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ABSTRACT

The self-healing behaviour of materials with a jgatate microstructure, which has
experienced damage under uniaxial compressionnasiote, is studied with the Discrete
Element Method. The stress-strain response ofdhel|e system shows that the effective
compressive and tensile strengths typically in@eagh the contact adhesion (i.e., the
tensile strength between particles), where thece¥ie compressive strength is about 5
times larger than the tensile strength. A samplih Wiveak” contact adhesion is self-
healed by instantaneously increasing the contdwsadn at different deformation levels
from weak to “strong”. The stress-strain curveself-healed samples are bounded by an
envelope curve that reflects the damage responaesaimple that has a “strong” contact
adhesion since the onset of loading. If self-hegiinapplied short before the peak stress
is reached, the maximum sample strength will beeckle maximum strength observed in
the envelope curve. In contrast, if self-healingniated in the tensile softening regime,
the maximum sample strength will be (significantlgss than the maximum strength
related to the envelope curve.

Introduction

DEM modeling of particle systems

Discrete Element Method (DEM) studies on (therm@&g¢hmanical processes in
particle systems illustrate that the effective ceme of these materials is
characterized by various macroscopic propertiesh s1$ cohesion, friction, yield
strength, dilatancy, stiffness, and anisotropy (M@nnet al., 1998; Vermeeegt
al., 2001, Luding and Herrmann, 2001; Luding, 2004ik&uand Fleck, 2004;
David et al., 2005; Luding 2005b). The macroscopic propertiesegally do not
remain constant during the loading process, bueédémn the actual deformation
and/or temperature levels applied; for example, gintering process the adhesion
between particles may strongly increase with tewmpee or pressure (Luding
2005, Luding 2007). In dynamic processes the affeatesponse of particulate
materials commonly can change rapidly with timed #rerefore is more difficult
to interpret than in quasi-static processes, eafbedi it originates from complex
contact mechanisms (Mouraillet al., 2006). Insight into the macroscopic
behaviour can be improved through establishing cdirinks with the
microstructural characteristics of the particulataterial, i.e., micro-macro scale
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transitions (Vermeest al., 2001; Suiker and Fleck, 2004; Luding, 2005b).Rivit
the context of DEM modeling, such scale transiticas be achieved by first
solving the equations of motion at the particleelein a similar fashion as in the
classical molecular dynamics approach (Allen andldeBley, 1987).
Subsequently, the effective response of the parsgistem (e.g., expressed in
terms of stress and strain) is derived throughawiag the local variables at the
particle level (e.g., force and displacement) aher assembly volume. Provided
that the particle shape is appropriately represemtethe DEM model, the
accuracy of the effective response solely depemdthe chosen particle contact
model (Tomas, 2001, Luding, 2001, Luding, 2006,ihgd2007). This makes the
approach very suitable for accurately predictingpegimental results in a
relatively straightforward fashion, and judging thwalidity of macroscopic
constitutive models (Suiker and Fleck, 2004, Thamnand Zhang, 2006). In
addition, a simple approximation of a system of ptar-shaped particles by an
assembly of spherical grains typically reprodudes qualitative response of the
system rather well, even under fairly complicatedding paths (Thornton and
Anthony, 2000), although recent studies have detratesl that the accurate
simulation of systems composed of non-sphericatiges is possible as well
(d’Addettaet al., 2006).

Self-healing processes in particle systems

In the present study, it is anticipated that platiystems can be equipped with
specific micromechanical healing characteristicschs that they are able to
efficiently reduce, or even reverse, damage devetopp caused by external
loading. The self-healing capacity of particulatatemials is analyzed using DEM
modeling. Particle structures consisting of sphength a cohesive-frictional
contact law are studied under quasi-static monotaniaxial loading. The self-
healing capacity of the particulate sample is sated by instantaneously
changing the contact adhesion (i.e., tensile costaength between particles) at a
specific deformation level. The main purpose os thiudy is to provide insight
into how the strength and lifetime of the partitel@ample can be efficiently
enlarged.

Simulation Method

DEM studies are commonly performed on relativel\abmmepresentative volume
elements, where the number of particles is choseh ghat the computational
time of the simulation remains manageable. The geef such simulations is to
achieve detailed insight into the kinematical anghaimical behaviour of the
particles, and to relate this information to théeetive mechanical properties of
the sample. From the viewpoint of computationaliicedhcy the incremental
timestep used in the DEM simulations should beasgel as possible; however, in
practice, the magnitude of the timestep is limiteg numerical stability
requirements. Theritical timestep for numerical stability can be estimated from
the response period of a linear spring-dashpot medbjected to an initial
displacement (Herrmaet al., 1998; Luding, 2007). In the present study the
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integration timestep is chosen about 100 times Ilem#dan this response period,
which warrants the stability of the numerical prdae under arbitrary loading
conditions and deformation paths.

Particle contact model

The non-linear contact model used is sketcheddgnEiThenormal contact force

f between two particles is governed by the normatam overlapd >0. During
the initial compressive loading stage, the confanote increases proportionally
with the contact overlap dsk;0, wherek; is the elasto-plastic contact stiffness.
At a specific maximum contact overlaina, the contact stiffness increases
instantaneously to a value. Loading and elastic unloading at this stage are
prescribed in accordance with= ky(d—%). Elastic unloading to a zero contact
force leads to a contact overlap equal to the maxirplastic contact indentation,
0 = &. Further unloading brings the contact force mtiénsile regime, where the
maximum tensile contact fordemax corresponds to a contact overlapg o max
Elastic unloading at a contact overlap smaller #ap occurs in accordance with
a contact stiffnesk- that follows from a linear interpolation betwede values;
and kp. Additionally, the line %&d& characterizes tensile failure (i.e., softening),
where the maximum tensile contact force is compatdghax= — ki & max . FoOr the
sake of brevity, the tensile softening paraméterereafter is referred to as the
“contact adhesion”.
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Fig. 1 (Left) Two-particle contact with contact olap d. (Right) Particle contact model in terms
of the normal contact force plotted against thetacinoverlap (compression is assumed positive).
For more details, see Luding (2005, 2006, 2007).

The tangential contact force parallel to the particle contact plane is rela@dhe
tangential contact displacement by means of adiesstic contact law, with the
tangential stiffness equal tQ. The tangential contact displacement depends on
both the translations and rotations of the contggparticles. A Coulomb friction
law determines the maximum value of the tangentakact force: During sliding
the ratio between the tangential contact force #red normal contact force is
assumed to be constant and equal to the frictieffic@nt . In a similar fashion,
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the elastic contact behaviour related to rolling &misting (torsion) is set by the
elastic constantsk, and k, respectively. The maximum values of the
corresponding contact torques depend on the noowmafact force through a
Coulomb-type law with “friction” coefficientq., and p,, respectively. More
details on the contact model can be found in Lud2@®6, 2007).

The overall solution of the present non-linear DEivbblem is obtained by

integrating Newton's equations of motion for thansiational and rotational

particle degrees of freedom. In the case of slagie particle interactions, which
are present in particulate media such as powdeds sands, a considerable
increase in computational time can be achievedsioygua linked-cell method that

allows for a more efficient particle neighborho@ich. Hence, this procedure is
applied for the present simulations, and more Betan the algorithm can be

found in Allen and Tildesley (1987).

System parameters and sample preparation

Material parameters and loading conditions

The simulations discussed in this section refer sample of 1728 poly-dispersed,
spherical particles. The radiR of the particles are drawn from a Gaussian
distribution around a mean value = 0.005mm (David et al., 2005, Luding,
2007). Six outer walls forming a cuboidal volumeahside lengths of 0.115 mm
prescribe the geometry of the sample.

A loose assembly of particles is first subjecteduasotropic pressure sintering
process (as detailed below) in order to obtainrapéa that can be subjected to
uniaxial tension or uniaxial compression loading. In the uniaxial compression
tests, one of the two outer walls with its normainging in the axial (loading)
direction is slowly moved towards the opposite wdlhe change of the wall
displacement in time is prescribed by a cosine tianc which has a relatively
large period in order to reduce inertia effectsdibg and Herrmann, 2001,
Luding, 2004, Luding, 2005b). Uniaxial tension gphed in a similar fashion as
uniaxial compression, i.e., one of the two outellswaith its normal pointing in
the loading direction is moved away from the opfsosiall.

The particle density ip=2000kg/m®. The maximum elastic contact stiffness is
k,=5.10" N/m, the elasto-plastic stiffness (expressed ims$eofk,) is ki/k,=1/2,
and the tensile softening parametetk, is varied in the simulations. The
maximum plastic contact indentation for two contagiparticles with radiR, and

R, is computed ag: = ¢ 2RR/(Ri+Ry), with the maximum plastic indentation
strain equal tap=0.05.

The tangential stiffness, rolling stiffness andstivig stiffness have the values
kd/ko=1/5, ki/k,=1/10, andky/k,=1/10, respectively, and the friction coefficients
corresponding to these deformation modeguatke0, |, =0.0 andu,=0.0. In order

to limit the computational time necessary for reéaghstatic equilibrium, the
model is extended with viscous damping (i.e, thetact force related to damping
is proportional to the contact velocity), with th@mping coefficient in the normal
direction being equal tg= 5 kg/s, and the tangential damping, rolling damping
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and twisting damping (expressed in the same usite@normal contact damping)
equal toys /y = 1/5, v /y=1/10, Yy, / y= 1/10. In addition, translational and
rotational background viscosities are introducedemvicomputing the overall
forces and torques acting on the individual paesclThis is done in order to
efficiently dissipate dynamic response contribusiorelated to relatively long
wavelengths. The values of the translational amaticnal background viscosities
arey,/y=1 andyy / y = 4, respectively. Additional computations not presdn
here, in which the loading rate was set a factamaf lower than in the present
simulations, have confirmed that the influence lé wiscosity on the system
response is minor; i.e., no considerable chandbdameak strength was observed
and the stress profile related to softening bramak altered only slightly. More
details on the above material parameters can befouLuding (2006, 2007).

The incremental timestep, which is chosen in acurd with the procedure

mentioned previously, equalé =5.10'%s. Additional computations not presented
here have shown that an incremental timestep otdvibree times larger than this
value leads to spurious numerical results, whesetgo times smaller timestep

changes the numerical results only minorly.

Preparation of the sample

As already mentioned, the sample is prepared thrgubjecting a loose assembly
of particles to gressure sintering process. Accordingly, a hydrostatic presqure
/oo = 107 (with the reference stresg = k/R , whereR = 0.005 mm is the average
particle radius) is applied by uniformly displacitige six outer walls such that the
cuboidal sample decreases monotonically in volumke contact surfaces
between the particles deform plastically as a tesfuhe relatively large value of
ps. During the sintering process the particle comstaere frictional (in
correspondence with the friction coefficients menéd above), while the walls
are virtually frictionless [{wai = 0.01). The contact adhesion is set to zeatk{ =

0) for all particle-wall contacts, except for tharficle-wall contacts in the loading
direction, for which high values &f/k,;=20 are used in order to warrant that these
particles directly follow the uniaxial tensile laad applied later. The other
contact parameters have the same values as mahtabwe. The hydrostatic
loading process is considered to be finished wherkinetic energy of the sample
is negligible compared to the potential energy.imysintering the value of the
adhesion hardly affects the response, since mosticlpa are loaded in
compression; additional computations not presehi@ showed that virtually
identical results are obtained for contact adhesgaloes in the range ©ky/k; <
0.5. The solid volume fraction obtained after puesssintering isv = 0.676
(which relates to a porosity of 4= 0.324), and the average coordination number
isC=7.17.

Upon subsequerdress relaxation, the contact adhesion between the particles is
increased toki/k, = 1/5, and the external hydrostatic pressure is rediuo
virtually zero,ps/a, = 10°. Due to the presence of a tensile strength between
particles, the lateral stability of the specimemmaéns preserved when the
hydrostatic pressure is released. The solid volirawtion after stress relaxation is

v =0.63 and the coordination number is 6.09.



Results

Failure under uniaxial compression and uniaxial tension

The responses of the sample under uniaxial compreasd uniaxial tension are
shown in Fig. 2 (Left). The normal axial stresgnormalized by the reference
stressog = ko/ R) is plotted as a function of the normal axial istra (where
positive stress and strain values relate to corspmes The stress-strain curves
are depicted for different values kf (normalized byky), which quantifies the
adhesion at the particle contacts, see Fig. 1. Boitker uniaxial tension and
uniaxial compression a larger adhesion increaseseffective strength of the
sample. Furthermore, the overall strain at whioh éffective stress reaches its
maximum increases with an increasing valuexofThe maximum stress under
compression is about 5 times larger than undeideni addition, the softening
branch under uniaxial tension is somewhat steefwmn tunder uniaxial
compression. The initial axial stiffness in tensiand compression, which is
determined by the sample preparation procedurapjsoximately equal for all
cases considered here, and corresponds to a (npediavalue ofC; / oo = 0.26.
All tensile responses plotted in Fig. 2 (Rightiatelto a local failure pattern at the
center of the sample. However, additional simutetimot presented here have
shown that local failure may also occur nearby ohthe outer walls in the axial
direction if the particle adhesion is equal or leigthan the value d§/k,=20 used
for the walls. In addition, changing the rollingdatwisting frictions fromy
=Ho=0.0 top, =H,=0.2 increased the tensile peak strength of thepkawith about
20%, and a further increase of these friction patans only minorly changed the
stress-strain responses.
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Fig. 2 (Left) Axial stress versus axial strain ahgriuniaxial compression (positive stress and strain
values) and uniaxial tension (negative stress dralnsvalues), for different particle contact
adhesionk; (normalized byk,). (Right) Magnification of the tensile responsdstied in the left
figure.

Self-healing under uniaxial compression

Under uniaxial compression the self-healing behaviof a relatively weak
sample withk/k, = 1/5 is simulated by instantaneously increasing dbetact
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adhesion tdi/k, = 1. This self-healing mechanism is assumed to tdkeepat all
particle contacts, and is studied by initiatingtidifferent deformation levels. Fig.
3 shows several self-healing response curves (dabhes, labeled with the
abbreviation SH), together with the stress-strasponses of the “weakkik; =
1/5, solid squares) and “strond/kz = 1, triangles) samples, taken from Figure 2.
It is observed that the maximum compressive streregiched during self-healing
is larger when self-healing is initiated at smakldedial strain. Hence, from the
aspect of strength optimization, during the defdramaprocess the self-healing
mechanism should be activated relatively earlytifarmore, for all self-healing
cases considered the response eventually conveitfeshe damage response of
the “strong” sample with/k, = 1. This is expected, since the damage response of
the strong sample may be interpreted as a “selifggaresponse with the
increase in contact adhesion Kgk, = 1 initiated at the onset of the loading
process. Consequently, the damage responde/kpr 1 acts as an envelope for
the self-healing responses with/k, increased from 1/5 to 1 at arbitrary
deformation levels.
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Fig. 3 (Left) Axial stress versus axial strain aigriuniaxial compression. The lines with solid
squares and open triangles represent the damagenses of the weakk/k,=1/5) and strong
(k/ko=1) samples, respectively, as taken from Fig. 2 @ashed lines reflect the responses after
the initiation of self-healing (which occurs by irasing the contact adhesiorkiky=1) at various
deformation levels. (Right) Magnification of thesppnses plotted in the left figure; the initiation
of self-healing occurs at axial straiers 0.016, 0.019, 0.022, 0.026, 0.045, and 0.12.

Self-healing under uniaxial tension

In the case of uniaxial tension, self-healing isestigated by increasing the
contact adhesion at different deformation levedsnfki/k, = 1/5 toki/k, =1 (Fig. 4,
Left) and tok/k, = 20 (Fig. 4, Right). Similar to the self-healing pesses under
uniaxial compression plotted in Fig. 3, the maximiemsile strength of the healed
sample is larger if healing is initiated at an iesirtleformation stage. Further, the
responses of the healed samples eventually coimétiehe damage responses of
the strong samples witk/k, =1 (Fig. 4, Left) and the very strong sample with
kik, =20 (Fig. 4, Right). A comparison between selflimgacurves in Figs. 4
(Left) and (Right) shows that a stronger increaseontact adhesion clearly gives
rise to a larger sample strength.
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Fig. 4 Axial stress versus axial strain during wightension. The lines with solid squares, open
triangles, and solid circles represent the damagpanses of the weak/k,=1/5), strong K/k,=1)

and very strongk/k,=20) samples, respectively, as taken from Fig.l& dashed lines reflect the
responses after the initiation of self-healing, athbccurs by increasing the contact adhesion to
k/ko=1 (Left) andk/k,=20 (Right) at various deformation levets<-0.005, -0.006 and -0.007).

Concluding remarks

Self-healing processes in damaged, adhesive patecumaterials have been
studied under uniaxial compression and uniaxiaditenusing DEM simulations.
The self-healing mechanism is initiated at the ipl@rt contact level by
instantaneously increasing the contact adhesiom fiweak” to “strong”. The
stress-strain responses under self-healing evéyntoahverge to the envelope
curve that represents the damage response of iautate sample that has the
same strong contact adhesion since the onset dafinlpaThis behaviour is
independent of the overall deformation level atckhihe self-healing mechanism
is activated. Nonetheless, the maximum sample gfnereached during self-
healing very much depends on the deformation letelvhich self-healing is
activated: If self-healing is activated short beftine peak-stress is reached, the
maximum sample strength will be close to peak gtienbserved in the envelope
curve. In contrast, if healing is initiated in teeftening regime, the maximum
sample strength may be considerably less than trénmuim strength related to
the envelope curve.

In the present study the self-healing mechanism mstantaneously initiated at
all particle contacts in the sample. However, it i®rgstically favourable to
activate self-healing at a relatively early stagethe loading process, which
requires an early identification of local damageeadepment in a sample. Also, to
improve the efficiency of the healing process, otfigse parts of the sample
should be healed for which the damage has surpassgxicific critical level.
Furthermore, it is more realistic to initiate thelfdiealing mechanism over a
specific period in time, instead of initiating fitstantaneously. These are topics for
future numerical studies, where the results ofdtstadies (and the present study)
require an experimental validation.
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