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Abstract

The bulk rheology of bidisperse mixtures of granular materials is examined under homoge-

neous shear flow conditions using the event-driven simulation method. The granular material

is modelled as a system of smooth inelastic disks, interacting via the hard-core potential. In

order to understand the effect of size- and mass-disparities, two cases were examined sepa-

rately, namely, a mixture of different sized particles with particles having the same mass and

the other with particles having the same material density. The relevant macroscopic quan-

tities are the pressure, the shear viscosity, the granular energy (fluctuating kinetic energy)

and the first normal stress difference.

Numerical results on pressure, viscosity and granular energy are compared with a kinetic-

theory constitutive model with excellent agreement in the low dissipation limit even at

large size-disparities. Systematic quantitative deviations occur for stronger dissipations.

Mixtures with equal-mass particles show a stronger shear resistance as compared to an

equivalent monodisperse system; in contrast, however, mixtures with equal-density particles

show a reduced shear resistance. The granular energies of the two species are unequal,

implying that the equipartition principle assumed in most of the constitutive models does

not hold. Inelasticity is responsible for the onset of energy non-equipartion, but mass-

disparity significantly enhances its magnitude. This lack of energy equipartition can lead

to interesting non-monotonic variation for the pressure, viscosity and granular energy with

the mass-ratio if the size-ratio is held fixed, while the model predictions (with equipartition

assumption) suggest a monotonic behaviour in the same limit. In general, the granular fluid

is non-Newtonian with a measurable first normal stress difference (which is positive if the
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stress is defined in the compressive sense), and the effect of bidispersity is to increase the

normal stress difference, thus enhancing the non-Newtonian character of the fluid.
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1 Introduction

Granular media consist of a collection of discrete macroscopic solid particles, interacting via

short-range repulsive contact forces; common examples of granular materials include sand,

gravel, sugar, salt, cereals and powders. The behaviour of granular materials is of immense

importance in many industrial and geological processes; most agricultural and pharmaceu-

tical products are in granular form. In a typical ‘dry’ granular flow, particle-particle in-

teractions are inherently dissipative and this, in turn, leads to a wealth of interesting and

unresolved behaviour (Herrmann, Hovi & Luding 1998). Despite their practical importance

and non-trivial dynamics, the understanding of granular materials still remains poor. While

the constitutive models based on the kinetic theory of dense gases have been reasonably suc-

cessful in describing the ‘rapid-shear’ fluidized regime, much work is needed to be done for

the ‘intermediate’ regimes where fluidized-states coexist with non-deforming solid-like states.

Currently there is no consensus on the status of a continuum theory that can describe the

whole range of intriguing behaviour of real granular systems.

Apart from experiments, there are two complementary approaches to conduct research

on particulate flows (see, for example, Campbell 1990; Behringer & Jenkins 1997; Herrmann

et al. 1998; Pöschel & Luding 2001; Kishino 2001). The development of continuum theories,

on the one hand, is nicely complemented by discrete particle simulations on the other hand.

For a numerical/analytical solution of the partial differential equations of mass, momemtum

and energy balance from the continuum theory, we need to have proper constitutive models

at our disposal, but their development, even for a dilute system of inelastic hard spheres,

is not a trivial task (Sela & Goldhirsch 1998). However, certain ‘minimal’ models can be

developed or postulated using ideas from statistical mechanics (Haff 1983; Jenkins & Savage

1983; Lun et al. 1984; Jenkins & Richman 1985; Goldshtein & Shapiro 1995; van Noije

& Ernst 1998; Savage 1998; Luding et al. 1998) Direct simulations of these continuum

models help to probe the range of validity of such models by comparing simulation data

with numerical experiments. From the point of view of discrete particle simulations, the

goal is to predict and verify the rheological equations of state for pressure, viscosity, thermal

conductivity, etc. considering ‘model’ systems. In particular, the standard hard-sphere model

taking into account the dissipative nature of particle collisions has been successful to simulate

the dynamics of granular materials in the rapid-shear regime (Campbell 1990; Pöschel &

Luding 2001); furthermore, this model serves as a test-bed to verify the kinetic-theory-

based constitutive relations. In the last two decades, such studies have greatly improved

our understanding about the rheological behaviour and microstructural features of granular

materials (Herrmann et al. 1998).

The majority of the rheological studies on granular materials are confined to monodisperse

systems, where the particles are of the same density and size. A real granular system

is always characterized by some degrees of polydispersity in density and size, which often
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leads to unwanted segregation (Hong, Quinn & Luding 2001) of an otherwise homogeneous

mixture, for example, in powder processing (Chowhan 1995). Apart from size-disparity, one

should also take into account other important features like Coulomb friction, roughness, and

non-sphericity of particles, etc. to truly model a real granular system (Louge 1994; Lun

& Bent 1994; Luding et al. 1998). The natural starting point to understand the effects of

polydispersity on the bulk-rheology of the mixture is to focus first on a bidisperse system

of smooth inelastic hard spheres under homogeneous shear deformation. This is the first

objective of our work, i.e. to understand the bulk-rheology of the mixture and the influence

of various system control parameters on it. Such knowledge on the rheology will help to

make meaningful progress in developing better constitutive models.

Following the analogy with dense-gas kinetic theory of mixtures (Ferziger & Kaper 1972;

Lopez de Haro, Cohen & Kincaid 1983), the constitutive models for bidisperse granular

mixtures have been proposed by Jenkins & Mancini (1987, 1989) about a dozen years back,

with important modifications being recently incorporated by Arnarson & Willits (Arnarson

& Willits 1998; Willits & Arnarson 1999). Based on their constitutive model, Jenkins &

Mancini (1989) showed that the steady, fully developed flow with an imposed gradient in

particle fluctuation energy (‘granular’ energy) would lead to size-segregation. This idea

has recently been tested by performing microgravity experiments of bidisperse mixtures

in a shear-cell (Louge et al. 2001). In conjunction with experiments, Louge et al. also

performed discrete particle simulations for hard-sphere mixtures in a similar setup. Both

their experimental and simulation results on flow properties like solid fraction, mean velocity

and fluctuation energy compare very well with the predictions of their constitutive model.

It should be mentioned that the experiments, as well as their simulations, were performed

for particles with a small size-ratio of about 1.25 and a coefficient of restitution in the range

0.93− 0.97.

Before using any constitutive model for large-scale simulations (Nott et al. 1999) or as

a predictive tool, one would be interested to know its range of validity in terms of all the

control parameters (e.g. inelasticity, size-ratio, solid fraction, etc.) as well as the validity

of some of the underlying assumptions. This forms the second objective of our work, i.e. to

compare the rheological data obtained from simulations with predictions of the constitutive

model in a wide parameter space and to pinpoint the limitations of such models. Some

effort in this direction has been made by Luding & Strauß(2001; Strauß1999) who carried

out event-driven simulations for bi- and polydisperse granular mixtures in the freely cooling

state, and obtained a global equation of state for pressure valid in the whole of range of

solid fraction. Among many interesting findings, their work showed that the principle of

equipartition of granular energy does not hold as the inelasticity and the size-ratio increase

as also reported more recently by Montanero & Garzò (2002).

The current work represents a systematic computer simulation study in two-dimension

(2D) to probe the rheological behaviour of a binary granular mixture, where the particles
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differ in size and mass. We use the familiar smooth hard-disk model for an event-driven

simulation (Allen & Tildesley 1989) of the uniform shear flow configuration. The details of

the simulation and the model system are described in §2. The macroscopic quantities that

we calculate are the pressure, the shear viscosity, the granular energy and the first normal

stress difference, also introduced in detail in §2. For the uniform shear flow, a kinetic-

theory-based constitutive model (Jenkins & Mancini 1987; Willits & Arnarson 1999; Alam

et al. 2002a) is used to derive the analytical expressions for these macroscopic quantities,

as described in §3. In §4 the results for the monodisperse case are presented, verifying

earlier results and benchmarking our simulation code. We have carried out simulations for

two kinds of bidisperse mixtures as detailed in §5. The results for the equal-mass mixture,

for which the particles differ only in size but their masses are equal, are presented in §5.1.

The results for the other case of an equal-density mixture, for which the particles are made

of the same material but differ in size and thus in mass, are presented in §5.2. The issue

of the equipartition of granular energy is examined more closely in §6.1 by comparing our

simulation results to available experimental and theoretical data. The possible impact of the

equipartition assumption in predicting the transport coefficients at large mass-disparities is

discussed §6.2. In §7 we summarize our findings with suggestions for possible future work.

2 Numerical simulations

We consider a collection of smooth inelastic hard-disks in a square box of size L̃ under

uniform shear flow — let x̃ and ỹ be the streamwise and transverse directions, respectively,

with the origin of the coordinate-frame being positioned at the centre of the box. A typical

snapshot of the simulation is shown in figure 1(a). Note that the dimensional quantities

are denoted by tildes, whereas the non-dimensional quantities lack it. The reference length,

time, and velocity scales for non-dimensionalization will be specified later in this section.

2.1 Contacts and algorithm

Since the rapid-shear regime is of interest here, the interaction model is the classical hard-disk

model and the algorithm is the event driven (ED) molecular dynamics.

2.1.1 Collision model for hard-disks

In the following, we shall denote the quantities associated with the species of larger size with

suffix l and those of smaller size with suffix s. Let the diameter and the mass of the particle

i be d̃i and m̃i, respectively. The reduced mass for a pair of particles i and j is defined as

µ̃ij =
m̃im̃j

m̃i + m̃j

,

6



so that

Mij =
µ̃ij
m̃j

=
m̃i

m̃i + m̃j

,

with µ̃ii = m̃i/2 and Mii = 1/2. The pre- and post-collisional velocities of particle i are

denoted by c̃i and c̃′i, respectively. The velocity of particle j relative to i is c̃ji = c̃j − c̃i.
Let kji = k be the unit vector directed from the center of the particle j to that of particle

i. The pre- and post-collisional velocities are related by the expression:

k·c̃′ji = −eij(k·c̃ji), (1)

where eij is the coefficient of normal restitution between particle i and j, with eij = eji and

0 ≤ eij ≤ 1. Note that we restrict ourselves to perfectly smooth particles and that eij = e is

implied in the following. From the conservation of linear momentum, it immediately follows

that

c̃′i = c̃i +Mji(1 + eij)(k·c̃ji)k = c̃i −Mji(1 + eij)(k·c̃ij)k, (2)

with kji = −kij. The expression for the collisional impulse

Ĩ ij = m̃i(c̃
′
i − c̃i) = µ̃ij(1 + eij)(k·c̃ji)k, (3)

directed along k, readily follows from (2).

2.1.2 ED-algorithm

Given the initial position and velocities of the particles, an event-driven algorithm is used

to simulate the instantaneous binary collisions, what boils down to solving a quadratic

polynomial for the collision time. To find out the potential collision partners (i,j) and

their collision times (tij), only particles that are located within the nearest neighbourhood

of the ‘test’ particle are considered for possible collisions, using the well-known linked-cell

algorithm (Allen & Tildesley 1989). After determining the minimum collision time (tminij ),

all particle positions are advanced following the well-known kinematic relation and the time

is also increased by tminij . At this point, only two particles are in contact and their velocities

are updated by implementing the collision dynamics as described in §2.1.1.

2.2 Model system

The system is periodic in x̃-direction, i.e. a particle crossing the left/right boundary re-enters

the system through the opposite boundary at the same vertical position with unchanged

velocities. To impose a uniform shear rate (γ̃ = Ũ/L̃) in the ỹ-direction, the top and bottom

image boxes, bounding the computational box, are set in motion with velocities Ũ/2 and

−Ũ/2, respectively, in the streamwise direction. The velocity jump (Ũ) between the top

and bottom boundaries and the non-stationary nature of the image boxes are taken into
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account by using the socalled Lees-Edwards boundary condition (Lees & Edwards 1972),

which mimics the state of uniform shear flow (USF) by imparting momemtum transfer by

shearing. Overall, this system represents an extended doubly-periodic system where the

periodicity in the transverse direction is in the local Lagrangian frame.

2.2.1 Control parameters

It is appropriate at this point to identify the relevant dimensionless parameters for our

simulated system. The reference length, time, velocity, and mass are L̃, γ̃−1, γ̃L̃, and m̃l.

Thus the simulation box spans the range [−0.5, 0.5] in both streamwise and transverse

directions; the top image-box moves with a velocity of 0.5 and the bottom with −0.5, see

figure 1(a). There are six dimensionless control parameters: the total solid volume fraction

(ν), the relative volume fraction of larger particles (χ = χl = νl/ν), the size ratio (R = Rls =

d̃l/d̃s ≥ 1), the dimensionless diameter of the larger particle (dl), the mass ratio (ml/ms),

and the coefficient of normal restitution (e). The imposed shear rate γ is kept fixed at

unity in the simulations since its variation by an order-of-magnitude does not influence the

reported results.

Note that χ = 1 and χ = 0 correspond to the monodisperse limits with all particles

being large or small, respectively. We have restricted the present study to solid volume

fractions ν ≤ 0.6, well below the freezing-point value of ν ≈ 0.70 in two-dimensions (Luding

& Strauß2001; Luding 2001). For given ν and χ, the number of particles (Nl and Ns) can be

computed by knowing the size-ratio R and the diameter of the large particles. For most of

the simulations, we fixed dl = 0.02523, which corresponds to a box-length of about 40 large

particle diameters. The simulations are carried out for the coefficient of restitution e ≤ 0.5

and for size ratios R ≤ 5. The dependence of the measured quantities on the system size is

considered for a few cases.

2.2.2 Initial configuration and steady state

In a typical simulation, the particles are placed into the system at random and get their mean

horizontal flow velocity according to their vertical position. In addition to this shear flow, a

random Gaussian velocity component is added to all velocity components. The simulation

is then started by specifying the restitution coefficient (e < 1).

To ascertain whether the system has reached the statistical steady-state, the time evo-

lution of the average fluctuation kinetic energy (‘granular energy’) is monitored, see figure

1(b). Unlike in a purely elastic system, where shear leads to continual heating, the fluctu-

ation kinetic energy saturates to a constant value after the initial transient, a consequence

of the balance between the shear work and the collisional dissipation. Depending on the

value of the coefficient of restitution and the total number of particles, it can take upto

1000 collisions per particle to reach such a statistical steady-state – the lower the value of e
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and/or the smaller the value of N , the faster the system reaches the steady state and vice

versa. The simulation is then allowed to run for another 4000− 5000 collisions per particle

to gather data to calculate the rheological quantities. A few longer runs (10000 collisions

per particle) were also checked, with no significant change on the measured macroscopic

quantities. Another quantity which was simultaneously monitored, along with the granular

energy, is the linearity of the streamwise velocity profile across the Couette gap, and we

found that the calculated shear rate (i.e. the slope of the velocity profile) fluctuated around

the imposed shear rate by at most 0.5%. The instantaneous shear rate (see figure 1b) was

calculated by binning the system into equal-size bins in the transverse direction, and then

taking appropriate averages over all the particles in each bin.

We looked closer at the effect of the initial particle configurations by considering ordered-

configurations in which the larger particles were placed above the smaller particles. Even

though it took longer to attain the steady state, the measured macroscopic quantities did

not differ noticeably from that with random initial particle configurations.

2.3 Macroscopic quantities

While making a transition from the microscale to the macroscale, we encounter broadly two

kinds of macroscopic quantities: mean fields (or flow properties) and rheological quantities.

The mean fields are solid fraction, velocity and higher order field variables (e.g. granular en-

ergy), each suitably averaged. For the uniform shear flow, the deformation is homogeneous

and hence the mean fields (except the streamwise velocity which varies linearly with the

transverse coordinate) are uniform in the computational box, as verified in our simulations.

(For dense quasi-static shear flow, characterized by inhomogeneous deformation, the mean

fields are non-uniform and the averaging procedure is much more involved (Lätzel, Luding

& Herrmann 2000).) Thus, we mainly focus on the rheological properties of the homoge-

neous granular mixture, i.e. the macroscopic stress and its related surrogates (pressure, shear

viscosity, and the first normal stress difference).

With L̃, γ̃−1, γ̃L̃, and m̃l, used as the reference length, time, velocity, and mass, respec-

tively, the relevant dimensionless quantities are:

di = d̃i
L̃
, mi = m̃i

m̃l
, (ci,u, Ci) = 1

γ̃L̃
(c̃i, ũ, C̃i),

P = P̃
γ̃2
∑

α=l,s χαρ̃αd̃
2
α
, T = T̃

γ̃2
∑

α=l,s χαm̃αd̃
2
α
,

(4)

where u is the mass-averaged (‘hydrodynamic’) velocity, Ci = ci−u the fluctuation velocity

of particle i, ρ̃α the material density of species α, P the total stress tensor, and T the

granular energy of the mixture (defined below). The stress is thus rescaled by the species

averaged momentum flux density, whereas the granular energy is rescaled by the species

averaged kinetic energy.
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The macroscopic stress, as measured in discrete particle simulations, is a byproduct of the

particle-level mechanisms of momemtum transfer. The total stress is the sum of two different

parts, kinetic stress and collisional stress. The ‘kinetic’ stress arises from the momentum

transport due to the fluctuating motion of the particles, while the momemtum transport due

to the interparticle collisions is responsible for the ‘collisional’ mode of stress.

2.3.1 Kinetic stress contribution

By analogy with a molecular gas, the kinetic contribution to the partial stress tensor (or

species stress tensor) is calculated from

P̃
k

α = 〈ρ̃αC̃αC̃α〉 = ρ̃ανα
1

Nα

Nα
∑

i=1

C̃iC̃i = ρ̃ld̃
2
l γ̃

2 να
d2
α

[

mα

Nα

Nα
∑

i=1

CiCi

]

⇒ P k
α =

P̃
k

α

γ̃2
∑

α=l,s χαρ̃αd̃
2
α

=
π

4
∑

α=l,s
ρα
ρl
χαR2

αl

[

mα

Nα
∑

i=1

CiCi

]

, (5)

where the angular brackets 〈. . .〉 in (5) denote the appropriate volume averaging. The total

kinetic stress is obtained by just summing the partial components:

P k =
∑

α=l,s

P k
α. (6)

Here onwards the greek indices (α, β, . . .) denote a species (l or s), while the arabic indices

(i, j, . . .) denote single particles if summation is necessary.

2.3.2 Collisional stress contribution

Due to the instantaneous nature of hard-core collisions, each collision results in a momemtum

exchange equal to the collisional impulse Ĩ ij, as defined in equation (3). The effect of a

collision is the transport of Ĩ ij over a distance (d̃i + d̃j)/2 in the direction of k. Thus the

collisional part of the stress tensor is calculated from

P̃
c

=
1

2L̃2τd

∑

coll.

(d̃i + d̃j)(Ĩ ij ⊗ k) =
ρ̃ld̃

2
l γ̃

2

2τd

∑

coll.

(di + dj)(I ij ⊗ k)

⇒ P c =
P̃
c

γ̃2
∑

α=l,s χαρ̃αd̃
2
α

=
π

8τd
∑

α=l,s
ρα
ρl
χαR2

αl

∑

coll.

(di + dj)(I ij ⊗ k) (7)

where τd is the duration of the averaging time window and the sum is taken over all collisions

during τd, where the particles i and j are involved. Clearly, P c = P c
l + P c

s = P c
ll + P c

ss +

P c
ls +P c

sl has two contributions for each of the two species: one from the collisions between

particles of the same species and the other from collisions between particles of different

species. Note that while the kinetic stress (5) involves only volume averaging, the collisional

stress (7) involves both volume and time averaging.
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2.3.3 Pressure, shear stress and viscosity

The total stress, defined in the compressive sense, may be decomposed in the standard way:

P =
∑

i=l,s

(P k
i + P c

i) = p1 + Π, (8)

where p is the pressure, Π the pressure deviator and 1 the unit tensor. From the off-diagonal

components of the pressure deviator, we can calculate shear viscosity which relates the shear

stress to the rate of strain:

Π̃xy = −µ̃dũ

dỹ

⇒ µ =
µ̃

γ̃
∑

α=l,s χαρ̃αd̃
2
α

=
−Π̃xy

γ̃2
∑

α=l,s χαρ̃αd̃
2
α

= |Πxy|. (9)

For the steady uniform shear flow, thus, the dimensionless shear viscosity can also be inter-

preted as the shear stress, due to our adopted scaling.

2.3.4 First normal stress difference

The diagonal components of the pressure deviator could be different from zero, giving rise

to an anisotropic stress tensor. The magnitude of the stress anisotropy can be quantified by

the first normal stress difference

N1 =
(Πxx − Πyy)

p
. (10)

Note that we have scaled this quantity by pressure just to find out its relative magnitude

with respect to pressure. For a standard Newtonian fluid, N1 = 0 and thus N1 is also an

indicator of the non-Newtonian character of the fluid.

2.3.5 Granular energy

The granular energy can be obtained from the trace of the kinetic part of the stress tensor,

and the species granular energy is calculated from the following expression:

T̃α = 1
2
m̃α〈C̃α · C̃α〉 =

m̃α

2Nα

Nα
∑

i=1

C̃i · C̃i

⇒ Tα =
T̃α

γ̃2
∑

α=l,s χαm̃αd̃2
α

=
1

2d2
l

∑

α=l,s
mα
ml
χαR2

αl

[

mα

Nα

Nα
∑

i=1

Ci ·Ci

]

(11)

The total granular energy is T =
∑

α=l,s ξαTα, where ξα = Nα/N is the number fraction of

species α.
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2.3.6 Averaging

Besides most quantities, which can be calculated from snapshots, the collisional contribution

to the stress tensor requires additional time averaging, taking into account all collisions in

the averaging time-window. The collisional impulse (3) is calculated for each collision and

is used for the computation of the collisional stress that is averaged over time, see equation

(7).

For the typical simulation in figure 1(a) at steady-state, after 6 × 106 collisions, the

parameters values are ν = 0.3, χ = 0.5, R = 2, Nl = 300, Ns = 1200, e = 0.9 and

ml/ms = 1.0. We observe that the large and small particles are randomly distributed and

there is no sign of large-scale size-segregation. The variations of the granular energy T and

the calculated shear rate γcal with time are shown in figure 1(b), along with corresponding

initial variations in two insets. (The data represent the instantaneous values of T and γcal
sampled at a regular interval of 600 collisions – no time averaging is involved here.) It

is observed that the granular energy reaches its steady value (T = 2.162 ± 0.067) quickly

after the initial transients and the calculated shear rate fluctuates around its imposed value

(γ = 1) by about ±0.35%. The fluctuations in both T and γcal at steady-state are due to

the finite-size of the system and diminish with the number of particles as N−1/2.

3 Continuum Model: Kinetic Theory

The balance laws for mass, momemtum and granular energy of a binary mixture of granular

materials are detailed in the Appendix. These equations must be supplemented by a con-

stitutive model for the stress tensor, the collisional dissipation rate, the heat flux and the

diffusion flux. To this end we appeal to the kinetic theory of dense gases, taking into account

the inelastic nature of particle collisions. Willits & Arnarson (1999) have recently derived

the full constitutive model for a binary mixture of inelastic hard-disks, extending an earlier

work of Jenkins & Mancini (1987) on the same subject. There are two major assumptions

in this model: (i) it is first-order in inelasticity, meaning that the constitutive relations are

valid for quasielastic particles. (ii) the granular energy is equally partitioned between the two

species.

For our purposes to probe the steady uniform shear flow, the constitutive relations for

pressure, shear viscosity and collisional dissipation rate are taken from Willits & Arnarson

(1999). Note that a factor is missing from the coefficient of the Sonine polynomial expansion

in Willits & Arnarson (see Appendix; Alam et al. 2002a), and without this missing factor,

the theoretical predictions for pressure, shear viscosity and their partial components can

differ in a significant way from the correct values.
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3.1 Shear flow theory

For the steady ( ∂
∂t

(.) = 0), fully developed ( ∂
∂x

(.) = 0) plane shear flow of a binary mixture

of granular materials, it is easy to verify that a linear streamwise velocity profile along with

constant solid-fraction and constant granular energy satisfies the balance equations. Thus,

the mean fields are given by

ν =
∑

α=l,s να = const.

T =
∑

α=l,s ξαTα = const.

u ≡ (u, v)T = (y, 0)T
(12)

where ξα is the number fraction of species α. An expression for T can be obtained, for

equipartition Tl = Ts, from the energy balance equation, by equating the production term

due to shear-work with collisional dissipation (D̃):

−P̃ :∇̃ũ = D̃

⇒ T =

∑

α=l,s f2α

√

ρα
ρl

∑

α=l,s f5αR2
lα
ml
mα

√

ρα
ρl

∑

β=l,s
mβ
ml
χβR2

βl

, (13)

with the constitutive relations for P̃ and D̃ detailed in the Appendix.

The dimensionless expressions for pressure and shear viscosity are

p =
∑

α=l,s

pα =
T
∑

α=l,s f1α

∑

β=l,s
mβ
ml
χβR

2
βl

∑

β=l,s
ρβ
ρl
χβR2

βl

(14)

µ =
∑

α=l,s

µα =

√
πT
∑

α=l,s

√

ρα
ρl
f2α

√

∑

β=l,s
mβ
ml
χβR2

βl

2
∑

β=l,s
ρβ
ρl
χβR2

βl

, (15)

where f1α and f2α are functions of the mixture parameters να, Rαβ, Mαβ etc., as defined in

the Appendix.

We will compare our simulation results on pressure, viscosity and granular energy with

the predictions of equations (14), (15) and (13), respectively, in the next two sections. For

the case of particles of both species having equal-mass, the expression for the granular energy

reduces to

T =
f2l + f2sR

(f5l + f5sR3)(χl + χsR−2)
,

and for the case of particles of both species having equal density, the expression for the

granular energy reduces to

T =
f2l + f2s

(f5l + f5sR4)(χl + χsR−4)
.
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3.2 Low density limit

The above expressions for pressure, viscosity and granular energy do not show their depen-

dence with the size ratio (R) explicitly since the fnα’s depend on R in a complicated fashion.

To ascertain the correct scaling of p, µ and T with R, it is appropriate to consider the dilute

limit (ν → 0) for which the expressions for the fnα’s simplify considerably due to the fact

that the radial distribution function tends to unity (gαβ → 1).

For an equal-mass mixture, the leading order scalings for pressure, viscosity and granular

energy are

p = νχs

[

1 +
ν

4
(1 + e)(χl + 4χs)

]

(χl + χsR
−2)C2R (16)

µ =
C1

√

πC2(χl + χsR−2)

2
R3/2 (17)

T = C2R
−1 (18)

with

C1 =
ν2χlχs

2π

[

1 +

(

3 + 4
χs
χl

)

R−1 +O(R−2)

]

C2 =
1

16(1− e2)χs

[

1 +

(

3 + 4
χs
χl
− χl
χs

)

R−1 +O(R−2)

]

Thus both the pressure and viscosity increase with growing size-ratio and the granular energy

decreases in the same limit.

For an equal-density mixture, the leading order behaviour is:

p = νχs

[

1 +
ν

4
(1 + e)(χl + 4χs)

]

(

χl + χsR
−4

χl + χsR−2

)

C2R
−1 (19)

µ =
C1

√

πC2(χl + χsR−4)

2(χl + χsR−2)
R−1/2 (20)

T = C2R
−3 (21)

µ

p
=

C1

2νχs(1 + (1 + e)χsν)

√

π

C2(χl + χsR−2)
R1/2 (22)

with

C1 =
ν2χlχs

π
√

2

[

1 +

√
2(χ2

l + χ2
s)

χlχs
R−1 +O(R−2)

]

C2 =
1

16(1− e2)χs

[

1 +

√
2(χ2

l + χ2
s)

χlχs
R−1 +O(R−2)

]

.

Thus the pressure, viscosity and granular energy all decrease with increasing size-ratio. We

shall compare these results with simulations in §5.
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4 Results: Monodisperse system revisited

To compare and contrast the rheology of a bidisperse granular medium with that of its

monodisperse counterpart, we first show some results of a monodisperse system over a range

of solid fractions and coefficients of restitution. Typical results that follow are the pressure,

the shear viscosity, the granular energy, and the first normal stress difference as functions of

the solid fraction, the coefficient of restitution, and the system size.

4.1 Pressure, viscosity and granular energy

Figure 2(a–b) shows a comparison between the pressure and the shear viscosity determined

from simulations (symbols) and from kinetic-theory (lines) for three different values of the

coefficient of restitution. The agreement with the theoretical predictions of Jenkins & Rich-

man (1985) is excellent for both pressure and viscosity in the case e = 0.99. Note that the

theory underpredicts the simulation data marginally at ν = 0.6 which may be attributed to

our choice of the radial distribution function (39) which diverges at ν = 1.0. By replacing ν

with ν/νmax in (39) (with νmax = π/2
√

3 for the maximum regular packing, Luding 2001), we

get good agreement even at higher solid fractions for e = 0.99. The theory overpredicts both

p and µ over the whole range of solid fractions for e = 0.9, and significant deviations are ob-

served for stronger dissipation e = 0.7. This observation is consistent with the assumptions

of the constitutive model which is correct only in the quasielastic limit.

The variation of the granular energy with ν and e is shown in figure 2(c). Again the

agreement between theory and simulation is excellent at low dissipation and deteriorates

considerably as the dissipation level increases. Note that the granular energy diverges in the

dilute limit, and an asymptotic analysis of (13) shows T ∼ ν−2. For a physical understanding

of the divergent behaviour at low densities, we consider the balance between the shear work

and the collisional dissipation term in the energy balance equation (Lun et al. 1984; Campbell

1990). Since the shear rate is constant in our simulations, the energy input (shear work)

is constant. The collisional dissipation, which balances the shear work, is proportional to

the product of the change in fluctuation kinetic energy T and the collision rate. When the

solid fraction is decreased, ν → 0, the particles have to travel longer paths before a collision

occurs and hence the fluctuation velocities (the granular energy) must increase to allow for

the dissipation of a fixed amount of input energy. Along the same line, we note that the

divergence of T as ν → 0 is also responsible for the divergence of both pressure and viscosity

in the same limit, see figures 2(a) and 2(b). In contrast, the divergence of pressure and

viscosity in the dense limit is due to the excluded volume effects and the singular nature of

the radial distribution function at contact in the dense limit, see equation (39).

To better understand the discrepancy between our simulation results and the theoretical

predictions of Jenkins & Richman (1985), we consider another constitutive model of the same
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authors (Jenkins & Richman 1988) which takes into account the anisotropy in the second

moment of the fluctuation velocity. For our purposes, it suffices to focus on the dilute limit.

In this limit, the non-dimensional expressions for pressure, viscosity and granular energy can

be written as

p = νT , (23)

µ =
√

δ(1− δ)νT , (24)

T =
πδ(1− δ)

16ν2(1− e2)2
, (25)

with

δ =
32(1− e)

16 + 9(1− e)
.

Figure 2(d) shows the simulation data on p, µ, and T , together with the predictions of the

above equations denoted by thick lines, and the predictions of the first-order model given

by thin-lines. Note that the solid fraction is set to 0.01 for this plot. It is observed that the

constitutive model of Jenkins & Richman (1988) gives excellent predictions for our rheological

data. We may thus conclude that the discrepancies between our simulation results and the

theoretical predictions of a first-order model in inelasticity is due to the fact that the latter

does not take into account the anisotropy in the second moment of the fluctuation velocity

which is a Burnett-order effect (Sela et al. 1996).

4.2 Normal stress difference

It is known from earlier studies (Walton & Braun 1986;Jenkins & Richman 1988; Richman

1989; Campbell 1989, 1990; Hopkins & Louge 1991; Sela et al. 1996) that the stress tensor of

an inelastic hard-sphere fluid is anisotropic, i.e. there are significant normal stress differences.

The variation of the first normal stress difference (N1) with solid fraction and inelasticity is

shown in figure 3. It is observed that N1 is positive and increases with decreasing ν and e,

in qualitative agreement with the predictions of Jenkins & Richman (1988). The arrows on

the left-ordinate indicate the asymptotic values of N1 for a two-dimensional granular gas in

the dilute limit:

N1 =











32(1−e)
16+9(1−e) (Jenkins & Richman 1988)

1.0448(1− e2) (Sela, Goldhirsch & Noskowicz 1996)

(26)

(Note that both the expressions yield approximately the same value.) Thus, a small amount

of inelasticity makes the stress tensor anisotropic, showing it via a measurable first normal

stress difference. It is appropriate to mention here that the limit e → 1 is singular and the

normal stress difference survives even in the elastic limit as pointed out by Sela et al. (1996).
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The corresponding expression for N1 in a molecular gas is:

N1 ≈ 1.358
γ2`2

〈u2〉
,

where ` is the mean free path and 〈u2〉 is the rms of velocity fluctuations. The reason we

do not observe normal stress difference in a molecular fluid is that it is extremely small

under normal conditions. For example, the magnitude of N1 for air at room temperature

and γ = 1s−1 is O(10−21) and hence N1 is non-measurable (Sela et al. 1996).

We need to point out that while the normal stress differences in the dilute limit arises

due to the anisotropy in the second moment of fluctuation velocity (which is a Burnett-order

effect), their origin in the dense limit has recently been tied to the anisotropy in the collision-

angle distribution function (Alam & Luding 2002b). In particular, it has been shown that

the first normal stress difference in a granular fluid can change sign in the dense regime

(ν > 0.6) due to certain microstructural-reorganization of the particles. Similar sign-reversal

of N1 has also been observed in non-Brownian viscous suspensions at high Peclet number

(Foss & Brady 2000).

4.3 System size variation

In particle-dynamics simulations, one important issue is the dependence of the rheological

properties with the system size L, or, equivalently, with the number of particles N . This

issue can be directly tied to the existence of a thermodynamic limit for the ‘equilibrium’

rheological properties. Table 1 shows the variations of pressure and shear viscosity with

the system size, along with the corresponding data of Hopkins & Louge (1991) for ν = 0.3

and e = 0.9. Our data extend to much larger systems and represent averages over three

independent runs, each starting with a different initial configuration (in terms of particle

positions and fluctuation velocities). The value in the parenthesis indicates the maximum

variation over the mean.

Table 1: Nondimensional pressure and viscosity (ν = 0.3, e = 0.9)

Present data Hopkins & Louge (1991)

L̃/d̃ N Pressure Viscosity Pressure Viscosity

10 38 2.730 (0.010) 0.691 (0.005) 2.730 0.707

21 168 2.897 (0.010) 0.754 (0.006) 2.874 0.754

39.63 600 2.954 (0.004) 0.775 (0.003) - -

42 674 2.969 (0.004) 0.779 (0.003) 2.951 0.776

79.26 2400 3.000 (0.007) 0.787 (0.004) - -

112.10 4800 3.008 (0.005) 0.788 (0.003) - -

198.16 15000 3.020 (0.020) 0.789 (0.005) - -
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Our results agree well with those of Hopkins & Louge (1991), but both the pressure

and the shear viscosity increase with the system size. This dependence of the transport

coefficients on the system size has been observed even for perfectly elastic systems (Erpenbeck

& Wood 1981). For an inelastic system, however, there are additional effects due to the

formation of mobile clusters as the system size increases (Hopkins & Louge 1991; Luding &

Herrmann 1999; Liss & Glasser 2001), which may be partly responsible for the significant

increase in stress-levels in a sheared system. In particular, the recent work of Liss & Glasser

(2001) showed that this saturation of rheological quantities can also be tied to the saturation

of the cluster-sizes.

A closer inspection of our data in table 1 reveals that the rate of increase of p and µ

with N decreases with the system size. This suggests that there does exist a well-defined

thermodynamic limit for the equilibrium rheological properties of a sheared granular system,

i.e. they do posses finite limits for L → ∞ and N → ∞ with N/L2 (∼ ν) kept constant.

However, if the system size is of moderate value (L ∼ 50), the increase in p and µ is only

marginal as our work shows. For example, p and µ increase by 1.8% and 1.6%, respectively,

when L is increased from 39.63 to 112.1 (which is equivalent to an increase of N by a factor of

8). To achieve truly system-independent rheological properties, however, we need to perform

simulations with tens of thousands of particles. In order to explore a large parameter space,

most of our simulations are restricted to a system with L = 39.63, and we stress that our

results are within about 5% of the asymptotic values for a much larger system.

5 Results: Bidisperse system

We consider two different bidisperse systems: (i) a mixture with particles of equal-mass, and

(ii) a mixture with particles of equal material density. The choice of these two cases was made

to clearly delineate the effect of size-disparity (case i) from that of size- and mass-disparities

(case ii) on the rheological behaviour of a sheared granular medium. It will become evident

that the additional mass-disparity for the case (ii) modifies the rheological properties of the

mixture in a qualitatively different way.

Typical results are the pressure, the shear viscosity, the granular energy, the ratio of the

individual species granular energies, and the first normal stress difference, as functions of

the solid fraction, the coefficient of restitution, the size ratio, and the volume fraction ratio.

The simulation results are compared with the predictions of the constitutive model (Jenkins

& Mancini 1987; Willits & Arnarson 1999) as described in §3.

5.1 Equal mass mixture

In this subsection, the two species are different in size (R = dl/ds > 1) but we set their

masses equal to each other (ml = ms) in order to isolate the size effects on rheology.
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5.1.1 Solid-fraction dependence of pressure and viscosity

Figures 4 and 5 show the variations of the pressure and the viscosity with the solid fraction

for the size-ratio R = 2 and the fraction of larger particles χ = 0.5. The values of the

coefficients of restitution are e = 0.99 in figure 4, and e = 0.9&0.7 in figure 5. In each

subplot, also the respective partial contributions of each species to pressure and viscosity

are shown. The symbols correspond to the simulation data and the lines to the theoretical

predictions as in (14) and (15).

For the quasielastic case (e = 0.99), the data for both pressure and viscosity, including

their partial components, are in excellent quantitative agreement with the constitutive model

upto a solid-fraction of ν = 0.5. As in the monodisperse case, a better choice of the radial

distribution function (i.e. replacing ν by ν/νmax in eqn. (39)) provides good agreement even

at ν = 0.6. For e = 0.9, both pressure and viscosity are slightly underpredicted by the

constitutive model over the whole range of solid fractions. The partial contributions of the

larger species (pl and µl) appear to be better predicted by the model than that of the smaller

species. In the case of stronger dissipation (e = 0.7), the simulation data are significantly

overpredicted by the constitutive model. The model predictions for the partial contributions

of the larger species are, again, in somewhat better agreement with simulation data.

5.1.2 Size-ratio dependence of pressure and viscosity

In order to quantify the effect of the particle size-disparity, we have plotted the variations

of the pressure and the viscosity with R in figure 6 at a fixed solid fraction of ν = 0.3, with

e = 0.9 and χ = 0.5. The simulation results for e = 0.99 are, again, in excellent agreement

with the theory, so that we show neither them nor the results for e = 0.7 that do not lead

to new insights. It can be seen from figure 6 that both pressure and viscosity increase with

R, and the model predictions are in good qualitative agreement with the simulation data

over the whole range of size-ratios studied. Note that this behaviour is also in qualitative

agreement with our asymptotic scalings for p and µ in the dilute limit as described in §3.2:

p ∼ R and µ ∼ R3/2. The quantitative discrepancy between simulation and theory remains

relatively uniform with R, and can be attributed to the fact that the constitutive model is

strictly valid for the quasielastic system, as in the monodisperse case. Regarding the partial

components of pressure and viscosity, we notice that both ps and µs become more and more

dominating with increasing size ratio R. This may be understood by recalling the fact that

the number of smaller particles increases with R as Ns = R2Nlχl/χs in these simulations

(while Nl remains fixed), which in turn increases the magnitudes of ps and µs.

5.1.3 Mixture granular energy

In figure 7(a) the variation of the granular energy with the solid fraction, for R = 2 and

χ = 0.5, is plotted for three different values of the coefficient of restitution. In figure 7(b) the
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corresponding variation with R is plotted for χ = 0.5, and ν = 0.3. As in the monodisperse

case, the granular energy T decreases with increasing ν and decreasing e. The effect of

the size-disparity is to diminish the value of T further, as can be seen from figure 7(b).

Comparing our data with the theoretical predictions, we find that the agreement deteriorates

with decreasing e, but the level of disagreement remains uniform up to a size-ratio of R = 5.

The overall comparison for the mixture granular energy between our simulation and theory

parallels those for pressure and viscosity, as described in §5.1.1 and §5.1.2.

To find out how the total granular energy is partitioned between the two species, the

variation of Tl/Ts with ν and R is shown in figures 7(c) and 7(d), for the same simulations

as in figures 7(a) and 7(b), respectively. The granular energy is clearly unequally partitioned

between the two species, but the level of non-equipartition remains rather small over the

range of solid fractions and size-ratios studied. Recall that for an equal-mass mixture the

granular energy ratio may also be interpreted as the ratio between the squared individual

fluctuation velocities, see equation (11). Thus, for strong dissipation, the larger particles are

somewhat less mobile than the smaller ones, even though both species have the same mass.

5.1.4 Species relative fraction

Note that all the above results were obtained for mixtures with the same large and small

solid fractions, i.e. χ = νl/ν = 0.5. To understand the effect of the relative fraction of

larger particles χ on the rheological properties of the fluid, we have plotted the variations of

pressure and viscosity with χ in figures 8(a) and 8(b), respectively, for two size-ratios R = 2

and R = 5. The total solid fraction is set to ν = 0.3 and the coefficient of restitution to

e = 0.9. It is interesting to note that both pressure and viscosity have peaks at χ ≈ 2/3 for

R = 2, and decrease on either side of the respective peak – the levels of variation in p and

µ with χ is about 10%, for R = 2. Increasing the size-ratio to R = 5 increases the height

of the peak to a variation of about 50%, with the position of the peak shifted to χ ≈ 0.85.

Changing the value of the restitution coefficient does not noticeably affect this behaviour.

Again, the theory captures the trend of the data over the whole range of χ studied. The

quantitative discrepancies remain relatively uniform with χ. This non-monotonic variation

of the shear viscosity with χ suggests that the shear strength of a monodisperse granular

fluid can be enhanced by considering an equivalent bidisperse system with particles having

the same mass, i.e. adding larger but less dense particles or smaller but denser particles to

a monodisperse granular fluid.

5.1.5 Normal stress difference

Now we probe the stress anisotropy in an equal-mass mixture. The variation of the first

normal stress difference N1 with solid fraction at a given size ratio is found to be similar to

that of the monodisperse system, see figure 3, i.e. N1 increases in magnitude with decreasing
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ν and e. Thus we restrict our attention only to the effect of the size-disparity on the stress-

anisotropy, i.e. the dependence ofN1 with R, which is shown in figure 9 at a solid fraction ν =

0.3; the other parameters are as in figure 7(b). It is evident that the size-disparity enhances

the stress-anisotropy, irrespective of the value of the coefficient of restitution. Decomposing

N1 into the respective kinetic and collisional parts (N1 = N k
1 + N c

1 ), the relative kinetic

contribution N k
1 /N1 increases with the size-ratio, as can be seen in the inset of figure 9.

Thus, the kinetic mode of the momentum transport is primarily responsible for the observed

increase in stress anisotropy.

5.1.6 Large dissipation limit

As far as the effect of the coefficient of restitution is concerned, the agreement between

simulation and theory for the equal-mass bidisperse mixture mirrors that for the monodis-

perse case. The quantitative agreement worsens with increasing dissipation, however, the

qualitative agreement remains reasonable.

Recall that apart from its quasielastic assumption, the constitutive model of Willits

& Arnarson (1999) further assumes the equality of the two species granular energies which

holds approximately for the present case. This suggests that the excellent agreement between

theory and simulation for p, µ, and T , even at large size-ratios, is perhaps not fortuitous.

Of course, the model predictions deteriorate as we drift away from the quasielastic limit,

i.e. when the dissipation is strong, similar to the monodisperse system, as discussed in §4
(see figure 2d). The point to note here is that the level of disagreement remains relatively

uniform as the size-ratio is increased from the monodisperse limit even at e = 0.5 (data not

shown here). Thus, the above constitutive model appears to have a wide range of validity

in terms of size-ratios in the quasielastic limit as long as the mass-disparity is of order one.

The quantitative disagreement at larger dissipation may be accounted for by developing a

higher-order model in terms of the inelasticity.

5.2 Equal density mixture

In this subsection, the particles are again different in size (R = dl/ds > 1) but now we set

their densities equal to each other (ρl = ρs), so that their masses vary quadratically with

the size ratio (ml/ms = R2). Clearly, this mixture includes the effects of both size and

mass disparities, in contrast to the equal-mass mixture which is characterized by its size

disparity alone. While presenting the results, we will pinpoint the additional effects of the

mass-disparity on the rheological behaviour of such a mixture.

For this case, the variations of pressure and viscosity with solid fraction at a given size-

ratio (say, R = 2) and their comparison with theory mirrors those for the equal-mass mixture,

see plots in figure 5. We do not show these results, for the sake of brevity, and directly focus

on the effect of the size-ratio on the pressure and the viscosity at a fixed solid fraction.
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5.2.1 Size-ratio dependence of pressure and viscosity

Figure 10 shows the pressure and the viscosity as functions of the size ratio for ν = 0.3 and

χ = 0.5. The values of the coefficients of restitution are e = 0.99 for subplots (a,b) and e = 0.9

for subplots (c,d). Note that the insets in subplots (c,d) display the quality factor of our

data in terms of the ratio between the corresponding simulation and theoretical values. We

observe that both pressure and viscosity decrease with increasing size-ratio. This behaviour

follows the asymptotic scalings of pressure and viscosity in the dilute limit: p ∼ R−1 and

µ ∼ R−1/2 as found in §3.2. For the quasielastic case (e = 0.99), the theoretical predictions

for pressure, viscosity and their partial components agree well with the simulation data even

at the largest size-ratio of R = 5. In the case of larger dissipation (e = 0.9), it is observed

that even though the theory predicts both p and µ quite well over the whole range of size-

ratios (in fact the agreement improves as we increase the size ratio), the partial components

of p and µ do not match equally well. For example, both pl and µl are overpredicted by the

theory at R = 1 but underpredicted at R = 5. In contrast, ps and µs are overpredicted over

the whole range of size-ratios. And this overall trend becomes more prominent when the

dissipation level is further increased to e = 0.7 (data not shown here).

5.2.2 Mixture granular energy

The dependences of the mixture granular energy T on ν and R are similar to those for the

equal-mass mixture, see figures 7(a) and 7(b), and hence we do not show these results. The

agreement between simulation and theory for T also remains relatively uniform over the

range of ν and R values studied, as in the equal-mass case.

To illustrate how the total granular energy is partitioned between the two species, we

have shown the variation of the ratio of the species granular energies with the solid fraction

ν and the size-ratio R in figures 11(a) and 11(b), respectively, with the parameter values

as in figures 7(c) and 7(d). From figure 11(a), one finds that the granular energy is not

equally partitioned between the larger and the smaller species. The magnitude of this non-

equipartition increases as the dissipation-level increases. This is in contrast to the equal-

mass mixture for which we found that the principle of equipartition of granular energy holds

approximately for the parameter range studied, see figure 7(c). An interesting difference

to the equal-mass case is that the degree of non-equipartition increases in the dense limit

rather than in the dilute limit. Examining the effect of the size-ratio, we find that Tl/Ts
increases strongly with both R and e. For example, the values of Tl/Ts are 1.4, 4.3 and 12.9

for e = 0.99, 0.9, and 0.7, respectively, at a size-ratio of R = 5.

One can conclude that even though inelasticity is responsible for the onset of energy-

nonequipartition (as in the equal-mass case), the mass-disparity strongly amplifies its mag-

nitude. In the equal-mass case the larger particles have a somewhat smaller granular energy

for strong dissipation, whereas in the equal-density case, the larger particles carry the major
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fraction of the granular energy.

Next, we focus on the ‘specific’ granular energy, or the granular temperature, defined as

θα = Tα/mα ≡ 〈CαCα/2〉, a measure for the average fluctuating velocity of the species. The

inset in figure 11(a) shows the variation of θl/θs with ν. It is observed that θl/θs increases

with decreasing e, i.e. the larger particles become more mobile, which is in contrast to the

equal-mass case for which the increasing dissipation-level makes the larger particles relatively

less mobile, see figure 7(c).

The effect of the size-ratio on θl/θs can be seen in the inset in figure 11(b). Here one

observes an interesting dichotomy: while the granular temperature ratio decreases monoton-

ically for the quasi-elastic case (e = 0.99), its variation is non-monotonic for e = 0.7. Further

computations suggest that such non-monotonic behaviour prevails even in the quasi-elastic

case, if the size-ratio is sufficiently large. Thus, for a given inelasticity, the combined effect

of size- and mass-disparities can lead to a mixture with the fluctuating velocity of the larger

particles being of comparable magnitude to that of their smaller counterparts (θl/θs ∼ 1) if

the size-ratio is sufficiently large.

5.2.3 Species relative fraction

Insights about the effect of the relative fraction of larger particles χ on the rheological

properties may be obtained by looking at figure 12, where the variations of pressure and

viscosity with χ are plotted for ν = 0.3, R = 2, and e = 0.9. We observe that both pressure

and viscosity decrease with increasing χ, reach a minimum at some intermediate value of

χ ≈ 0.6, and then increase again. Increasing the size-ratio lowers the minima considerably:

for example, while p and µ decrease by about 30% at a size ratio of R = 2, they decrease

by about 75% at a size-ratio of R = 5. Also, the position of this minimum shifts to higher

values of χ with increasing size-ratio. On the whole, the simulation results agree nicely with

the theoretical predictions over the whole range of χ values examined. These results are

also in qualitative agreement with the stress measurements of Savage & Sayed (1984) who

showed that the shear stresses generated in a monodisperse granular system are about five

times higher than those in an equal-density bidisperse mixture with R = 3.05 and χ = 0.7.

Thus, the mixture becomes less resistant to shearing motion with the addition of a small

amount of another species of the same material density.

The variation of the ratio of the species granular energies (Tl/Ts) with χ is plotted in

figure 13 for the same parameter values as in figure 12. We observe that even though the

maximum non-equipartition of energy (Tl/Ts)max is attained at some intermediate value of

χ ≈ 0.5, the degree of nonequipartition remains relatively uniform with varying χ.
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5.2.4 Normal stress difference

Turning our attention to the stress anisotropy, we show the variation of the first normal

stress difference, N1, with R in figure 14, for ν = 0.3 and χ = 0.5. One can observe that

even though the variations of N1 with R are similar to that of the equal-mass mixture, see

figure 9, the magnitude of N1 for the equal-density case is slightly larger as compared to

that for the equal-mass mixture, irrespective of the value of the coefficient of restitution. For

example, the value of N1 increases by 11.2% and 25.3% at size-ratios of R = 2 and R = 5,

respectively, for e = 0.9. In the inset of figure 14, the kinetic fraction to the normal stress

difference, N k
1 /N1 is shown. It increases with R, what confirms that the kinetic mode of

stress transmission is mainly responsible for the enhanced stress anisotropy with increasing

size-ratio. Finally, we mention that the first normal stress difference does not change much

with χ if the overall solid fraction is held constant.

6 Discussion: Non-equipartition of granular energy

In §6.1 we make a qualitative comparison of our data on the granular energy ratio with

recent experimental measurements and also with a theoretical model. In §6.2 we discuss the

effect of large mass-disparities and the associated energy non-equipartition on the rheological

properties of the mixture.

6.1 Comparison with experiment and theory

The microgravity experiments of Louge et al. (2001) on collisional shear flows of binary

mixtures are most appropriate for direct comparison to the present work. Even though

these experiments did show signatures of energy non-equipartition (see their figure 4), the

evidence was not conclusive enough due to the limited amount of data, and also due to

the small size-disparity (R = 1.25 and hence small mass-disparity) and the quasielastic

(e = 0.93) nature of their granular mixture.

However, the recent experiments of Feitosa and Menon (2002) clearly make a case for

the breakdown of energy equipartition. They have done a series of careful experiments,

measuring the fluctuating kinetic energies of each species of a mixture of equal-size par-

ticles vibrated in a two-dimensional cell. For a mixture of glass and aluminum particles

of almost equal mass-ratio (malu/mglass = 1.1), they found that the granular energy is

equally partitioned between the two species within the experimental errors. But for the

other two mixtures of steel-glass or brass-glass particles (with mass-ratios msteel/mglass = 3

and mbrass/mglass = 3.4), they found that the heavier particles could carry as much 50%

more energy compared to the lighter particles (Theavy/Tlight ≈ 1.5). The effect of gravity

on their reported results can be neglected since the energy ratio did not vary noticeably by

24



increasing the Froude number (Fr = U2
o /gdl, where Uo is the velocity of the vibrating plate)

from 50 to 130. Hence the non-equipartition of energy is a bulk-effect, solely determined by

the detailed balance between the injected energy through the bottom-plate vibration and

the collisional dissipation.

Our simulation data for an equal-size mixture with a mass-ratio of 3 show that Theavy/Tlight =

1.08, 1.63 and 2.05 for the coefficients of restitution of e = 0.99, 0.9 and 0.8, respectively.

Note that Feitosa & Menon measured only the effective inelasticity for the single-component

systems which translates into the value of e being in the range between 0.78 and 0.91. Also

recalling the fact that our simulations were performed using a single value for e ≡ eαβ, the

agreement between simulation and experiment can be said to be fair. Two other observa-

tions of these experiments, namely that the energy ratio depends only weakly on both the

average solid fraction and the number fraction, are also in qualitative agreement with our

simulations (see figures 11a and 13).

Turning our attention now to the possible theoretical description of energy nonequipar-

tition, we consider the recent work of Garzo & Dufty (1999) who studied the homogeneous

cooling state for a binary granular mixture using the Enskog kinetic theory. They showed

that the granular energies of each species are different, even though their cooling rates are

the same. They derived a functional relation for the ratio of the species granular energies

which, in the quasielastic limit, simplifies to

Tl
Ts

= 1 +

(

ξl
Msl

− ξs
Mls

)

(1− els)
2

+
ξs
Mls

gss
gls

(

2

1 +Rls

)d−1
√

Mls

2M2
sl

(1− ess)
2

− ξl
Msl

gll
gsl

(

2

1 +Rsl

)d−1
√

Msl

2M2
ls

(1− ell)
2

, (27)

where d is the dimensionality of the system. It can be readily verified from (27) that in-

elasticity alone leads to the nonequipartition of energy, and the added mass-disparity just

enhances its magnitude. Comparing our results for e = 0.99 with equation (27), we find

that the theory underpredicts the simulation results by about 2.5% and 33% at R = 2 and

5, respectively, for an equal-density mixture, but the agreement with the equal-mass case is

within 1% for both size-ratios.

On the whole, our simulation results are in good agreement with the experiments of

Feitosa and Menon (2002), but the agreement with the theoretical predictions of Garzó &

Dufty (1999) is only qualitative. We can conclude from these comparisons that the break-

down of energy equipartition in a granular mixture is a generic phenomenon and occurs due

to the micro-scale dissipation associated with the inelastic nature of the particle collisions.
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6.2 Effect on rheological properties

The effect of large mass-disparities on the pressure and viscosity is shown in figure 15(a),

with parameter values ν = 0.3, R = 2, χ = 0.5 and e = 0.9. (Note that since the size-ratio

is kept fixed, the species number densities are also fixed for this figure.) We observe that

both pressure and viscosity show interesting non-monotonic behaviour with the mass-ratio.

In contrast, however, the theoretical predictions suggest monotonic decay in the same limit.

The corresponding comparison between simulation and theory for the granular energy, in

figure 15(b), shows similar behaviour. Decreasing the coefficient of restitution, all the above

quantities show nonmonotonic behaviour at lower values of the mass-ratio. Looking at the

variations of the partial pressures in the inset of figure 15(a) (the corresponing variations

for partial viscosities are similar and, hence, not shown in this graph), we find that at large

mass-disparities the major contribution to pressure (and viscosity) comes from the heavier

particles only. This is primarily due to the strong non-equipartition of granular energy at

large mass-disparities, as seen in the inset of figure 15(b). The relative contributions of the

two species can be understood by postulating a simple constitutive relation for the pressure:

p =
∑

α=l,s

pα =
∑

α=l,s

f1αTα. (28)

Recall that the variations of both p and µ with solid fraction follow U-shaped curves,

with minimums occurring at ν ≈ 0.3 (see figures 2a & 2b). Since the relative contribution

of the heavier particles to transport properties is large due to their higher granular energy

at large mass-ratios, the mixture would behave as if it were composed of only heavier parti-

cles with an effective lower solid fraction, depending on the relative solid fraction of heavier

species χ. Hence both pressure and viscosity would eventually increase in the same limit. A

phenomenological constitutive model has recently been suggested (Alam & Luding 2002), al-

lowing non-equipartition of granular energy, which could explain the nonmonotonic behavior

of p, µ and T with the mass-ratio.

7 Summary and Conclusion

We have carried out event driven simulations in two-dimensions for bidisperse granular mix-

tures undergoing uniform shear flow, with the goal to understand the effect of bidispersity

on the rheology of such mixtures. The Lees-Edwards boundary condition was used to at-

tain the state of uniform shear, and the granular mixture was modelled as smooth, inelastic

hard-disks, where the two species differ in size and mass. In order to distinguish between the

effects of size- and mass-disparities, equal-mass and equal-density mixtures, were considered.

Results on the pressure, shear viscosity, granular energy and first normal stress difference

were reported in a wide parameter space. The simulation results were compared with a
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kinetic-theory constitutive model (Willits & Arnarson 1999; Jenkins & Mancini 1987; Alam

et al. 2002a). Qualitative comparisons of some of the simulation results were also made

with some experiments (Savage & Sayed 1984; Feitosa & Menon 2002), and with another

theoretical model (Garzo & Dufty 1999) which takes into account the noequipartition of

granular energy.

For the briefly revisited monodisperse system, it is shown that even though both pres-

sure and viscosity depend on the size of the system (i.e. on the number of the particles),

there appears to exist a thermodynamic limit for these quantities. Thus, the equilibrium

rheological properties can reliably be obtained by simulating a system of moderate size (of

the order of a few thousand particles). The assumption of the homogeneity of the system

was not discussed in detail, however, we checked that the data presented stem from almost

homogeneous systems.

For bidisperse mixtures, we have found that both the pressure and the viscosity increase

or decrease with increasing size-ratio, depending on whether the particles are of the same

mass or density, respectively. In other words, the mixture becomes more/less resistant to

the shearing motion with the addition of a small amount of another species of the same

mass/density, as compared to its equivalent monodisperse counterpart. The maximum in-

crease/decrease in pressure and viscosity that can be achieved for a given mixture depends

crucially on both the size-ratio and the relative fraction of the two species. For a larger

size-disparity, fewer particles of the smaller species are needed to achieve a maximum in-

crease/decrease in the shear strength of the mixture. Regarding the granular energy, we

have found that it is unequally partitioned between the two species (as in earlier studies) and

the onset of this non-equipartition is clearly linked to the inelasticity of the particle collisions.

The level of energy non-equipartition increases with increasing dissipation strength and with

increasing size- and mass-disparities. It is the mass-disparity between the two species that

adds to significantly increase the level of energy non-equipartition.

Regarding the comparisons with the constitutive model, we have shown that the agree-

ment between simulation and theory for pressure, viscosity and granular energy is excellent

even at a size-ratio of 5 for both types of mixtures as long as the coefficient of restitution

remains close to unity (e = 0.99). This can be attributed to the fact that the princi-

ple of equipartition of granular energy holds approximately in this limit for the parameter

range investigated. As the coefficient of restitution is decreased, all the above quantities are

overpredicted over the whole range of size-ratios for the equal-mass mixture, similar to the

monodisperse case. For the equal-density case, on the other hand, the theoretical predic-

tions for the partial components of the pressure and the viscosity worsen considerably with

increasing dissipation-level, even though the total pressure and viscosity are relatively well

predicted in the studied parameter range. For a given size-ratio, both pressure and viscosity

show interesting nonmonotonic variation with the mass-ratio (depending on the relative solid

fraction of the heavier particles), while the theoretical predictions suggest monotonic decay
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in the same limit.

In general, the granular fluid is non-Newtonian in that the stress tensor is anisotropic,

giving rise to ‘measurable’ normal stress differences. We have found that the effect of size-

dispersity is to increase the magnitude of the first normal stress difference, thus enhancing

the non-Newtonian character of the fluid, and the added mass-disparity in the equal-density

mixture further increases its magnitude. For both cases, however, it is the kinetic-mode of

momentum transport which is primarily responsible for this enhanced normal stress differ-

ence.

The results of this study suggest several possibilities for future investigations. On the

theoretical side, a constitutive model taking into account the non-equipartition of granular

energy is required for all practical purposes of large mass-disparity and strong dissipation.

In this regard, the constitutive model of Jenkins & Mancini (1987) can be appropriately

modified to obtain a minimal model with energy non-equipartition (Alam & Luding 2002).

At the next level, it is also necessary to incorporate the stress-anisotropy in such a model,

perhaps following the earlier work of Jenkins & Richman (1988) on monodisperse systems.

We should, however, point out that such a rigorous theory for a bidisperse system would

be too complicated to be useful as a practical tool. As an alternative one could also think

of relaxation-type models for the stress tensor (Goddard 1977, 1984; Jin & Slemrod 2001),

with the relaxation time being a free-parameter which may be obtained from simulation

data. Although less rigorous, such an approach holds promise for predictive and practical

purposes. On the simulation side, as a direct extension of the present work we are now

looking at the dense-limit, focussing on the subtle roles of inelasticity and bidispersity on

the glassy-dynamics of a sheared-system (Alam & Luding 2002b). Future work should also

investigate the effects of the tangential coefficient of restitution, the Coulomb friction and

the bounding wall on the bulk rheology of the mixture.
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Appendix: Balance laws and the constitutive model

We consider a mixture of two types of particles, labelled as l and s, with diameters d̃α
(α = l, s), species masses m̃α, species densities %̃α = m̃αñα, and species number density ñα.

The species densities are related to the volume fraction να and the material density ρ̃α via

the relation %̃α = ναρ̃α. The relevant hydrodynamic fields, at the level of mixture theory, are

the species number density ñα, the mixture (‘hydrodynamic’) velocity ũ =
∑

α=l,s %̃αũα/%̃,

and the mixture granular energy

In the absence of any external force, the balance equations for number density, momem-

tum and granular energy may be written as (in dimensional form) (Lopez de Haro, Cohen

& Kincaid 1983; Jenkins & Mancini 1987, 1989; Willits & Arnarson 1999)

Dñα

Dt̃
= −ñα∇̃·ũ− ∇̃·j̃α , (29)

%̃
Dũ

Dt̃
= −∇̃·P̃ , (30)

ñ
DT̃

Dt̃
= T̃∇̃·j̃ − ∇̃·q̃ − P̃ :∇̃ũ− D̃ , (31)

where %̃ =
∑

α m̃αñα is the mixture mass density, P̃ =
∑

α P̃ α the total stress tensor (defined

in the compressive sense), j̃ =
∑

α j̃α =
∑

α ñαṽ
d
α the particle flux associated with diffusion

velocities, q̃ the mixture flux of granular energy, and D̃ the rate of dissipation of granular

energy per unit volume. The species diffusion velocity ṽdα = ũα−ũ is defined as the difference

between the average species velocity ũα and the mixture velocity ũ.

The constitutive relations for the stress tensor and the collisional dissipation are (Jenkins

1987; Willits & Arnarson 1999)

P̃ = p̃1− 2µ̃S̃ − λ̃(∇̃·ũ)1, (32)

p̃ =
4

π
d̃2
l T̃
∑

α=l,s

f1α, (33)

µ̃ =

√

ρ̃lT̃
∑

α=l,s

f2α

√

ρα
ρl
, (34)

D̃ =

√
ρ̃l

m̃ld̃2
l

T̃ 3/2
∑

α=l,s

f5αR
2
lα

ml

mα

√

ρα
ρl

. (35)

The nondimensional functions, f1, f2, and f5, in the expressions for pressure, shear viscosity
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and collisional dissipation are

f1α = ναR
2
lα

(

1 + 1
4

∑

β=l,s(1 + eαβ)(1 +Rαβ)2νβgαβ

)

, (36)

f2α =
bα0

2
+

1

4

∑

β=l,s

νβgαβMβα(1 +Rαβ)2

(

bα0 +
ναRβα(1 +Rαβ)
√

π2Mβα/2

)

, (37)

f5α =
4να
π

∑

β=l,s

νβ(1 +Rβα)R2
αβgαβ(1− e2

αβ)
√

2Mβα, (38)

where

bα0 =

√
Mκα√

2(1 +Rκα)gακ

[

νακR
2
καK

′
αBα +K ′κMακMκα

BαBκ −M2
ακM

2
κα

]

Bα = Mακ(1 +Mκα) +
R2
ακ

(1 +Rακ)

νκ
να

gκκ
gακ

(

Mακ

Mκκ

)1/2

K ′α = 1 +
1

2

∑

β=l,s

νβ(1 +Rαβ)2gαβMβα

with α 6= κ. Note that the factor (Mακ/Mκκ)
1/2 in the second term of Bα is missing from

the corresponding expression of Willits & Arnarson (1999), and this has subsequently been

rectified by the present authors (Alam et al. 2002a). The radial distribution function at

contact gαβ is (Mansoori et al. 1971)

gαβ =
1

(1− ν)
+

9

8

(νlRαl + νsRαs)

(1 +Rαβ) (1− ν)2
, (39)

with Rss = Rll = 1 and Rls = R−1
sl = R. We should point out that gαβ should diverge at the

close packing limit (ν = νmax), rather than at ν → 1. This corresponds to νmax ≈ 0.9069

for a perfectly monodisperse system; for a bidisperse system, νmax is also a function of the

size-ratio (Luding & Strauß2001). However, we performed simulations up to an overall solid

fraction of 0.6, which is well-below the freezing point density, and we have checked that the

theoretical predictions for pressure and viscosity are independent of the choice of a more

correct radial distribution function for ν ≤ 0.55.
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Figure 1: (a) A snapshot of the sheared bidisperse granular mixture at steady-state. The

arrows indicate the displacement of the image boxes. (b) Variations of the granular energy T

and the calculated shear rate γcal with time. For an explanation of the system and particle

properties, see text. The parameters for both subplots are ν = 0.3, χ = 0.5, R = 2.0,

Nl = 300, Ns = 1200, ml = ms and e = 0.9.
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Figure 2: Variations of (a) the pressure, (b) the shear viscosity and (c) the granular energy

with the solid volume fraction for a monodisperse system. The symbols represent simulation

data and the lines denote the predictions of the constitutive model of Jenkins & Richman

(1985). (d) Comparison with the higher-order constitutive model of Jenkins & Richman

(1988) in the dilute limit: ν = 0.01. The thick lines are due to Jenkins & Richman (1988),

and the thin-lines represent the predictions of their first-order model.
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Figure 3: Variation of the first normal stress difference N1 with the solid volume fraction for

a monodisperse system. The symbols represent simulation data and the lines are drawn to

guide the eye. The arrows on the left ordinate indicate corresponding analytical values for

a two-dimensional granular gas (see text for details).
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Figure 4: Variations of the pressure and the shear viscosity, and their corresponding partial

components, with the solid volume fraction for the equal-mass mixture, with R = 2.0, χ = 0.5

and e = 0.99.
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Figure 5: Variations of the pressure and the shear viscosity, and their corresponding partial

components with the solid volume fraction for an equal-mass mixture, with R = 2.0, χ = 0.5;

(a,b) e = 0.9;(c,d) e = 0.7. The symbols and lines are as in figure 4.
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Figure 6: Variations of the pressure and the viscosity, and their partial components, with

the size-ratio R for an equal-mass mixture with ν = 0.3, χ = 0.5 and e = 0.9.
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Figure 7: Variations of the mixture granular energy T and the ratio of the species granular

energies Tl/Ts with the solid volume fraction and the size ratio for an equal-mass mixture.

Parameter values are χ = 0.5; (a, c) R = 2.0; (b, d) ν = 0.3. The lines in the subplots (a)

and (b) represent the theoretical predictions, whereas the lines in the subplots (c) and (d)

are drawn to guide the eye.
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Figure 8: The effect of the relative solid volume fraction of the larger species, χ, on (a) the

pressure and (b) the viscosity of an equal-mass mixture, with ν = 0.3 and e = 0.9 for two

different size ratios R = 2 and R = 5.
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symbols denote simulation data and the lines are drawn to guide the eye.
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Figure 10: Variations of the pressure and the viscosity, and their partial components, with

size-ratio R for an equal-density mixture with ν = 0.3, χ = 0.5; (a,b) e = 0.99; (c,d) e = 0.9.

The insets in (c,d) give the respective ratios between the simulation and the theoretical

values (e.g. psimu/ptheo).
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Figure 11: Variation of the ratio of the species granular energies Tl/Ts with (a) solid volume

fraction and (b) size-ratio for an equal-density mixture: χ = 0.5; (a) R = 2.0 and (b) ν = 0.3.

The insets give the ratio θl/θs of the specific granular energies. The lines are drawn to guide

the eye.
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Figure 12: The effect of the relative solid volume fraction of the larger species, χ, on the

pressure and the viscosity of an equal-density mixture: ν = 0.3, R = 2.0, and e = 0.90.
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granular energy ratio of an equal-density mixture: ν = 0.3 and R = 2. The lines are drawn

to guide the eye.
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Figure 14: Variation of the first normal stress difference N1 with the size ratio for an equal-

density mixture: ν = 0.3 and χ = 0.5. The inset shows the variation of the kinetic fraction

N k
1 /N1 with R. The lines are drawn to guide the eye.
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Figure 15: The effect of mass-ratio, ml/ms, on (a) the pressure and viscosity (b) the granular

energy: ν = 0.3, R = 2.0, χ = 0.5 and e = 0.90. The inset in (a) shows variations of p, pl
and ps, and the inset in (b) shows the variation of Tl/Ts. In inset (a), the squares and ∇
represent pl and ps, respectively.
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