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ABSTRACT 

In this review, particulate materials are studied using the Discrete Element Method (DEM), where the 

particles keep their identity throughout. Loose particles can sinter due to time-, stress- or temperature-

dependent forces. Large deformations of sintered samples will then lead to damage. Self-healing of 

damaged samples can be activated through re-sintering, a process that increases further the contact 

adhesion between particles.  

Initially, the particle-samples are prepared by applying isotropic (hydrostatic) pressure. The spherical 

particles deform plastically at contact and stick to each other due to strong, non-linearly increased van 

der Waals forces. Such pressure-sintering results in a solid sample with (after releasing pressure) zero 

confining stress – on which uni-axial tension or compression can be applied.  

Damage can occur through loss of contacts and/or loss of adhesion and more damage will occur with 

increasing deformation. In order to trigger “self”-healing at different damage levels, the mechanical 

loading is first stopped, second, the system is re-sintered (so that the adhesion at existing contacts in 

the damaged sample becomes stronger than originally), and third, mechanical loading is continued 

with the healed sample, in order to study the material properties after the healing event.  

 

1. Introduction 

Biological systems with their unique self-healing capability have inspired researchers to 

develop new engineering materials able to heal by themselves. One possibility is to initiate a 

bonding reaction at the crack faces, such that the defect disappears and the local strength of 

the material is re-established. At the atomic/molecular scale, bonding reactions can be 

triggered by increasing the mobility of atoms in the vicinity of the damaged zone. The 

necessary diffusion and bonding characteristics of the “healing agents” are realized by means 

of appropriate thermal and/or chemical processes (van der Zwaag, 2007).  

 Self-healing through chemical processes has been reported by White et al. (2001), who 

embedded brittle microcapsules filled with a liquid healing agent into an epoxy matrix. 

Healing is activated if a crack runs through the epoxy and breaks one of the microcapsules: 

the contained liquid flows out of the capsules into the cracked area, and glues the crack faces 

together (when getting into contact with a catalyst). This self-healing concept makes it 

possible to almost recover the original strength of the material. Other self-healing mechanism 

for polymers are related to the presence of non-covalent hydrogen bonds (Sijbesma et al., 

1997) in the polymer network. The reversibility of the hydrogen bonds may induce a 

spontaneous rearrangement of chemical bonds that allow the polymer to adjust its new 

configuration to external stimuli and thus “self-heal”.  

 Alternative to chemical processes, materials can heal by an input of external energy, 

such as heating, in order to trigger self-healing. Varley (2007) described the behaviour of 

ionomers after bullet penetration, where the required heat for healing directly comes from the 

impact energy. Self-healing paintings have been introduced recently in the automotive 

industry, where small scratches vanish after exposure to solar light and heating. More 

examples of state-of-the-art self-healing materials can be found in the recently published book 

edited by van der Zwaag (2007). 
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 In this review the modeling of cohesive, sintering and self-healing particulate materials 

is reviewed. The mechanical evolution in time of all the particles in the material is simulated 

by means of the Discrete Element Method (DEM), where the discrete masses represent single 

particles and their interactions are simulated with a modern version of the sintering contact 

model (Luding, 2008) originally proposed by Luding et al. (2005). This contact model 

mimicks the physical behavior of the interaction of the particles accounting for dissipative, 

elasto-plastic, adhesive, and frictional effects. It is by construction non-linear in its response 

to external stresses (Luding, 2008). An additional temperature-dependence, as possibly 

resulting from diffusion of atoms and the resulting sintering effects, can be added on top of 

the elasto-plastic contact model (Luding et al., 2005).  

 The simplest self healing of particle contacts only involves the increase in contact 

strength due to re-sintering, without accounting in detail for all microscopic mechanisms 

involved. Experimental and numerical studies indicate that the net increase in strength 

depends on the sintering temperature and duration, see for example (Luding et al., 2005; 

Shoales and German, 1998; Takeuchi et al, 2002; Pirhonen et al., 2006). In the simulations, 

during the initial pressure sintering preparation, the optimal strength is not reached. Hence, 

the sample still has the potential to be strengthened further during a second sintering 

(healing). If the re-sintering is applied after the sample has already experienced some damage 

under mechanical loading (like uni-axial tension or compression), the question is to which 

extent the damage can be healed.  

 In Section 2 the simulation method is briefly summarized, and the pressure-sintering 

contact model is reviewed. Furthermore, the boundary conditions, the material parameters, 

and the preparation procedures for the particulate samples are explained. In Section 3, 

numerical results of DEM simulations are reviewed for damage under uni-axial tensile and 

compressive loading. Self-healing through sintering is then applied at different stages of 

deformation. Finally, in Section 4 the review is summarized and conclusions are drawn.  

 

2. Simulation method 

2.1 DEM modeling of particulate materials 

The Discrete Element Method (DEM) for particle systems can be used to illustrate how the 

macroscopic response of a solid-like, sintered sample (as characterized by the yield strength, 

stiffness, dilatancy and anisotropy) depends on various microscopic properties, such as the 

contact network, the particle size, and the contact adhesion, friction, stiffness and viscosity 

(Herrmann et al., 1998; Vermeer et al., 2001; Liao et al., 2000; Luding and Herrmann, 2001; 

Suiker et al., 2001; Luding, 2004; Suiker and Fleck, 2004; David et al., 2005; Suiker and de 

Borst, 2005; Allen and Tildesley, 1997). Most of these microscopic properties will not remain 

constant during loading and depend also on stress and temperature. 

In the present review, the coupling between micro- and macro scale properties is performed 

by first solving the equations of motion at the particle level, in a similar fashion as in the 

classical molecular dynamics approach, see the textbook by Allen and Tildesley (1997). The 

response of the particle system (expressed in terms of stress and strain) is obtained by 

averaging the local quantities at the particle contact level (forces and displacements) over the 

assembly. The effective response then depends directly on the chosen particle contact model 

(Thornton, 2000; Tomas, 2001; Luding, 2006; 2008). Even though recent studies have 

demonstrated that the accurate simulation of systems composed of non-spherical particles is 
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possible (Alonso-Marroquin et al., 2005; D’Addetta et al., 2002), for simplicity we restrict 

ourselves to spherical particles. 

 

2.2 Sintering contact model 

In the following, particulate material samples are (i) prepared, (ii) deformed and damaged, 

and then (iii) self-healed and (iv) deformed again. The non-linear contact model by Luding et 

al. (Luding, 2005; 2006; 2007; 2008; 2010; Luding and Suiker, 2008; Herbst and Luding, 

2008; Mouraille et al., 2009; Luding and Bauer, 2010) is used – see these references for more 

details than sketched here. In figure 1, the normal contact force f (that is directed parallel to 

the line connecting the centers of two contacting particles) is plotted against the contact 

overlap, δ > 0. If δ < 0, there is no contact between particles, and thus f = 0. This sign 

convention relates positive (negative) values of the contact displacement δ to 

overlap/deformation (separation), while positive (negative) values of the contact force f relate 

to compression/repulsion (tension/attraction).  

                

Fig. 1: Particle contact model plotted as force-displacement relation (Luding, 2005; 2008), with δ for contact 

positive, and repulsion and attraction forces positive and negative, respectively. 
 

Starting from large distance, a contact begins at δ = 0 and, during initial compressive loading, 

the contact force increases with the overlap as f=k1δ, with k1 the elasto-plastic contact 

stiffness. When the external compressive forces are compensated by the contact repulsive 

force at the maximum contact overlap, δmax, for unloading, the contact stiffness increases to a 

value k2, so that the elastic unloading force is f = k2(δ−δf).  Elastic unloading to zero contact 

force leads to the (plastic) contact overlap δf = (k2−k1) δmax/k2. If the overlap is further 

decreased, the contact force gets tensile, with maximum tensile contact force ft,max = –ktδt,max, 

realized at contact displacement δt,max =  k2δf/(k2+kt) = (k2−k1) δmax/(k2+kt). The tensile regime 

is an unstable branch, with the tensile contact force dropping from its maximum value 

towards zero in accordance with f = –ktδ. 
 For the sake of brevity, the tensile softening parameter kt hereafter is referred to as the 

“contact adhesion”. Note that, mostly for practical reasons (Luding, 2005; 2008), for contact 

deformations above  δmax, the force follows the limit branch f = k2(δ−δf), since further loading 

is unrealistic anyway and would lead to much stiffer behavior if properly modeled. In this 

“fluid” limit regime, the particles can be viewed as completely “melted” and stiffnesses as 
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large as those for “incompressible” fluids should be used – however, this would render the 

DEM simulation by orders of magnitude slower, so that we do not follow this path. Typically, 

the “fluid” overlap δf is chosen such that it corresponds to about 5% of the particle diameter, 

which is considered as “too large” contact deformation beyond the validity of the present 

model.  

The extreme loading and unloading limit branches, are reflected by the outer triangle 

in figure 1. Starting from the realized maximal overlap, δmax
*<δmax, unloading occurs within 

the outer triangle, as characterized by a branch with stiffness k* = k1+(k2−k1) δmax
 ∗

/δmax, and 

(elastic, reversible) force, f
 ∗
= k*(δ−δ∗), with δ∗ = (k*−k1) δmax

*
/k*. The intermediate stiffness k* 

follows from a linear interpolation between k1 and k2 – which is our (arbitrary) choice due to 

the lack of experimental data on this (probably) non-linear behavior. The corresponding 

maximal attractive force is ft,max
∗ = − kt δt,max

∗ = −kt (k*−k1) δmax
∗
/(k*+kt). If we assume that the 

maximal overlap, δmax, is realized under external (compressive) pressures, pmax, then one can 

infer δmax
∗
= δmax (p/pmax), with pressure p = k1δmax

∗
/A, with typical/representative area A. This 

leads to the realized maximal attractive force ft,max
∗ = −kt (k*−k1) δmax (p/pmax)/(k*+kt). Using 

k* = k1+(k2−k1)  (p/pmax), one gets the possible attractive/cohesive stress c = f t,max
∗/Α, which 

can be expressed as c = −kt (k2−k1) (pmax/k1)(p/pmax)
2
/(k1+kt+(k2−k1) (p/pmax)), only a function 

of the material model constants, k1, kt, and k2, the external stress, p, and the model inherent 

maximal stress, pmax. After some transformations, using Φ =p/pmax≤1, κ1=k1/k2≤1, and 

κt=kt/k2, leads to:  

− c/pmax= (kt /k1) (k2−k1)Φ 2/[k1+kt+(k2−k1)Φ]  

= (κt /κ1)Φ 2/[Φ +(κ1+κt)/(1−κ1)] 

= Φ 2/[Φ +(κ1/κt+1)/(1/κ1−1)] = Φ 2/[Φ +1/B] 

= BΦ 2/[BΦ+1]              (1) 

≈ BΦ 2−Β 2Φ 3 
+... ,     

with B=(1/κ1−1)/(κ1/κt+1). For linear elastic material models, κ1=1, and implicitly κt=0, as 

well as for cohesionless, plastic materials, κ1<1, and κt=0, one finds c=0, as expected. For 

materials with elasto-plastic and adhesive contacts, 0<κ1<1, and κt>0, one finds the prefactors 

B = 0, 4/3, 2, 8/3, 20/7, 3, 20/6, 40/11, 50/13, 400/101, for, e.g., κ1 = 1/5 and different κt = 0, 

1/10, 1/5, 2/5, 1/2, 3/5, 1, 2, 5, 20, respectively. The “possible” macroscopic cohesion stress-

ratio, −c/pmax, i.e., the healing potential, is thus (in leading order) proportional to the square of 

the previous confining pressure, with a pre-factor that increases with the contact adhesion. 

In summary, the model has three (“stiffness”) k-parameters that describe the three 

relevant physical effects at the contact: (1) elasticity, (2) plastic deformations, and (3) contact-

adhesion. Furthermore, the model involves (4) a non-linear contact stiffness via the choice of 

k*. This piece-wise linear model is a compromise between simplicity and the need to model 

physical effects. Except for some early theoretical studies, see (Tomas, 2001) and the many 

works that are based on it, there is no experimental/numerical literature available to our 

knowledge that provides enough detailed information on the force-displacement relations, 

involving all four physical contact properties above and their nonlinear, history-dependent 

behavior. If this information becomes available, the present model can be extended and 

generalized. 

 The tangential contact force acts parallel to the particle contact plane and is related to 

the tangential contact displacement through a linear elastic contact law, with the tangential 

stiffness ks. The tangential contact displacement depends on both the translations and rotations 

of the contacting particles. Coulomb friction determines the maximum value of the tangential 

contact force: During sliding the ratio between the tangential contact force and the normal 

contact force is assumed to be limited and equal to a (constant) dynamic friction coefficient 
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µd; during sticking, the tangential force is limited by the product of normal force and static 

coefficient of friction µs. In a similar fashion, the elastic contact behavior related to rolling 

and twisting (torsion) is set by elastic constants kr and ko, respectively, and the maximum 

values of the corresponding contact torques depend on the normal contact force through a 

Coulomb-type law with “friction” coefficients µr and µo, respectively (Luding, 2008).  

 The overall solution of the non-linear DEM problem is obtained by incrementally 

solving Newton's equations of motion for the translational and rotational particle degrees of 

freedom. In the case of short-range particle interactions, which are present in particulate 

media such as powders and sands, a considerable decrease in computational time can be 

achieved using a linked-cell method that allows for a more efficient particle neighborhood 

search. Hence, this procedure is applied for the present simulations, and more details on the 

algorithm can be found, for example, (Allen and Tildesley, 1997).  

 

3. Results 

The simulations reviewed here consist of four subsequent stages, namely (i) a sample 

preparation stage (isotropic compression), (ii) a uni-axial (tensile or compressive) loading 

stage, (iii) a self-healing stage, and (iv) the continuation of the uni-axial loading. The samples 

are typically composed of about 10
3
 poly-disperse spherical particles, with particle radii Ri 

either monodisperse, Ri = R  (Luding, 2010; Luding and Bauer, 2010) drawn from a Gaussian 

distribution around mean R  (Luding, 2006; 2008; David et al., 2005; Luding and Suiker, 

2008; Herbst and Luding, 2008; Mouraille et al., 2009), or randomly homogeneously 

distributed between a minimum and a maximum (Luding, 2004; 2005; Luding and Herrmann, 

2001).  

 

3.1 Isotropic Loading – The Effect of Material Properties 

In this section the results obtained from simulations of a “swelling” test are presented – which 

is equivalent, in the quasi-static limit, to slow isotropic mechanically driven compression or 

pressure increase (data not shown). The dependence of the packing density on the material 

parameters and the confining stress are examined. Here, the particles are initially randomly 

positioned on a square-lattice with low density, in a cubic system with periodic boundary 

conditions, in order to avoid wall effects. The system is first allowed to evolve to a disordered 

state, by attributing random velocities to all particles. The density is then increased by slowly 

increasing the particle size, while the system-volume 3
V L= , with 0.025L = m, is kept constant. 

The systems examined in the following contain 1728N =  particles with equal radii a = R , 

where the use of the letter a indicates that the radius is a changing quantity. In the simulations 

(Luding, 2010; Luding and Bauer, 2010), the radii grow according to the relation d / d
r

a t g a= . 

The growth is stopped when a target volume fraction, 
max

v , is reached, where the volume 

fraction is defined as ( ) /v NV a V= , with the particle volume 3( ) (4 / 3)V a aπ= . The particle mass 

( ) ( )m a V aρ= , with the fixed material density ρ , changes with the radius during the growth 

period. The volume fraction changes with time according to the relation d / d 3
r

v t vg= , which 

leads to the volume fraction 
0

exp{3 }
r

v v g t=  as function of time t. The model parameters 

assumed are summarized in table 1. The particles correspond to spheres with initial radius 

0
5 ma µ= , growing up to a maximum radius of 

max
11.7 ma µ=  at volume fraction 

max
0.75v = . 
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Tab. 1: Microscopic material parameters according to (Luding, 2008) 

Property  Symbol Values SI units 

Time Unit 
u

t  1 1 sµ  

Length Unit 
u

x  1 10 mm 

Mass Unit 
u

m  1 1 mg 

Particle radius 
0

( ) exp( )
r

a t a g t=    

Initial particle radius 
0

a  5.10-4 5.10-6 m 

Growth rate factor 
r

g  0.02 2.104 1/s 

Material density ρ  2000 2000 kg/m³ 
Elastic stiffness 

2
k k=  100 10

8
 kg/s² 

Plastic stiffness 
1 2
/k k  0.2  

Adhesion “stiffness” 
2

/
t

k k  1.0  

Friction stiffness 
2

/
s

k k  0.2  

Rolling/torsion stiffness 
2 0 2

/ /
r

k k k k=  0.2  

Plasticity range 
f

φ  0.05  

Coulomb friction 
d s

µ µ µ= =  1  

Rolling/torsion  
0r

µ µ=  0.1  

Normal viscosity 
n

γ γ=  2.10
-4 

2.10
-4 

kg/s 

Friction viscosity /
f

γ γ  0.25  

Rolling viscosity  
0

/ /
r

γ γ γ γ=  0.25  

Torsion viscosity  
0

/ /
r

γ γ γ γ=  0.25  

Background viscosity /
b

γ γ  0.10  

Background torque /
br

γ γ  0.05  
 

Figure 2 shows the volume fraction v  plotted as function of the dimensionless average 

swelling pressure 
1

/pd k , with 2d a=  in a semi-logarithmic representation. It is obvious that 

with an increase of the pressure the volume fraction increases. In particular the curves of 

figure 2(a) are obtained for different values of the friction coefficient at constant 0.1
r

µ = , and 

the curves of figure 2(b) are obtained for different values of rolling- and torsion-coefficients 

at constant 1µ = . From figure 2(a) one concludes that small friction coefficients are always 

related to rather high densities, but increasing friction coefficients are not always sufficient to 

guarantee a decreasing packing density. The simulations almost collapse for 1µ ≥ . From 

figure2(b) one concludes that larger and larger rolling-/torsion- resistance leads to smaller 

densities, even though the curves with the largest coefficients almost collapse. Note that for 

higher pressures the influence of the friction coefficient and, even more clear, of the rolling-

/torsion-coefficients on the volume fraction is smaller. 

 

            (a) 

 
 
 
 
 
 

          (b) 

 

Fig. 2: Volume fraction plotted against the dimensionless pressure (scaled by k1/d) for different values of (a) the 

friction coefficient, 0.1
r

µ = , and (b) the rolling-/torsion-coefficients, with 1µ = . 
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3.2 Isotropic Loading – Sample Preparation 

In the following, we focus on one set of material properties – corresponding about to the 

highest density in figure2(b) – and vary only the contact adhesion kt. The radii Ri are now 

drawn from a Gaussian with mean R = 0.005 mm (David et al., 2005; Luding, 2008). In 

contrast to the periodic boundaries in subsection 3.1, here six plane, perpendicular outer walls 

form a cuboidal volume, with side lengths of L = 0.115 mm. More detailed studies of the 

system size, different compression-rates and -methods, as well as different sintering 

procedures are beyond the scope of this review.  

 The material simulated represents a fine, stiff adhesive powder, with a particle size in 

the order of a few micrometers. The particle density used in the simulations is again ρ=2000 

kg/m
3
, the maximum elastic contact stiffness is k2=5.10

4
 N/m (which determines the fastest 

response time scale tc= mk2π  of particles with mass m). The initial elasto-plastic stiffness 

(normalized by k2) is k1/k2=1/2, and the contact adhesion kt/k2 is varied. The limiting “fluid-

overlap” (Luding, 2005; 2008) for two contacting particles with radii R1 and R2 is computed 

as δf = φf 2R1R2/(R1+R2), with the maximum plastic indentation strain, φf = 0.05.  
 

Tab. 2: Microscopic material parameters according to (Luding, 2008) 

Property  Symbol Values SI units 

Time Unit 
u

t  1 1 ms 

Length Unit 
u

x  1 10 mm 

Mass Unit 
u

m  1 1 mg 

Particle radius 
0

( ) exp( )
r

a t a g t=    

Initial particle radius 
0

a  5.10
-4 

5.10
-6

 m 

Growth rate factor 
r

g  0 1/s 

Material density ρ  2000 2000 kg/m³ 
Elastic stiffness 

2
k k=  5.104 5.104 kg/s² 

Plastic stiffness 
1 2
/k k  0.5  

Adhesion “stiffness” 
2

/
t

k k  [0, …, 1]  

Friction stiffness 
2

/
s

k k  0.2  

Rolling/torsion stiffness 
2 0 2

/ /
r

k k k k=  0  

Plasticity range 
f

φ  0.05  

Coulomb friction 
d s

µ µ µ= =  1  

Rolling/torsion  
0r

µ µ=  0  

Normal viscosity 
n

γ γ=  5.10
3 

5
 
kg/s 

Friction viscosity /
f

γ γ  0.2  

Rolling viscosity  
0

/ /
r

γ γ γ γ=  0.1  

Torsion viscosity  
0

/ /
r

γ γ γ γ=  0.1  

Background viscosity /
b

γ γ  4  

Background torque /
br

γ γ  1  
 

 The other stiffness parameters, friction coefficients, and viscous damping parameters 

are summarized in table 2. As a consistency check, we perform the simulations with a loading 

rate set to a factor of two smaller. The observed change in peak strength is rather small, so 

that we assume that the response is close to the quasi-static limit. As final remark, we note 

that the choice of parameters is empirical – most of them kept fixed here. 

 In (Luding and Kadashevich, 2007; Luding et al., 2007; Luding and Suiker, 2008; 

Herbst and Luding, 2008; Mouraille et al., 2009), the sample preparation was carried out 

subjecting a loose assembly of particles to (isotropic) pressure sintering, such that a coherent 

and solid particulate sample is obtained that subsequently is subjected to an uni-axial tensile 

or compressive test. The sample preparation by pressure sintering is characterized by two 

stages: The first stage reflects the application of a hydrostatic (or isotropic) pressure, ps/σ0 = 
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4.10
-2

, to a loose assembly of particles, with the reference stress σ0 = k1/(2 R ), where R = 

0.005 mm is the average particle radius. This desired isotropic stress is slowly applied to the 

six outer walls, which are considered to be virtually frictionless, i.e., µwall = 0.01. The contact 

adhesion is set to zero (kt,wall/k2 = 0) for all particle-wall contacts, except for the particle-wall 

contacts in the direction of the uni-axial loading applied later (i.e., after the sample 

preparation phase has finished). For these walls, a relatively high contact adhesion of 

kt,pull/k2=20 is used in order to force the “wall particles” to directly follow the prescribed uni-

axial deformation. During the application of the hydrostatic pressure, the value of the particle 

contact adhesion does not much affect the response, since most particles are loaded in 

compression, for more details see (Mouraille et al., 2009). The hydrostatic loading process is 

considered to be finished when the kinetic energy of the sample is negligible compared to the 

potential energy. For our sample, the solid volume fraction at the end of the hydrostatic 

loading process is ν = 0.676 (which relates to a porosity of 1–ν = 0.324), and the average 

particle coordination number is C = 7.17. The volume fraction of this system is consistent with 

the one from the previous subsection, see the volume fraction in figure 2(b), at dimensionless 

pressure 0.04 and for the lowest rolling-resistance. 

 The second stage of the pressure sintering process is reflected by a stress relaxation 

phase, where the adhesion at all particle contacts is set to kt/k2 = 1/5, while the external 

hydrostatic pressure is strongly reduced to ps/σ0 = 4.10
-5

. Due to the presence of particle 

contact adhesion, the lateral stability of the specimen remains preserved when the hydrostatic 

pressure is released, i.e., a coherent and stable particulate structure is obtained that can be 

subsequently used in the analysis of damage and healing under uni-axial loading conditions. 

The solid volume fraction of the sample after stress relaxation is decreased to ν = 0.63 and the 

coordination number is now C = 6.09.  

 

3.3 Response under uni-axial compression and tension 

In the uni-axial compression (tension) test, one of the two outer walls, with its normal parallel 

to the axial (loading) direction, is slowly moved towards (away from) the opposite wall. The 

change of the wall displacement in time is prescribed by a cosine function with rather large 

period in order to limit inertia effects. Uni-axial tension is applied in a similar fashion by 

moving one of the two outer walls slowly away from the opposite wall. The connection 

between the “boundary particles” and the walls is artificially large, kt,pull, at the two walls with 

normals in the loading direction. After some prescribed deformation, the sample is 

temporarily stopped, and self-healing is activated. 

 The response of the sample under uni-axial compression and uni-axial tension are 

shown in figure 3. The normal axial stress σ, normalized by the reference stress σ0 = k1/(2 R ), 

is plotted as a function of the normal axial strain ε, where positive stress (strain) values relate 

to compression (contraction). The stress-strain curves are depicted for different values of kt 

(normalized by k2), which quantifies the adhesion at the particle contacts, see figure 1. A 

larger particle contact adhesion increases the effective strength of the sample, both under uni-

axial tension and compression. Furthermore, the overall strain at which the effective stress 

reaches its maximum increases with increasing contact adhesion, kt.  
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Fig. 3: Dimensionless axial stress (normalized by σ0 = k1/(2 R )), plotted against axial strain during uni-axial 

compression (positive stress and strain values) and uni-axial tension (negative stress and strain values), for 

different particle contact adhesions kt (normalized by k2). 
 

Note that the prediction on the available tensile force in Eq. (1) is not in agreement with the 

observed peak-strengths in figure 3 – probably due to the fact that an uni-axial deformation 

does not activate all available tensile forces in all directions equally. The maximum stress 

under uni-axial compression is order of five times larger than under uni-axial tension. A 

relatively high compressive strength in relation to the tensile strength is typical of various 

sintered materials, such as ceramics (Lee and Rainforth, 1995). As further result from figure 

3, the softening branch under uni-axial tension is somewhat steeper than under uni-axial 

compression. For larger compression rates (data not shown), the system displays strong 

dynamic effects while for much smaller rates, the peak strength is not changed much for 

tension, but reduced a few per-cent for compression. Thus we use a rate here that is close to 

the quasi-static regime, as studied in more detail in (Herbst and Luding, 2008). The initial 

(elastic) axial stiffnesses Ct in tension and compression are determined by the sample 

preparation procedure, and are approximately equal for all the cases considered here, i.e., 

Ct/σ0 = 1.04. The quantity Ct can be used to compare the present data with real experiments. 

The tensile responses are all characterized by local failure at the center of the sample. 

However, additional simulations (not presented here) have shown that local failure may also 

occur nearby one of the outer walls in the axial direction if the particle adhesion is equal or 

higher than the value kt,pull/k2=20 used for the “wall particles”. In addition, changing the 

rolling and twisting friction parameters from µr =µo=0.0 to µr =µo=0.2 increased the tensile 

peak strength of the sample with about 20%, but a further increase of these friction parameters 

altered the tensile stress-strain response only little, see (Luding, 2008) for more details.  

 

3.4 Self-healing under uni-axial compression and tension 

During uni-axial compression, the sample is stopped at various strains, see figure 4 and the 

self-healing is achieved by an instantaneous increase of the particle contact adhesion kt, which 

is assumed to be the net-effect of a re-sintering cycle. Technically, on the contact level, an 

increase of the contact adhesion kt corresponds to an increase of the maximum tensile strength 

ft,max, and a decrease of the corresponding displacement δt,max. After the application of the re-

sintering cycle (self-healing), uni-axial loading is resumed, where the effect of self-healing on 

0.06

0.04

0.02

0

-0.02
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the effective stress-strain response of the sample becomes apparent through a comparison of 

its response with that of both, the unhealed reference sample and a pre-emptively healed 

sample, which has the stronger contact adhesion from the beginning on.  

 Under uni-axial compression, see figure 4(a), the self-healing of the initial sample with 

kt/k2 = 1/5 is activated by instantaneously increasing the contact adhesion to kt/k2 = 1, 

uniformly at all particle contacts. Figure 4 shows the response curves after the initiation of 

self-healing (dashed lines, labeled with the abbreviation ‘SH’), together with the stress-strain 

responses of the relatively weak (kt/k2 = 1/5, solid squares) and strong (kt/k2 = 1, triangles) 

samples. The maximum compressive strength reached after self-healing is larger for healing at 

smaller deformation – and thus smaller damage. Astonishingly, for all self-healing cases 

considered, the response eventually converges to the response of the “strong” sample with 

kt/k2 = 1. The strong sample stress-response thus can be interpreted as the response of a pre-

emptively “self-healed” sample, where the increase in contact adhesion is initiated at the onset 

of mechanical loading already. The response of the sample with kt/k2 = 1 acts as envelope for 

the responses of the self-healed samples with kt/k2 increased from 1/5 to 1. 

 
 

Fig. 4: Axial stress versus axial strain during (a) uni-axial compression and (b) uni-axial tension, for particle 

contact adhesions kt/k2=1/5 (solid squares). The initiation of self-healing occurs at axial strains ε ≈ 0.019, 0.022, 

0.026, and 0.045 for compression and ε  ≈ -0.003, -0.005, and -0.007 for tension, as indicated by (magenta) dots. 

The self healing strength is activated (a) five times and (b) hundred times larger than the original samples’ 

contact adhesion. The self-healing stress responses are given (starting from the different strain points) by the 

dashed lines. The outer envelope corresponds to self-healing (increase of contact adhesion) already at zero strain.  

 

In the case of uni-axial tension, self-healing is investigated by increasing the contact adhesion 

at various deformation levels from kt/k2 = 1/5 to kt/k2 = 20, see figure 4(b). Similar to the self-

healing responses under uni-axial compression, the maximum tensile strength of the self-

healed samples is larger if self-healing is initiated at smaller deformation. Also, the responses 

of the self-healed samples eventually coincide with the damage responses of the relatively 

“very strong” sample with kt/k2 =20. A comparison of the self-healing curves for different 

self-healing intensity (Luding et al., 2007; Herbst and Luding, 2008) confirms a stronger 

increase in contact adhesion leads to a higher overall sample strength.  

 In order to quantify the efficiency of self-healing, a dimensionless healing strength, 

s=σSH/σmax, and healing strain, e=εSH/εmax, were introduced by Luding and Suiker (2008). The 

self-healing strength is maximal for small strains, i.e., s ≈ 1 for e<0.5, and gradually drops to a 

value of about 0.4 for strain values between 0.5<e<1.5. Accordingly, in order to (almost) 

recover the maximum strength of the original reference sample, the global self-healing, as 

applied here, needs to be activated quite early in the fracture process. The self-healing 

efficiency was found to depend only marginally on the direction of uni-axial loading. 

However, for large deformations e>1.5 a noticeable difference is expected, since samples 

(

(a) 

(b) 
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0.024 

 

0.016 
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loaded under uni-axial compression reach a finite residual strength under continued 

deformation, whereas samples loaded in uni-axial tension will eventually break completely, 

i.e., will end up with zero residual strength.  

 The self-healing model was further detailed and also applied locally and with time-

dependence, as reported by Herbst and Luding (2008). Self-healing was applied locally 

dependent on the local strain and thus local damage. Technically, single contacts were healed 

when they fulfilled certain conditions like, e.g., being close to the tensile failure force, i.e., the 

maximal adhesive strength allowed. 

 

4. Conclusions 

In this review, (1) isotropic preparation, (2) uni-axial deformation, and (3) self-healing 

processes in damaged particulate materials have been studied using DEM simulations. The 

effect of self-healing is mimicked by a (global) sintering process, as modeled by increasing 

the particle contact adhesion from relatively “weak” to rather “strong”.  

 

(1) Isotropic preparation was chosen, since only then one can hope to create a homogeneous, 

isotropic packing. The question is at which pressure will the packing have a certain volume 

fraction (density). Different material properties, like contact-friction and rolling resistance 

affect this behavior and for low pressures, densities were realized in the range between 

volume fractions 0.44 and 0.64. The lowest densities are realized for large friction and large 

rolling/torsion resistance, while the highest densities are realized for practically frictionless 

systems – close to the random-close-packing density 0.64. With increasing pressure, density 

increases in general and the range of variation of densities decreases. As important result, we 

observe that another independent simulation with other parameters still leads to the same 

dependence on dimensionless quantities, so that the detailed parameter study can be used as a 

prediction for other results if dimensionless quantities are considered. 

(2) Using one particular packing from the isotropic preparation, stress was released and uni-

axial compression/tension was applied for different contact adhesion strengths. While the 

compression modulues (slope of the stress-strain curves) is not much affected, the peak 

strength of the material is: The stronger the contact adhesion, the larger the peak strength. For 

compression, the strength appears about a factor of five larger than for tension and the 

softening branch is rather smooth for compression, while the tensile regime shows a sharper 

drop, resembling more brittle-like behavior. 

(3) At different strains, the uni-axial deformation is stopped and global self-healing is applied. 

The stress-strain response obtained from such self-healed samples eventually converges to the 

envelope curve that represents the damage response of a sample that has the “strong” contact 

adhesion since the onset of loading. This feature is astonishingly independent of the 

deformation level at which the self-healing mechanism is activated. Another result is that the 

maximum sample strength reached after self-healing very much depends on the deformation 

level at which self-healing is activated: If self-healing is activated before the peak-stress is 

reached, the maximum sample strength will be (virtually) equal to the peak strength of the 

envelope curve. In contrast, if self-healing is initiated in the softening regime, the sample 

strength is considerably smaller than the maximum reference strength. Hence, for optimal 

strength recovery, the healing mechanism should be activated as early as possible, before the 

sample reaches its peak strength and gets into the softening regime.  
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