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ABSTRACT 

The self-healing behaviour of materials with a particulate microstructure, which has 
experienced damage under uniaxial compression or tension, is studied with the Discrete 
Element Method. The stress-strain response of the particle system shows that the effective 
compressive and tensile strengths typically increase with the contact adhesion (i.e., the 
tensile strength between particles), where the effective compressive strength is about 5 
times larger than the tensile strength. A sample with “weak” contact adhesion is self-
healed by instantaneously increasing the contact adhesion at different deformation levels 
from weak to “strong”. The stress-strain curves of self-healed samples are bounded by an 
envelope curve that reflects the damage response of a sample that has a “strong” contact 
adhesion since the onset of loading. If self-healing is applied short before the peak stress 
is reached, the maximum sample strength will be close to maximum strength observed in 
the envelope curve. In contrast, if self-healing is initiated in the tensile softening regime, 
the maximum sample strength will be (significantly) less than the maximum strength 
related to the envelope curve. 
 

Introduction 

DEM modeling of particle systems 

Discrete Element Method (DEM) studies on (thermo-)mechanical processes in 
particle systems illustrate that the effective response of these materials is 
characterized by various macroscopic properties, such as cohesion, friction, yield 
strength, dilatancy, stiffness, and anisotropy (Herrmann et al., 1998; Vermeer et 
al., 2001, Luding and Herrmann, 2001; Luding, 2004; Suiker and Fleck, 2004; 
David et al., 2005; Luding 2005b). The macroscopic properties generally do not 
remain constant during the loading process, but depend on the actual deformation 
and/or temperature levels applied; for example, in a sintering process the adhesion 
between particles may strongly increase with temperature or pressure (Luding 
2005, Luding 2007). In dynamic processes the effective response of particulate 
materials commonly can change rapidly with time, and therefore is more difficult 
to interpret than in quasi-static processes, especially if it originates from complex 
contact mechanisms (Mouraille et al., 2006). Insight into the macroscopic 
behaviour can be improved through establishing direct links with the 
microstructural characteristics of the particulate material, i.e., micro-macro scale 
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transitions (Vermeer et al., 2001; Suiker and Fleck, 2004; Luding, 2005b). Within 
the context of DEM modeling, such scale transitions can be achieved by first 
solving the equations of motion at the particle level, in a similar fashion as in the 
classical molecular dynamics approach (Allen and Tildesley, 1987). 
Subsequently, the effective response of the particle system (e.g., expressed in 
terms of stress and strain) is derived through averaging the local variables at the 
particle level (e.g., force and displacement) over the assembly volume. Provided 
that the particle shape is appropriately represented in the DEM model, the 
accuracy of the effective response solely depends on the chosen particle contact 
model (Tomas, 2001, Luding, 2001, Luding, 2006, Luding, 2007). This makes the 
approach very suitable for accurately predicting experimental results in a 
relatively straightforward fashion, and judging the validity of macroscopic 
constitutive models (Suiker and Fleck, 2004, Thornton and Zhang, 2006). In 
addition, a simple approximation of a system of complex-shaped particles by an 
assembly of spherical grains typically reproduces the qualitative response of the 
system rather well, even under fairly complicated loading paths (Thornton and 
Anthony, 2000), although recent studies have demonstrated that the accurate 
simulation of systems composed of non-spherical particles is possible as well 
(d’Addetta et al., 2006).  

 

Self-healing processes in particle systems 

In the present study, it is anticipated that particle systems can be equipped with 
specific micromechanical healing characteristics, such that they are able to 
efficiently reduce, or even reverse, damage development caused by external 
loading. The self-healing capacity of particulate materials is analyzed using DEM 
modeling. Particle structures consisting of spheres with a cohesive-frictional 
contact law are studied under quasi-static monotonic uniaxial loading. The self-
healing capacity of the particulate sample is simulated by instantaneously 
changing the contact adhesion (i.e., tensile contact strength between particles) at a 
specific deformation level. The main purpose of this study is to provide insight 
into how the strength and lifetime of the particulate sample can be efficiently 
enlarged.  

 

Simulation Method 

DEM studies are commonly performed on relatively small representative volume 
elements, where the number of particles is chosen such that the computational 
time of the simulation remains manageable. The purpose of such simulations is to 
achieve detailed insight into the kinematical and dynamical behaviour of the 
particles, and to relate this information to the effective mechanical properties of 
the sample. From the viewpoint of computational efficiency the incremental 
timestep used in the DEM simulations should be as large as possible; however, in 
practice, the magnitude of the timestep is limited by numerical stability 
requirements. The critical timestep for numerical stability can be estimated from 
the response period of a linear spring-dashpot model subjected to an initial 
displacement (Herrman et al., 1998; Luding, 2007). In the present study the 
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integration timestep is chosen about 100 times smaller than this response period, 
which warrants the stability of the numerical procedure under arbitrary loading 
conditions and deformation paths.  

 

Particle contact model 

The non-linear contact model used is sketched in Fig. 1. The normal contact force 
f between two particles is governed by the normal contact overlap δ >0.  During 
the initial compressive loading stage, the contact force increases proportionally 
with the contact overlap as f=k1δ, where k1 is the elasto-plastic contact stiffness. 
At a specific maximum contact overlap δmax, the contact stiffness increases 
instantaneously to a value k2. Loading and elastic unloading at this stage are 
prescribed in accordance with f = k2(δ−δf). Elastic unloading to a zero contact 
force leads to a contact overlap equal to the maximum plastic contact indentation, 
δ =  δf.  Further unloading brings the contact force in the tensile regime, where the 
maximum tensile contact force ft,max corresponds to a contact overlap δ = δt,max. 
Elastic unloading at a contact overlap smaller than δmax occurs in accordance with 
a contact stiffness k* that follows from a linear interpolation between the values k1 
and k2. Additionally, the line –ktδ characterizes tensile failure (i.e., softening), 
where the maximum tensile contact force is computed as ft,max = − kt δt,max . For the 
sake of brevity, the tensile softening parameter kt hereafter is referred to as the 
“contact adhesion”.  

 

Fig. 1 (Left) Two-particle contact with contact overlap δ. (Right) Particle contact model in terms 
of the normal contact force plotted against the contact overlap (compression is assumed positive). 
For more details, see Luding (2005, 2006, 2007). 

The tangential contact force parallel to the particle contact plane is related to the 
tangential contact displacement by means of a linear elastic contact law, with the 
tangential stiffness equal to ks. The tangential contact displacement depends on 
both the translations and rotations of the contacting particles. A Coulomb friction 
law determines the maximum value of the tangential contact force: During sliding 
the ratio between the tangential contact force and the normal contact force is 
assumed to be constant and equal to the friction coefficient µ. In a similar fashion, 
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the elastic contact behaviour related to rolling and twisting (torsion) is set by the 
elastic constants kr and ko, respectively. The maximum values of the 
corresponding contact torques depend on the normal contact force through a 
Coulomb-type law with “friction” coefficients µr and µo, respectively. More 
details on the contact model can be found in Luding (2006, 2007).  

The overall solution of the present non-linear DEM problem is obtained by 
integrating Newton's equations of motion for the translational and rotational 
particle degrees of freedom. In the case of short-range particle interactions, which 
are present in particulate media such as powders and sands, a considerable 
increase in computational time can be achieved by using a linked-cell method that 
allows for a more efficient particle neighborhood search. Hence, this procedure is 
applied for the present simulations, and more details on the algorithm can be 
found in Allen and Tildesley (1987).  

 

System parameters and sample preparation 

Material parameters and loading conditions 

The simulations discussed in this section refer to a sample of 1728 poly-dispersed, 
spherical particles. The radii Ri of the particles are drawn from a Gaussian 
distribution around a mean value R  = 0.005 mm (David et al., 2005, Luding, 
2007). Six outer walls forming a cuboidal volume with side lengths of 0.115 mm 
prescribe the geometry of the sample.  

A loose assembly of particles is first subjected to an isotropic pressure sintering 
process (as detailed below) in order to obtain a sample that can be subjected to 
uniaxial tension or uniaxial compression loading. In the uniaxial compression 
tests, one of the two outer walls with its normal pointing in the axial (loading) 
direction is slowly moved towards the opposite wall. The change of the wall 
displacement in time is prescribed by a cosine function, which has a relatively 
large period in order to reduce inertia effects (Luding and Herrmann, 2001, 
Luding, 2004, Luding, 2005b). Uniaxial tension is applied in a similar fashion as 
uniaxial compression, i.e., one of the two outer walls with its normal pointing in 
the loading direction is moved away from the opposite wall.  

The particle density is ρ=2000 kg/m3. The maximum elastic contact stiffness is 
k2=5.104

 N/m, the elasto-plastic stiffness (expressed in terms of k2) is k1/k2=1/2, 
and the tensile softening parameter kt/k2 is varied in the simulations. The 
maximum plastic contact indentation for two contacting particles with radii R1 and 
R2 is computed as δf = φf 2R1R2/(R1+R2), with the maximum plastic indentation 
strain equal to φf = 0.05.  

The tangential stiffness, rolling stiffness and twisting stiffness have the values 
ks/k2=1/5, kr/k2=1/10, and ko/k2=1/10, respectively, and the friction coefficients 
corresponding to these deformation modes are µ=1.0, µr =0.0 and µo=0.0. In order 
to limit the computational time necessary for reaching static equilibrium, the 
model is extended with viscous damping (i.e, the contact force related to damping 
is proportional to the contact velocity), with the damping coefficient in the normal 
direction being equal to γ = 5 kg/s, and the tangential damping, rolling damping 
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and twisting damping (expressed in the same units as the normal contact damping) 
equal to γs / γ = 1/5, γr / γ =1/10, γo / γ = 1/10. In addition, translational and 
rotational background viscosities are introduced when computing the overall 
forces and torques acting on the individual particles. This is done in order to 
efficiently dissipate dynamic response contributions related to relatively long 
wavelengths. The values of the translational and rotational background viscosities 
are γb / γ = 1 and γbr / γ = 4, respectively. Additional computations not presented 
here, in which the loading rate was set a factor of two lower than in the present 
simulations, have confirmed that the influence of the viscosity on the system 
response is minor; i.e., no considerable change in the peak strength was observed 
and the stress profile related to softening branch was altered only slightly. More 
details on the above material parameters can be found in Luding (2006, 2007).  

The incremental timestep, which is chosen in accordance with the procedure 
mentioned previously, equals ∆t = 5.10-10

 s. Additional computations not presented 
here have shown that an incremental timestep of two to three times larger than this 
value leads to spurious numerical results, whereas a two times smaller timestep 
changes the numerical results only minorly.  

 

Preparation of the sample 

As already mentioned, the sample is prepared through subjecting a loose assembly 
of particles to a pressure sintering process. Accordingly, a hydrostatic pressure ps 

/σ0 = 10-2 (with the reference stress σ0 = k2/ R , where R = 0.005 mm is the average 
particle radius) is applied by uniformly displacing the six outer walls such that the 
cuboidal sample decreases monotonically in volume. The contact surfaces 
between the particles deform plastically as a result of the relatively large value of 
ps. During the sintering process the particle contacts are frictional (in 
correspondence with the friction coefficients mentioned above), while the walls 
are virtually frictionless (µwall = 0.01). The contact adhesion is set to zero (kt/k2 = 

0) for all particle-wall contacts, except for the particle-wall contacts in the loading 
direction, for which high values of kt/k2=20 are used in order to warrant that these 
particles directly follow the uniaxial tensile loading applied later. The other 
contact parameters have the same values as mentioned above. The hydrostatic 
loading process is considered to be finished when the kinetic energy of the sample 
is negligible compared to the potential energy. During sintering the value of the 
adhesion hardly affects the response, since most particles are loaded in 
compression; additional computations not presented here showed that virtually 
identical results are obtained for contact adhesion values in the range 0 < kt/k2 < 

0.5. The solid volume fraction obtained after pressure sintering is ν = 0.676 
(which relates to a porosity of 1–ν = 0.324), and the average coordination number 
is C = 7.17.  

Upon subsequent stress relaxation, the contact adhesion between the particles is 
increased to kt/k2 = 1/5, and the external hydrostatic pressure is reduced to 
virtually zero, ps /σ0 = 10-5. Due to the presence of a tensile strength between the 
particles, the lateral stability of the specimen remains preserved when the 
hydrostatic pressure is released. The solid volume fraction after stress relaxation is 
ν = 0.63 and the coordination number is C = 6.09.  
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Results 

Failure under uniaxial compression and uniaxial tension 

The responses of the sample under uniaxial compression and uniaxial tension are 
shown in Fig. 2 (Left). The normal axial stress σ (normalized by the reference 
stress σ0 = k2/ R ) is plotted as a function of the normal axial strain ε (where 
positive stress and strain values relate to compression). The stress-strain curves 
are depicted for different values of kt (normalized by k2), which quantifies the 
adhesion at the particle contacts, see Fig. 1. Both under uniaxial tension and 
uniaxial compression a larger adhesion increases the effective strength of the 
sample. Furthermore, the overall strain at which the effective stress reaches its 
maximum increases with an increasing value of kt. The maximum stress under 
compression is about 5 times larger than under tension. In addition, the softening 
branch under uniaxial tension is somewhat steeper than under uniaxial 
compression. The initial axial stiffness in tension and compression, which is 
determined by the sample preparation procedure, is approximately equal for all 
cases considered here, and corresponds to a (normalized) value of Ct / σ0 = 0.26. 
All tensile responses plotted in Fig. 2 (Right) relate to a local failure pattern at the 
center of the sample. However, additional simulations not presented here have 
shown that local failure may also occur nearby one of the outer walls in the axial 
direction if the particle adhesion is equal or higher than the value of kt/k2=20 used 
for the walls. In addition, changing the rolling and twisting frictions from µr 
=µo=0.0 to µr =µo=0.2 increased the tensile peak strength of the sample with about 
20%, and a further increase of these friction parameters only minorly changed the 
stress-strain responses.   

 
Fig. 2 (Left) Axial stress versus axial strain during uniaxial compression (positive stress and strain 
values) and uniaxial tension (negative stress and strain values), for different particle contact 
adhesions kt (normalized by k2). (Right) Magnification of the tensile responses plotted in the left 
figure.  
 

Self-healing under uniaxial compression 

Under uniaxial compression the self-healing behaviour of a relatively weak 
sample with kt/k2 = 1/5 is simulated by instantaneously increasing the contact 
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adhesion to kt/k2 = 1. This self-healing mechanism is assumed to take place at all 
particle contacts, and is studied by initiating it at different deformation levels. Fig. 
3 shows several self-healing response curves (dashed lines, labeled with the 
abbreviation SH), together with the stress-strain responses of the “weak” (kt/k2 = 

1/5, solid squares) and “strong” (kt/k2 = 1, triangles) samples, taken from Figure 2. 
It is observed that the maximum compressive strength reached during self-healing 
is larger when self-healing is initiated at smaller axial strain. Hence, from the 
aspect of strength optimization, during the deformation process the self-healing 
mechanism should be activated relatively early. Furthermore, for all self-healing 
cases considered the response eventually converges with the damage response of 
the “strong” sample with kt/k2 = 1. This is expected, since the damage response of 
the strong sample may be interpreted as a “self-healing” response with the 
increase in contact adhesion to kt/k2 = 1 initiated at the onset of the loading 
process. Consequently, the damage response for kt/k2 = 1 acts as an envelope for 
the self-healing responses with kt/k2 increased from 1/5 to 1 at arbitrary 
deformation levels.  

 
Fig. 3 (Left) Axial stress versus axial strain during uniaxial compression. The lines with solid 
squares and open triangles represent the damage responses of the weak (kt/k2=1/5) and strong  
(kt/k2=1) samples, respectively, as taken from Fig. 2. The dashed lines reflect the responses after 
the initiation of self-healing (which occurs by increasing the contact adhesion to ktk2=1) at various 
deformation levels. (Right) Magnification of the responses plotted in the left figure; the initiation 
of self-healing occurs at axial strains ε ≈ 0.016, 0.019, 0.022, 0.026, 0.045, and 0.12. 
 

Self-healing under uniaxial tension 

In the case of uniaxial tension, self-healing is investigated by increasing the 
contact adhesion at different deformation levels from kt/k2 = 1/5 to kt/k2 = 1 (Fig. 4, 
Left) and to kt/k2 = 20 (Fig. 4, Right). Similar to the self-healing responses under 
uniaxial compression plotted in Fig. 3, the maximum tensile strength of the healed 
sample is larger if healing is initiated at an earlier deformation stage. Further, the 
responses of the healed samples eventually coincide with the damage responses of 
the strong samples with kt/k2 =1 (Fig. 4, Left) and the very strong sample with 
kt/k2 =20 (Fig. 4, Right). A comparison between self-healing curves in Figs. 4 
(Left) and (Right) shows that a stronger increase in contact adhesion clearly gives 
rise to a larger sample strength.  
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Fig. 4 Axial stress versus axial strain during uniaxial tension. The lines with solid squares, open 
triangles, and solid circles represent the damage responses of the weak (kt/k2=1/5), strong  (kt/k2=1) 
and very strong (kc/k2=20) samples, respectively, as taken from Fig. 2. The dashed lines reflect the 
responses after the initiation of self-healing, which occurs by increasing the contact adhesion to 
kt/k2=1 (Left) and kt/k2=20 (Right) at various deformation levels (ε  ≈ -0.005, -0.006 and -0.007). 
 
 

Concluding remarks 

Self-healing processes in damaged, adhesive particulate materials have been 
studied under uniaxial compression and uniaxial tension using DEM simulations. 
The self-healing mechanism is initiated at the particle contact level by 
instantaneously increasing the contact adhesion from “weak” to “strong”. The 
stress-strain responses under self-healing eventually converge to the envelope 
curve that represents the damage response of a particulate sample that has the 
same strong contact adhesion since the onset of loading. This behaviour is 
independent of the overall deformation level at which the self-healing mechanism 
is activated. Nonetheless, the maximum sample strength reached during self-
healing very much depends on the deformation level at which self-healing is 
activated: If self-healing is activated short before the peak-stress is reached, the 
maximum sample strength will be close to peak strength observed in the envelope 
curve. In contrast, if healing is initiated in the softening regime, the maximum 
sample strength may be considerably less than the maximum strength related to 
the envelope curve. 

 

In the present study the self-healing mechanism was instantaneously initiated at 
all particle contacts in the sample. However, it is energetically favourable to 
activate self-healing at a relatively early stage in the loading process, which 
requires an early identification of local damage development in a sample. Also, to 
improve the efficiency of the healing process, only those parts of the sample 
should be healed for which the damage has surpassed a specific critical level. 
Furthermore, it is more realistic to initiate the self-healing mechanism over a 
specific period in time, instead of initiating it instantaneously. These are topics for 
future numerical studies, where the results of these studies (and the present study) 
require an experimental validation.   
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