display the dependence of Aopy-fiemo on
Agw in logarithmic scales. We observe an impressive scaling of the data; a linear fit leads to
a slope of 1.495+0.009. Within this uncertainty we can hence assert that hgy-hemo

(Aom)3/ 2. Now we plot, as crosses, the result of a series of ED simulations, where we use
N = 50 particles, f =100 st =092, gw = 0.96 and we vary « in the range 2 < a < 700.
As is obvious from the figure the ED simulations lead to the same results as the MD

simulations.
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5.1. Simulations in the fluidized regime

In Fig.35 we plotted the number-density profiles p(h) for different o-values,
6 < a < 50. We scale the results by displaying the height 4 in units of A, and the
number-density in units of pg = 1/Acy. For comparison we also give the exponential
function exp(-h/hcy), represented as a straight line. This exponential form is the density
profile of a Boltzmann gas without dissipation. From Figs.34 and 35 we find that in the
fluidized regime the height of the center of mass (and thus the potential energy) scales with

3/2, of the box and not with the acceleration o. This

the typical velocity Agw, i.e. (Agw)
situation parallels our findings [62] in the 1D case (see Sec.4). The density profiles for
different amplitudes and frequencies also scale with /¢y, and do not change for given N and
e as long as the system is fluidized (compare Sec.4.3.4 for 1D). We attribute the fact that

the density profiles differ from the Boltzmann-gas behavior to the dissipative aspect of the

collisions.
1 -
o
Q.
~_ 107"
Q.
1072
0 1 2 3 4
h / h__
Fig.35:

Logarithmic-linear plot of the normalized number density p/pg for N = 50 and
e = 0.92 and different f- and Ag-values from Figs.2. We use [ =40 s with
Ao/d = 0.93 such that a = 6 (squares), Ag/d = 2.17 such that a = 14 (diamonds)
and Ap/d = 4.7 such that o = 30 (circles). These data correspond to the triangles
of Fig.2(a). We also use f = 100 s with Ag/d = 0.5 such that o = 20 (triangles)

and Ag/d = 1.24 such that o =50 (crosses). These data correspond to the
diamonds of Fig.34(a). The straight line corresponds to exp(-#/hcy,).
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5.1. Simulations in the fluidized regime

5.1.2. Dissipation in 2D systems

In the following we will discuss the dependence of /¢y, on N and ¢, the parameters
which control dissipation. In Fig.36(a) we plot Aey-hemg as a function of X = (N/ny,)(1-¢).
The choice of X is based on the findings of Sec.3.2.4.; the definition is consistent with the
1D case, in which ny, = 1, so that in 1D one has, as before, X = N(1-¢). In the simulations
displayed in Fig.36(a) we use L = 13d (no periodic boundary conditions), the other
parameters can be extracted from Table.2. To find the behavior of the system for different
e-values we first carry out three series of simulations, in which we set N = 50 and scan € in
the range 0.5 < € < 0.99. Here we use f = 40 st and a = 10 (open triangles), f = 100 s
and a = 10 (filled triangles) as well as f = 100 st and a = 50 (circles); 1. is taken in the
range 7x107s < le < 7x107%. In general we find that h¢p-hem decreases with increasing
X, i.e. with decreasing e.

Furthermore, in two more sets of simulations we keep N = 100 fixed and scan ¢ in
the range 0.2 < £ < 0.97. We take here 1. = 7x10"ss,f =100 5! and choose a = 10 (results
indicated by diamonds) and a = 50 (results indicated by crosses). The result of this set of
simulations is that for X > 2, i.e. ¢ < 0.5, the data no longer follow an algebraic behavior; in
this X-range the fluctuations of hcp-ficmo are much larger than for X < 2. The system is here
quite far from the fluidized regime.

To test the behavior of the system when the number of particles changes, we vary N
in the range 15 < N < 250 and use e-values in the range 0.9 < ¢ < 0.98; furthermore, we
take f = 40 st and o =10 (open squares), f= 100 st and o = 10 (hexagons) as well as
f=100 st and o = 50 (filled squares), while . varies in the interval 3x107s < o < 7x
10™%s. We again find that h¢py-henmo decreases with increasing X, i.e. with increasing N. We
tested for several parameters that the height of the center of mass does not change much

with decreasing f.
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(a) Log-log plot of hey-hemp as a function of X=(WN/np)(1-¢) in a box of width
L=13 d; the parameters corresponding to the symbols are shown in Table.2. The
averages are taken at phase zero.

(b) hem-hemo from Fig.36(a) (small circles) and from a series of ED simulations
scaled by (Aom)3/ 2 are plotted in logarithmic scales. The dashed line has the slope
-0.90, the full line the slope -1. The parameters used for the ED calculations are

a=10and o = 50, f= 10057}, & = 0.96, ¢, = 0.98, and 10 < N < 205.
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5.1. Simulations in the fluidized regime

N € a |[f() ]t (©s)

50 0.5-0.9825 |10 |40 7x107 - 7x104
50 0.94-099 |10 |100 |7x10°

50 0.7-0.925 |50 |100 |7x10°

100 0.2-0.97 10 1100 |7x10%
100 02-0925 |50 |100 |7x10°5

SWMOHOOWV

15-250 | 0.96 10 |40 7x10°° - 7x10
40-160 |0.98 10 100 |3x10°%
175-250 | 0.9 50 1100 | 7x10° - 7x10*
100 0.96 100 | 100 | 7x10°

200 0.98 100 | 100

400 0.99 50 | 100

Table.2

Parameters and symbols used in Fig.36(a).

In Fig.36(b) we plot on the vertical axis (fem-femo)/(Aow)>? as a function of X and
we again find that the data scale. The best linear fit to the data gives the slope -0.90+0.01;
as indicated in Fig.36(b), a value of -1 is still acceptable. Hence, for simplicity we have
hem-hemo & 1/X. In addition, we carried out a series of ED simulations, where we used
f=100 s1, 0=10and a =50, ¢ = 0.96, and ¢, = 0.98, while we varied N in the range of
10 < N < 205. These data are plotted as crosses in Fig.36(b); we again find the results of ED
and MD simulations to be in impressive agreement. We attribute the deviations from the

X ! behavior for small X-values to the dissipative collisions with the walls.
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5.1. Simulations in the fluidized regime

1 0—2 | L | L i R

h / h__

Logarithmic-linear plot of the normalized number density p/pg for N = 50,
Ag=1.55d and f = 40 s1, such that o = 10. Here ¢ equals 0.6 (crosses), 0.8
(triangles), 0.9 (diamonds) and 0.95 (squares, connected by dashed lines). These
simulations correspond to the triangles of Fig.36(a). The straight line corresponds
to exp(-h/hep).

Fig.37:

In Fig.37 we plot the normalized density profiles for N = 50, f = 40 st and o = 10,
while we vary € between 0.6 and 0.95, i.e. 1.6 >X >0.2. The normalized density profiles
tend to an exponential function when e tends towards unity. In other words, if the
dissipation is low (small X) the density profiles are of nearly-exponential form, whereas for
large X-values deviations occur: the particles concentrate mainly at the bottom, and the
system is less spread-out, i.e. a dense state coexists with a dilute state at the top - we have
surface fluidization. For large height-width ratios, i.e. ny/ny, > 1, we find an additional dilute

region with extremely high average velocities at the bottom.
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5.1. Simulations in the fluidized regime

5.1.3. The effect of walls in 2D

We focus on the height-width ratio ny,/ny, of the system and on effects induced by the
walls. In Fig.34 we presented some simulations with periodic boundary conditions, i.e. no
walls. For the parameters used the behavior of the system does not depend on the existence
of walls. To test this statement for distinct conditions we present a series of MD simulations
where we vary the width of the box ny, and the acceleration of the bottom plate o In Fig.38
we plot the reduced height of the center of mass scaled by (Aow)3/ 2 as a function of the
width of the box nb We fix the height of the system at rest such that n, = 4 and N = npny,.
We use f= 10057, € = 0.95, t. = 2x10"% and vary the amphtude Ag such that o = 10, 20,
and 50 corresponding to Agw = 0.156, 0.312, and 0.781 ms™L. The results for a fixed ny, and
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Fig.38:

hemPiemo scaled by (Aoco)3 2 plotted as a function of the width ny, of the box for
e=0.95, f=100s! and fixed height ny, = 4 such that N = nyn,. We use different

acceleranons o = 10 (triangles), a = 20 (circles), a = 50 (crosses). Here 1, = 2x
107%s.
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5.1. Simulations in the fluidized regime

different o scale within the statistical fluctuations of the height of the center of mass and
agree with the predicted wvalue of (hcm - hcmo) / (Aou))3/ Z. Cop/X =0.1 where
Cop =0.02 s32mV2 i5 a constant obtained from the simulation results of this subsection
and X = (N/ny) (1-€) = 4(1-¢). Thus the consequences of the width of the container for the
behavior of the system are rather weak.

To test the influence of dissipative walls on the system we present a set of ED
simulations in Fig.39 with N =50 particles in a box of width L = 13 d; the frequency of
vibration is f = 100 s"'and the amplitude is varied such that 4.8x10>m < A <0.02 m. One
series of simulations is carried out using & = 0.92 and &, = 0.96, depicted as small crosses
[compare to Fig.34(b)] and as triangles. For the second series we again use & = 0.92 but
here the dissipation during collisions with the wall is neglected, i.e. e, = 1; these simulations

are depicted as circles. We find that all data follow the power law (Aow)3/2, observed in
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Fig.39:

Log-log plot of oy -hemg as a function of Agw for N = 50, & = 0.92, f = 100 s™land
a in the range 2 < o < 700. We replot the data for ey, = 0.96 already presented in
Fig.34(a) (small crosses) and present additional simulations for the same
parameters but for larger a-values (triangles). Furthermore, we plot simulations
obtained with e, = 1 (circles). The lines give slopes of 1.5 and 2 respectively.
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5.1. Simulations in the fluidized regime

Fig.34(b) for Agw < 0.4 ms™! whereas the power is 2 instead of 3/2 for Agw > 0.4 ms™ if
gy =1. The power laws 3/2 and 2 are represented as dashed lines in Fig.39. These
calculations leads to the conclusion that 2D vibrated systems depend on the velocity of the
bottom plate like 1D columns [Sec.4] but the power law is different due to the existence of
dissipative walls. If the dissipation with the walls is neglected the power law shows up with
a cross over from 3/2 to 2 (for our parameters the crossover velocity is Agw = 0.4 ms’l).
For small velocities, i.e. Agw << 0.4 ms™! the system is rather dense whereas for large
velocities, i.e. Agw >> 0.4 ms™! it is dilute. We attribute the change in behavior to the mean
free path I. For the simulation with Agw = 0.4 ms™! we compute [ = 0.38 L.

Thus the behavior of vibrated arrays of beads in 2D changes if the mean free path is
comparable to the size of the system and if the collisions with the walls are not dissipative.
If the density is large, i.e. = d << L, the next collision of a selected bead will involve one of
its nearest neighbors; in contrast, if the density is small, i.e. [ >> L, the bead can collide with
another particle or with a wall. If the contact with the walls is dissipative the behavior of the
systems is the same for /L << 1 as well as for //L >> 1 because any contact is dissipative.
The situation is changed dramatically if the possible contact with the walls is not dissipative;
the larger /L, i.e. the larger the probability for a contact with a wall, the lower the average
dissipation.

5.2. MD simulations of convection

In the following we present results of MD simulations in 2D with dissipative walls;
the system consists of N = 100 particles of mass m with restitution coefficient ¢ = 0.9. To
facilitate the connection to Ref.[48] we use the same units: the length is then given in units
of 1 mm and the time in units of 0.01s =1 cs. We set g= 10 ms™2 = 1 mm/(cs)z, d=2mm
andAg = 0.55 d = 1.1 mm. We vary 7, between 0.00316 cs and 0.316 cs, i.e. from a realistic
value to a value two orders of magnitude larger. With these ¢ and te, K/m in Eq.(14) obeys

493500 (cs)? > Kim > 49.35 (cs)%; furthermore, one also has 33.3 (cs)! > D, =D,
>0.333 (cs) ! in Egs.(15) and (16). We take D, and D; as dissipation parameters for the

interactions between the particles and the lateral walls D, = 20 D, and D, =20 D;.

To monitor the onset of convection we use the order parameter J introduced by Taguchi
[48]. For this the container is divided into cells of size length d = 2 mm (this corresponds to
the spheres' diameter). One counts the number of particles coming into or going out of the

cell centered at r, and averages with respect to time:
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5.2. MD simulations of convection

/& ~ 52
)= \Eélmxxr)—r)-é(xi(r-Ar)—r)t{xi<z>—xi<r~Ar>}> » G2

Here r denotes the integer coordinates of the cell considered; x;(¢) is the integer coordinate
of the cell which contains the center of particle i at time . Thus 8(x;(t)~r) equals one, if
particle i is at time ¢ in cell r, and zero otherwise. In Eq.(52) the term with absolute value
signs equals zero for the particles which during Az did not change their cells; it equals unity
for the particles which have changed their cell between times 7-Af and 7. The brackets

indexed with ¢ denote the temporal averaging. We now define J, the overall strength of

_ \/W , (53)

In Fig.40 we plot J, averaged over 180 periods, as a function of o for the t, values 0.141 cs,
0.1 cs, 0.0316 cs and 0.00316 cs. The error bars on J are of the order of magnitude of the
symbol size. The main result of Fig.40 is that J is in general an increasing function of a. For

convection through:

quite large o J decreases again, a fact due to the decrease in the particles' density. We focus
on the onset of convection. Of interest are moderate values of o. We find that for large ¢
convection starts for a around unity (as found by Taguchi [48,91]) whereas for small 7, i.e
closer to the physical situation, the onset of convection is above o = 2. Furthermore, the
strength of the convection decreases with decreasing /.

To visualize this statement we present in Figs.41(a)-41(c) simulations performed at
constant a and & (a = 2, & = 0.9), while £, varies: we use ¢, = 0.222 cs (a), 0.1 cs (b), and
0.01 cs (c). We display the displacements of the particles after 10 vibration periods (at
phase 0) by arrows; the initial positions are given by circles. Fig.41(a) shows convection in
the whole volume, Fig.41(b) only in the upper half and Fig.41(c) only some motion in the
uppermost layer. Paralleling Figs.41(a) and 41(b) we plot in Figs.42(a) and 42(b) the field
J(r). The average is taken over 180 vibration periods; for convenience of presentation the
length of the arrows was increased by a factor of four. Again, for decreasing 7, we find
decreasing convection. An analogous figure to 41(c) shows no convection; we restrain from

presenting it here.
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Fig.40:

The convection strength J, Eq.(53), as a function of o, Eq.(8). The parameters
used are g=10ms?, N =100, e = 0.9, d=2mm, L = 134, and Ay = 1.1d. The
contact times £, are 0.141 cs (triangles), 0.1 cs (crosses), 0.0316 cs (circles) and
0.00316 cs (squares).

An explanation for the dependence of J on £, may be found in terms of the
detachment effect. In previous sections we showed that even when colliding pairs dissipate
their energy strongly, the MD simulations may lead to large interparticle-distance

fluctuations and low overall dissipation. A characteristic parameter for this behavior is the
ratio o = [/(V1.) between the typical free-flight time and te, see Eq.(51). In Eq.(51) [ was

approximated through the mean free path  ~ (g, - hemo)L / (Nd) (here 2(hey, — hopmo)L
is the average free volume and 2d is the cross section of hard spheres in 2D); ¥ is a typical

relative velocity, say v = <v2 > The main result of subsection 5.1 was that when o >> 1

the simulation results (MD and event-driven, ED) agree quite well in 2D. For ¢ << 1, on

the other hand, spurious effects connected with detachment occur (see Sec.3.2.3.). Thus o
is determined using o = (figy, — gy )L / (Na' Vi), see Eq.(51), where &, is the height of

the center of mass and A, is the height of the center of mass at rest.
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Fig.41:

(a) Plot of the particle distribution and the displacements for g=10 ms'z, N =100,
£=0.9,d=2mm,L =13d, Ag = 1.1d, and o = 2. Here t. =0.222 cs.

(b) Parameters as in Fig.41(a). Here 7, = 0.1 cs.

(¢) Parameters as in Fig.41(a). Here ¢, = 0.01 cs.
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Fig.42:

(a) Plot of J(r), Eq.(52), for the simulations shown in Fig.41(a).
(b) Plot of J(r), Eq.(52), for the simulations shown in Fig.41(b).
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Fig.43:

(a) The convection strength J as a function of ¢, for g = 10 ms™%, N = 100, £ = 0.9,

d=2mm, L =13d, Ag=1.1d and a = 2. Here t, varies between 0.00316 cs and
0.316 cs.

(b) Plot of o as a function of 7, for the same parameters as in Fig.43(a).
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5.2. MD simulations of convection

We argue that the observed convection is related to high l.-values (and small o-
values). To justify this we give resuits obtained for N =100, &= 0.9, a=2 and
Ag=0.55d = 1.1 mm in Figs.43. In Figs.43(a) and 43(b) J and o are plotted as a function of
.. We observe that the sharp increase in the convection strength J correlates with the
decrease in o to values below unity and hence with the onset of the detachment effect in
MD simulations.

We conclude that lowering 7, reduces the detachment, i.e. increases the density; by
this convection is rendered more difficult. The time scales are also different: MD
simulations may already show convection when monitoring a few vibration periods, whereas
convection in experiments, such as block-motion, has waiting times much larger than the

period of excitation [13].
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6. Discussion and Conclusions

In summary, we introduced event driven as well as molecular dynamics methods to
study dry granular materials. We presented an ED algorithm suited to dealing with both the
fluidized and the clustered phase; furthermore, we discussed a MD scheme using linear as
well as non-linear interaction laws. We established the connection between both simulation
methods and gave an explanation for differences obtained in the results. In addition, we
studied one-dimensional and two-dimensional model systems undergoing vertical vibrations
and explored the transition from the fluidized to the condensed and clustered regime. We
found scaling laws for the fluidized regimes in 1D and in 2D and presented the relevant
parameters for granular systems under vibrations. We find that the behavior of 2D systems
is strongly influenced by the existence of the walls. Besides fluidization we were interested
in the onset of convection in model systems, an effect depending on the parameters used in

MD simulations.

The ED simulations we presented follow a sequence of events and are based on
binary collisions. If particles are in contact very often the computing time needed for ED
simulations becomes very large. In 1D we developed the LRV procedure which is able to
circumvent this problem. Clusters are allowed to occur for vanishing relative velocities and
we sort events inside a cluster with respect to the relative velocites, i.e. the first event in a
cluster involves the pair of particles with the largest relative velocity.

For MD simulations we introduced microscopic contact interaction laws and thus
integrated Newtons equations of motion. The basic difference between ED and MD
methods is the time, particles are in contact. In ED simulations the contact time is implicitly
zero, whereas for MD simulations the contact time depends on the parameters used. We
relate the restitution coefficient, defined for ED simulations, to the parameters used in MD
simulations, i.e. to the spring constant and the dissipation parameter. A large spring
constant, for example, corresponds to a small interaction time. We computed the contact
time and we present the dependence of ¢ on the relative velocity for linear as well as non-
linear interactions. We found that MD calculations imply insufficient energy dissipation in
the system considered, when the number of dissipative contacts is large. This implies that

the MD simulations over-estimate the density and energy fluctuations. The effect is most
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obvious for linear interaction laws but also holds for non-linear interaction laws.

As a measure for the occurence of anomalous low energy dissipation, one can use
the ratio o between the time of free flight and the contact time 7. The MD simulations
underestimate the energy dissipation and lead to large fluctuations for o<<1. On the other
hand for o>>1 no particular precautions are necessary and we find that the results of MD
and ED simulations agree with each other. Note that ED simulations always behave like
MD simulations with o >> 1. These computation-induced phenomena may be inhibited by
using physically reasonable small values for the time ¢, and nonlinear interactions.

Furthermore, we have achieved a direct dynamic assessment of model systems in 1D
and in 2D. As stressed, in these systems a progressive transition takes place between a
condensed phase, where the dilatation is close to zero and the beads' motion is collective, to
a fluidized phase, where the beads' motion is erratic. We find in the fluidized regime that the
height of the center of mass and hence the potential energy follows the scaling law

2 -1
Cip (Aow)3 , X ; 54
Bem = Bemo =4 C2p (Agw) /2 x~ , forey, <1

C;D(Aou))2 X1 for ew=1and [/L>>1 ,

where Cip =4/(3g), Cop =1/(5%) m'2512 ang C;D =2/(5g) . The parameters
involved are Ap, w, N and & whereas the relevant parameters are only Agw and
X = (N/ny,) (1-¢). In particular, the velocity Agw controls the potential energy, whereas the
effective dissipation parameter X is important for the shape of the density profile. The height
of the center of mass /)-hcmo does not explicitly depend on the acceleration o, although
the onset of fluidization does.

The main difference between one- and two-dimensional systems consists in the fact
that in 2D systems with dissipative walls the power law of Agw is 3/2, whereas it is 2 in 1D.
In a 2D situation where the collisions with the walls are elastic and the mean free path
[ >> L we found similar to the 1D case a power law of 2. The dependence on X is the same
in 1D and in 2D. In 1D the exponent of X was found to be -1 for X < 0.1 (for 0.1 < X < 2.8
a second order polynomial correction for the X-dependence was applied), while in 2D we
find the exponent of X around -1 in the range 0.05 < X < 2.

In 1D, we evaluated, as a function of the parameters ¢ and N, the acceleration,
needed to reach the fluidized phase for all the beads. When N >> 1 we showed that the
acceleration scales with X' = N (1-¢). In particular, for very high accelerations o and for
X>X. (say X=3.1) we never found that the whole column fluidizes. Instead, for
2.5<X <4 we find that the column separates into an array of condensed beads at the

bottom and into several beads fluidized at the top. For very low accelerations we observe
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that the column moves as a block, so that no fluidization occurs. For X < X, we found that a
cluster separates due to a collision with the bottom plate, while for X > X a clustered block
stays clustered. Furthermore, we related the threshold value X, to the findings of Bernu and
Mazighi [31] who studied a column of beads hitting a wall without gravity; in our system
with gravitation we found a variety of additional effects, since energy is steadily fed into the
system.

At low accelerations the Fourier spectrum of the cm-motion shows subharmonic
responses, which reproduce a Feigenbaum scenario, interrupted by series of fluidized and
chaotic regimes. In this case, the column behaves for all practical purposes as a condensed
block, with long phases of motion where all beads have almost the same velocity but are not
necessarily in contact. An important point is that the acceleration which determines the
onset of the transition regime may become extremely large in the case of low restitution
coefficients and high number of beads.

The agreement between 1D experiments and numerical simulations is good. In
experiments the numerically predicted fluidized regime at high restitution coefficients, for
example steel beads, was observed. For small X we showed that the density profiles, found
from numerical simulations scale with the experimental data. For large X (X = 4), for
example aluminum beads, we observe a bifurcation scenario and find condensation as well
as clusterization in ED simulations as well as in experiments. Our MD simulations did not
lead to the clustered behavior of aluminum beads; we observed the detachment effect.

In addition, we have presented 2D situations encountered in MD simulations of
rather densely packed grains. We have shown that taking realistic contact times ., while
keeping the restitution coefficient € constant, leads to quite small values for the convection
strength J. On the other hand, when 7, becomes large convection rolls form readily. This is
the domain of the detachment effect, where the interparticle distances fluctuate greatly; for

due to the large friction of the particles with the boundaries convection is enhanced.

It is worth noticing that some of the features of the response of vibrated model
systems in 1D reappear, at least qualitatively, in higher dimensions as well. A restriction on
the simulations presented here is that they have been performed in 1D and in 2D.
3D-simulations are neccessary, since many phenomena found in granulates seem to stem
from steric effects. The techniques we presented can, of course, also be applied in 3D. It is
only the available computer time that at present limits our possibilities to perform
simulations with 3D-systems of reasonably large sizes.

However, in 2D and 3D bifurcation scenarios are also observed [13,19,70].
Fluidization is evidenced in 2D and 3D experiments; there a fluidized regime at the surface

may coexist with a condensed phase. Similarly to the 1D case, surface fluidization was
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shown to be strongly dependent on the internal dissipation of the granular material [19].

Evidently, more work is neccessary in order to determine optimal parameters for
MD simulations. For the study of effects like heaping, size segregation and convection one
may have to include, in addition to reasonable contact times, static friction and rotation of
the particles as well. For the microscopic interactions, aspects like memory, i.e. hysteresis,
may be important [58,59]. The idea of pairwise interactions must be reconsidered in
situations when, as a rule, a particle is in contact with several of its neighbors.

We close this study on a cautionary note about taking computer-generated patterns
as a valid explanation for experimental findings: a careful comparison of the macroscopic
outcome with experimental benchmarks, as well as an in-depth analysis of the parameters

and models used for the simulations is always required.
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Using the event-driven algorithm presented in subsection 2.2 we are able to simulate
the fluidized regime very effectively because the computing time is proportional to the
number of events, and not (like in MD simulations) to the number of time-steps. In the
fluidized regime the times between collisions are large and beads move independently of
each other. In the condensed regime the time intervals between collisions decrease (e.g.
Fig.2) and several beads are close and move in a correlated way [compare Figs.13(b) and
13(c)]. In the following we describe a new algorithm which is able to get rid of collisions
occurring at extremely short time intervals. This algorithm is similar in spirit to the
procedure for individual beads but is also able to deal with clusters.

Formally, we introduce the concept of clusters as systems of beads in contact. We
let two objects turn into a cluster if their relative velocities after an event lie below a certain
value v; then we set their relative velocities to zero. As long as there is no cluster in the
system, the normal event-driven procedure increases time with time steps Af; defined in
Eq.(11). These time steps become very small for objects almost in contact (see Fig.2). Many
processes then happen almost simultaneously. To speed up the algorithm we developed the
Largest Relative Velocity (LRYV) procedure. For this we compute all relative velocities
Av;=v;_1-v; between all pairs (i, i-1) of clustered objects. Objects with Av;<0 do not collide,
whereas the objects with Av;>0 are bound to interact.

The LRV procedure works as follows: we pick out the maximal value of the set
(Avy), say Avj=max(Av;) and let the corresponding pair (say j, j-1) collide. The velocity
changes are computed, using the same collision matrices as defined in Eqs.(12) and (13);
then the set (Av;) of relative velocities is updated. The above procedure is repeated until all
Av; of objects in a cluster are less than or equal to v, (some Av; can, of course, become
negative in which case some beads leave the cluster).

We will now discuss the special cases which involve collisions of clusters. On first
glance we may differentiate whether the bottom plate is involved in the collision or not; this
leads to three possible situations to be accounted for. If the bottom plate is not involved
collisions occur between two clusters, say with N1 and N, beads each. If the bottom plate is
involved we have a cluster (N1) colliding with the bottom plate, or a cluster (Ny) that

collides with another cluster (N5) which rests on the bottom plate. These situations include
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as special cases the simple binary collisions of one bead with the bottom plate or with
another bead (one bead is a special case for a cluster). These three distinct situations are
dealt with on the same footing by the LRV procedure; they differ, however, physically, due
to the very large mass (assumed infinite) of the bottom plate. We consider them one by one.

A.l. Collisions of two clusters

In a collision involving two clusters of sizes Ny and N,, a total number of
M = N1+N; objects are in contact which means in 1D a total of M-1 interacting pairs. To
visualize this case we plot the trajectories of two columns of Ny = 2 and N, = 3 beads each

during a collision in Fig.44; the computation was performed with the restitution coefficient
e =0.8.

Fig.44:

Trajectories of 5 beads, initially in two clusters, for & = 0.8.

To test the outcome of the LRV procedure we look at what happens when the initial

separation sy between the beads decreases towards zero. Thus we carry out a series of
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simulations in which we vary sg; we take it to be sy = 1073m, 5o = 10"*m, Sp = 10'5m,
50 = 10°%m and so = 0 m. The simulations for sy > 0 are performed in the event-driven
fashion, whereas for sy = 0 LRV is used. In all simulations the center of mass is a conserved
quantity; for identical initial conditions (except sp) the trajectories after the collisions
coincide quantitatively for all sy < 107m. Thus the LRV procedure reproduces the behavior

of two colliding columns of beads very well when s is small.

A.2. Collisions of one cluster with the bottom plate.

To illustrate this case we plot a cluster of beads (N7 = 5) that hits the bottom plate
in Fig.45; we take € = 0.9 and ¢, = 1.0. This special case computed in the LRV formalism
can be directly compared to the results of the independent collision wave (ICW) model
introduced by Bernu and Mazighi [31]. The ICW formalism uses the transfer matrix Y for

Fig.45:

Trajectories of 5 beads, initially in one cluster, which hits the bottom plate. The
restitution coefficients are e = 0.9 and e, = 1.
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one collision wave such that u; = Yjjvj, where u; and v; are the velocities of the particles
before and after the collisions, respectively. Y is an ordered product of (N+1)x(N+1)

matrices; say for one collision wave from below:
Y, =Dy 1uDy_2n-1---D12Dg1 - (A1)
The Dj.q ; are related to the Cj.q ; of Egs.(12) and (13); they have an almost diagonal form:

(A2)

D reT rowi-1
. o= | T .
-1 Lizhl rowi .

For small X, see Eq.(38), (say € = 0.9 and N = 5) the collision waves do not interfere
and we find that the ICW and the LRV models lead to exactly the same results. The
difference in the velocity of the beads is smaller than 1012 ms™ after the collision. At these
low X-values the order of collisions is indistinguishable in the two models. For large X, say
e =0.6 and N =5, the order of collisions in the two models does not coincide anymore,

since different collision waves catch up with each other and interfere.

102



Appendix A (LRV procedure in 1D)

A.3. Collisions of a cluster resting on the plate with another cluster

As in A.1 and A.2 we carry out the sequence of collisions in the order specified by
the LRV procedure when the clusters hit each other. As an example for this case we plot
the situation when N1 = 3 beads hit Ny = 2 beads which rest on the bottom plate in Fig.46.

Fig.46:

Trajectories of 3 beads in a cluster which hits a cluster of 2 beads resting on the
bottom plate. The restitution coefficients are € = 0.9 and ¢, = 1.

AA4. A test for the cut-off velocity

When the relative-velocity of two objects drops below the cut-off velocity v, we
merge these objects into a cluster in the LRV-procedure. This leads to a transition from a
condensed (but still separated) stack of objects to a cluster of objects in contact. In the

stack the times between collisions do not vanish in general, whereas in the cluster the times
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Appendix A (LRV procedure in 1D)

between collisions are zero. Thus we have to choose the arbitrary cut-off velocity v, to be
orders of magnitude lower than the typical velocity of the system, given by Agw. In an
independent series of simulations we have tested the dependence of the height of the center
of mass /.y, of the dissipation time tp and of the mean dilatation A on the value of v, We
find that the choice of v, does not influence these quantities, as long as v, << Agw. In Fig.47
we display the height of the center of mass /¢y, (triangles), the dissipation time tp (circles)
and the mean dilatation A (squares) versus v, of a system of N =10 beads with
Agw = 0.25 ms'l, e = 0.9 and gp = 1. These values do not change as long as we choose v,
such that v, < 10 ms'l; thus when computing A.p,, Tp oOr A taking v, below 10" ms! leads

to decreases in the computing time without effecting the outcome of the simulations.
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Fig.47:

Results for hqy, (triangles), tp (circles) and A (squares) obtained as a function of

the cut-off velocity v.. Here N =10, Agw = 0.25ms™!, £ = 0.9 and ep = 1. Below
10" ms, the data are independent of v.
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Here we focus on a numerical procedure [35] for the solution of the equations of
motion for many particle systems. As usual in computer simulations one has given the
position, the velocity and other dynamic information at a time ¢ [here this information is
component of a field G(r)] and wants to obtain the position, velocity etc. at a later time +As
[i-e. one wants to obtain G(t+A1)].

In this study At is equivalent to the time step of the molecular dynamics simulation,
‘™MD and in fact limits the time-scale available in simulation. Assume a system with a
vibrating container and steel spheres of diameter 2mm, ie. the system of Sec.5.2.; we
simulated 200 periods, i.e. 10 seconds. The physically correct contact time for the spheres
used is £, = 6x10%, what corresponds to fyp = 107%. Thus we had to perform roughly 107
MD steps.

The predictor-corrector algorithm may be generalized, as follows:

S1) given is G(7)

S2) predict G(t+Ar)
(83) | evaluate the forces (acceleration ;P = f;/m;) using the predicted G(t+Ar)
(S84) correct G(1+At) using the accelerations aP
(85) calculate any values of interest and increase time: ¢ := r+A¢

S6) return to step (1)

If the trajectory is continuous, an estimate of G(+Av), ie. step (52), is a Taylor expansion
about time #:

P+ A= r(t)+ Aw(r) + Lan?a@y+ L’ b@y+...

v+ A = v+ Ata(t) + %(Ar)zb(z)+...

aP(t+ A1) = a(t)+ Ab(1)+...

P(t+Af) = b(r)+... (B1)

and the superscript 'p' marks these values as 'predicted’ values and ¥, v, a, and b stand for

position, velocity, acceleration, and the third time-derivative of respectively. Here we cut
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Appendix B (The predictor-corrector algorithm)

the sequence after the third derivative; for the use in simulations we will cut after the fifth
derivative. We found it convenient to use the Nordsieck-Gear predictor-corrector method,
where the  quantities g (go(t) = (1), 8100 =A1v(®),  gr(1) = (1/2)(A1)2 a(s),
g3() = (1/6)(At)3 b(1), ...) are time-step scaled. Eq.(B1) now writes, up to fifth order as:

gh+An) (1 1 1 1 1 4 200 (B2)
gl (t+A0) 01 2 3 4 5 g (1)

gl +Ar) 0 01 3 6 10 8,()

eP+an| 1o 0 0 1 4 1 0|’

gf(t+At) 0 0 001 s g4(0)

gfa+an) (00 0 0 0 1 J,

where the Matrix develops in a way similar to a Pascal triangle. Eq.(B2) will not generate
correct trajectories, because we have not yet introduced the equations of motion.

The equations of motion will enter in step (S3), where we calculate the corrected
accelerations a(t + Ar) as functions of the predicted coordinates gP. The corrected

accelerations are then compared with the predicted accelerations, to estimate the error
Aa(t+At) = a®(t+ A1) - aP (t+Af) at time +At, made in the prediction step. This error

together with the predicted values leads in step (S4) to the corrected values, and reads as:
8 (t+A0) = gP(r+ At)+c;ha(s + Ar) (B3)

where the index of g; stands for the i-th, time step scaled, derivative of r and the C; are in
detail:

¢ Cq Cy C3 Cy Cs
3/16 251/360 |1 11/18 1/6 1/60
Note that the use of Egs.(B2) and (B3) in the algorithm makes jt neccessary to use, in
addition to the time step scaled variables, time-step scaled parameters as well.

For the computation of average quantities like density or kinetic €nergy we sum the
quantities observed at given times or phases in step (S5) and divide by the number of
additions. In step (S6) we jump back to step (S1) until the maximum simulation time is
exceeded.

106



Appendix C (Nonlinear interaction laws for MD)

In the following we consider nonlinear interactions between particles. Using Eq.(27)
we present estimates for the contact time 7, the maximal penetration x,,,, and the
restitution coefficient e.

The elastic energy is E,j = Edl-P x2+B/(2 +f), as can be found by setting 11 = 0 in

max
Eq.(27) and integrating it in standard fashion, after multiplication by x. Suppose that the
initial kinetic energy Ej = mvg /2 is completely transferred to elastic energy. This leads to a

maximal penetration depth of:

N (1+E)1/(2+ﬁ)( mred )1/(2+f3)(vo)2/(2+6) (Cl)
" 2 Ed'P °

Separating the energy conservation equation into #-dependent and x-dependent terms and

integrating from ¢ = 0 to /2 or from x = 0 to Xmax the contact time ¢, follows:

1/(2+B) 1/(2+B)
= Kmax _ yq E Myeq ~B/(2+B) (c2)
o= ()2 —1(&)[“2) (—————E dl_ﬁj (vo) .
In Eq.(C2) I(B) is:
1) = ‘/’;P(‘z‘iﬁﬁ) _{n for B=0
(1+[3/2)r(44:2% y 12.94 for B=1/2"

where I'(z) is the Gamma function. From Eq.(C2) one infers that the contact time follows
le < vy Y3 for the Hertz interaction law (B = 1/2). Egs.(C1) and (C2) lead to the expressions
of Ref.[73], valid for two spherical particles of diameter d and of the same material, when
one sets E = Y/ 3 - 62)); here Y'is the Young modulus and & the Poisson ratio. Dealing
with particles of different diameters requires the use of (d; + dj)/(Zdidj) instead of 1/d. Using
the MD formalism for binary collisions, we tested that Xmax and ¢, obey the above Egs.(C1)
and (C2) within 0.1 percent, as long as the dissipation is weak, i.e. £ > 0.9. One test consists
of simulating the pair collisions of 200 particles, while varying the initial relative velocity v
of each pair. This leads to a set of data that agrees with Eqs.(C1) and (C2) over more than
15 orders of magnitude in vy. Another test consists in solving Eq.(26) numerically (the
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MAPLE V procedure for the solution is presented in Appendix D.2). The parameters used
in the procedure are B =1/2, v=0, 2u=10s"! and m% = 10%s2. For initial velocities
Vg = lms"l, 0.1 ms“l, and 0.01 ms™! we calculated from Eq.C2 the contact times lo=
0.0128 s, 0.0203s, 0.0321s respectively (note that these times are valid for no
dissipation). The numerical solution leads to I.=0.0129s, 0.0205 s, 0.0328 s and the
restitution coefficients ¢ = 0.932, 0.894, and 0.834, respectively. In Fig.48 we plot x as a
function of time for the different initial velocities. We find the maximum penetration
decreasing with decreasing Vo, Whereas the contact time increases with decreasing vy. Here
we used a non-linear model; in the case of a linear model, the contact time is velocity
independent. We now plot in Fig.49 the first derivative of x(2) scaled by v, i.e. v/vy, as a
function of time scaled by ¢, i.e. t/t.. The functions v/vy do not scale for different initial
velocities and lead to different values of v/vg for t/t, = 1, i.e. different restitution coefficients
E.

As an example we give the contact times L. for different diameters of the particles
and for the initial relative velocity vy =1 ms’l, using Eq.(C2) with B = 1/2. For diameters
d=1mm, 1.5mm, 2mm and 3 mm we found 1. =3 s, 4.55us, 6.1 us, and 9 us,

respectively; these values hold for steel or aluminum pair collisions within a deviation of few

0.004

0.003

0.002

x (m)

0.001

0.000
0.00

Fig.48:

The penetration depth x is plotted as a function of time for the collision of two
spheres for different initial velocities. Here a nonlinear interaction law is used, i.e.

B =1/2,y =0, and the parameters in Eq.(26) are p = 5 s and wqg = 103571,
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ve=0.01 m/s
Vo=0.1 m/s
Vo=1 m/s

Fig.49:

The scaled penetration velocity, i.e. V/vp, is plotted as a function of the scaled time,
i.e. 1/t., for the same parameters as used in Fig.48.

percent.
Now we approximate the dissipated energy in the weakly dissipative regime through
a product of the dissipative force Fy;., and the distance Xmax> On which this force acts:
Egigs Fdissxmax o (ﬂdl_y Yo )xrll:g(

which leads to:

Ity 2+y+p/2

1- Mped  |2+P 1+B/2
Egigs xmd (Eﬁj )

(C3)

For a loss coefficient 1-g o1~ /1 Egiss/Eg we obtain:

2y-B (
C4)
1-¢ o« \/02+B
For the Hertz-Kuwabara-Kono model (B =y =1/2), one finds a slow increase of 1-&¢ with
the velocity ie. 1-¢ « v(l)/ >, Note the behavior in the case § =1/2 and Y =0 for it was

considered in Refs.[50,53] one finds 1-¢ o Vo 1/ 5, i.e. beads are more elastic at higher
velocities. We suggest that this might be one reason why no steady state for a system of
particles on an inclined chute is found [50]. Due to gravity the particles are accelerated; if
there is less dissipation at higher velocities (B =1/2,y=0), there is no reason for a steady
state to build up. On the other hand if the dissipation increases with the velocity (B = 1/2,
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y = 1/2) one has two effects which balance each other, i.e. at higher velocities more energy
is dissipated. In Table C1 we summarize the findings and give the corresponding references,
where the scaling laws were used.

B Y vy ) V3 Refs.

0 [0 J1 o |0 |[4645]
0o (155 |1 o |15
12 10 45 [-1/5 |-1/5 |[50,55,57]
12 |12 |45 |-1/5 |15 [[83]
12 |14 |45 [-1/5 [0 |[81]

Table C1;:

. : v
The exponents vy, v,, and vs, which give the v dependence of x,,,, o vols

fevg?, and 1-eocvg? in the limit of low dissipation (v small). The
interaction law is Eq.(27) of the main text.

Note that the penetration depth and the contact time only depend on {3, while the behavior
of 1-¢ is influenced by changing the exponent y. Most nonlinear MD simulations
[50-55,57] were carried out using y = 0; this means that 1 - ¢ is proportional to v 1 5, ie. at

higher velocity one has less dissipation.

In Fig.50 we plot the contact time, see Eq.(C2), for two spheres made of the same
material, with diameter 0.04 m as a function of the impact velocity; here we use f§ = 1/2. We
measure the impact velocity in units of feet per second to get a figure, comparable to
Fig.169 in Ref.[74]. For a fixed impact velocity the contact time for steel, aluminum and
glass is comparatively small, while the contact time increases when using beads made of

brass, silver, plexiglass, and lead.
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Fig.50:
The contact time is plotted as a function of the impact velocity (feet per second)
for two spheres, made of the same material and with diameter d = 0.04 m.
Different curves show the contact times for different materials,

We give parameters used for MD simulations with nonlinear interaction laws: For
Vo = 0.66 ms™' and P=1/2,y=0, Kimyeq = 6.6x10"3 s2m 12 4ng Dy, = 4x10* 571 as well as
for f =y =1/2, Kimyeq = 6.6x10° s2m2 and p_ = 2.5¢105 5°1

we found the same values
for ¢, = 10 sand € = 0.6.
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D.1. Numerical Root-finding

We present the source script of Maple V commands, which we used to calculate the
data for Figs.12 and 32. Comments are written to the right of a '#'-character.

# MAPLE V script

# Stefan Luding 1993

# calculates the phase at which
# a particle hits the

# bottom plate

# as a function of the

# amplitude a

readlib(write);

open(xt05); # create an output-file
close();

interface(echo=0);

for alpha from 1 by .1 to 10 do # scan a between 1 and 10
for xdelta from alpha/4+1.5 by .5 to alpha/4+1.5 do
# a first attemt for the root
# scan the range of phase

phil:=arcsin(1/alpha); # define ¢
delta:=xdelta*2+Pji; # step size
gx2:=x+delta; # start-value
gxl:=x+delta-phil; # start-value relative to D1

f(x,alpha):=sin(gx2)-l/alpha*(1+sqrt(alpha*alpha—l)*gxl-gxl*gxl/z);
# define Eq.(30) relative to 1

F(alpha):=RootOf (f(x,alpha),x); # find the solution of Eq.(30)
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a0w:=alpha*9.81/2/Pi/20 # calculate Agw = ag/(2mtf)
phi2:=evalf(F(alpha)+delta); # calculate @y

vcO0:=cos(phi2)-cos(phil)+(phi2-phil)/alpha;
# calculate the scaled
# collision velocity

appendto (xt05); # write the results
writeln(alpha,evalf(delta/2/Pi,5),evalf(phil/2/Pi,5),
evalf(phi2/2/Pi,5),evalf(sin(phi2),5),evalf(vco,5),
evalf((aOw* (cos(phi2)+0.89%vc0),5),
evalf(0.056*(0.89*a0w*vc0)"2,5));
# output of: dimensionless acceleration «,
dummy variable,
normalized phase of take off pq,
normalized phase of next contact po,
dimensionless position of the bottom plate at phase ¢5: sin(gy),

scaled collision velocity v /Agw,
kinetic energy 2Ey;,,/(Nm) for N=10 and €=0.9,
ratio of relative energy and kinetic energy 2E,../(Nm) for N=10 and £=0.9.

writeto(terminal); # switch to terminal output
od;
od; # end of loops
close(); # end of output
quit(); # end of script
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D.2. Numerical Solution of Differential Equations

We present the source script of Maple V commands, which we used to calculate the

data plotted in Fig.48 and 49. Comments are written to the right of a '#'-character.

# MAPLE V script

# Stefan Luding 1993
# for the numerical

# solution of Eq.(27)

del:=diff(x(t),t$2)+d*diff(x(t),t)+k*x(t)"(3/2);

x0:=dsolve( { del, x(0)=0, D(x)(0)=v_0 },

d:=10;
k:=1000000;

readlib(write);

v_0:=1;

open(yt00);

for tt from 0 by 0.0002 to 0.035 do
x0(tt) od;

close();

v_0:=0.1;

open(yt0l);

for tt from 0 by 0.0002 to 0.035 do
x0(tt) od;

close();

v_0:=0.01;

open(yt02);

for tt from 0 by 0.0002 to 0.035 do
x0(tt) od;

close();

quit();

# define the differential equation

X(t), numeric );
# solve the equation numerically

# define dissipation
# define elasticity

# define initial velocity 1 ms™!
# create output-file 'yt00'

# loop

# write time and position

# close file 'yt00'

# define initial velocity 0.1 ms™
# create output-file 'yt01'
# loop
# write time and position
# close file 'yt01'
1

# define initial velocity 0.01 ms~
# create output-file 'vt02'

# loop

# write time and position

# close file 'yt02'

# end of script
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In a recent article Bernu and Mazighi [31] investigated the problem of a column of
N beads hitting a wall which moves at a constant velocity (in Ref.[31] no gravity was
involved). One of the findings of Ref.[31] was that below a critical value of the restitution
coefficient €. the beads cluster on the wall. Now &, was found to be independent of the

initial state of agitation of the beads, but to be a function of the number N of beads [31]:
€p = tan? [—E (1- l—)} (55)
4 N
At the limit N >> 1 this leads to e, = 1 - 7w/N or to:

Xe=m (56)

where X = N(1-¢.) is the value above which clusterization of the column of beads occurs.

Physically it corresponds to the possibility for a column of beads to cluster on a moving
plate independently of the initial velocities inside the column. From our simulations we
found that in the fluidized phase the relevant parameters (i. e. height of the center of mass
and dissipation time) scale with X = N (1 - &) for N >> 1. The behavior of, for example, the
height of the cm can be fitted with a parabola in the interval from 0 to 2.8, see Eq.(40). This
fit leads to an extrapolated value X, =3.1 for the intercept with the x-axis. Since our
simulations are dynamic and energy is steadily fed into the system we cannot expect hep to
vanish. Indeed, for X' >2.8 we find deviations from the simple pattern, a fact which

indicates a more complex behavior of the column.
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