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Spin-Echo Small Angle Neutron Scattering is able to characterise powders in terms of their density-
density correlation function. Here we present a micro-structural study on a fine cohesive powder
undergoing uniaxial compression. As a function of compression we measure the autocorrelation
function of the density distribution. From these measurements we quantify the typical sizes of
the heterogeneities as well as the fractal nature of the powder packing. The fractal dimension is
increasing with increasing stress, creating a more space-filling structure. The typical size of the
heterogeneities is found to decrease nonlinearly with increasing compressive strain. In this way we
link the macroscopic mechanical response with the evolution of microstructure inside the bulk of
the cohesive powder. We find that the total macroscopic compressive strain is in agreement with a
corresponding decrease in microstructural length scales.
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I. INTRODUCTION

Rather than being driven by the hard-core exclusion
between grains, the structure of cohesive powders is
mainly determined by van der Waals attraction amongst
small primary particles (<100µm). As a result of these
adhesive forces, and the irrelevancy of body forces, very
loosely packed and fluffy structures are seen to form in
these materials. The structures lead to process related
issues relevant to industry in a sense that mass flows be-
come unstable [1]. An increased demand for particulate
materials in the nanoscale makes the understanding of
these type of granular materials important.

To precisely understand the macroscopic behaviour
of powders, the computer-modelling and theory-buildup
needs the support of experiments on realistic samples.
More specifically, there is a need for experiments that
can quantify powders in terms of their microstructure.
Experiments are needed that can look inside the ’fluffy’
structure of cohesive powders so that more quantitative
statements can be made.

Extracting information from the bulk of powders and
granular materials is difficult. The opacity and the wide
range of sizes present in real materials renders most opti-
cal and conventional wave diffraction techniques more or
less useless. The opacity can be overcome by using some
penetrating radiation such as x-rays in x-ray tomogra-
phy [2–4] or radio-waves in Magnetic Resonance Imaging
[5, 6].

Spin Echo Small Angle Neutron Scattering (SESANS)
is using the penetrating ability of neutrons, where the
measured signal is a real space correlation function of the
sample inhomogeneities [7]. SESANS is used to probe the
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structure across three orders of magnitude ranging from
30nm up to 20µm, making it applicable to fine cohesive
powders [8], colloidal systems [9], dairy products [10],
just to name a few.

The autocorrelation function of the density distri-
bution γ(r) is a convenient way to statistically char-
acterise the microstructure of heterogeneous materials.
This function is measured in a small-angle scattering ex-
periment as its Fourier transform (the so called struc-
ture/form factor). SESANS is measuring γ(r) via its pro-
jection along the neutron beam path, making SESANS
a real-space technique. The typical size, packing frac-
tion, any anisotropy, scale invariance and ordering of the
sample heterogeneities are examples of extractable char-
acteristics.

Here we have performed a stress-strain measurement
on a fine cohesive silica powder together with consecutive
SESANS measurements. In the analysis, the cohesive
powder is considered as being a self-affine random two-
phase material. We use a model function for the density-
density correlation function containing a typical length
scale and a Hurst number related to the fractal dimension
of the structure [11, 12].

From the initial decay of the measured curve we extract
the unknown primary grain density and consequently the
grain packing fraction. Furthermore, we find that the
typical size of the inhomogeneities decays in a non lin-
ear way with increasing compressive strain. The Hurst
number is seen to decrease towards zero with increas-
ing stress and strain, showing that a more space filling
structure is formed as the powder packing is compacted.
All together this microstructural investigation provides
insight in the fractal nature of fine cohesive powders as
well as on the non-linear behaviour between ’microscales’
and macroscopic mechanics.
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II. STRUCTURE AND SESANS

A. On the density distribution and its correlation
function

The density distribution, ρ(r), in a heterogeneous two
phase sample is expected to fluctuate around its mean
value. These fluctuations might be characterised by some
typical size, anisotropy, being fractal or self affine, reg-
ular (crystalline), random and so on. All together, this
is what we call the structure of a material. The struc-
ture of two phase systems such as a powder material can
be analysed by taking the autocorrelation function of its
density distribution:

C(r) = 〈∆ρ(0)∆ρ(r)〉 (1)

where the mean, ρ̄, has been subtracted (∆ρ(r) = ρ(r)−
ρ̄). The mean square fluctuation is

C(0) = ∆ρ0φ1φ2 (2)

Where φ1 + φ2=1 is the packing-fractions of the two
phases and ∆ρ0 = ρ1 − ρ2 is the density difference be-
tween the two phases. The normalised (dimensionless)
correlation function is the so called density-density cor-
relation function:

γ(r) =
C(r)
C(0)

. (3)

The projection of γ(r) is given by:

G(z) =
2
ξ

∫ ∞

z

rγ(r)√
r2 − z2

dr (4)

in Cartesian coordinates:

G(z) =
1
ξ

∫ ∞

−∞
γ(x, 0, z)dx. (5)

The projection is made dimensionless with the correla-
tion length of the density distribution [13].

ξ =
∫ ∞

−∞
γ(r)dr (6)

so that G(0) = 1.

B. Spin-Echo Small Angle Neutron Scattering
(SESANS)

Spin-echo Small Angle Neutron scattering (SESANS)
is based on the Larmor-precession of neutrons in par-
allelogram shaped magnetic field regions [14], [15]. In

SESANS, the polarisation of a neutron beam is mea-
sured, after transmission through a sample, as a function
of the so called spin-echo length (30nm<z<20µm). The
spin-echo length is a real-space parameter representing
the size at which the correlations are measured (in the z-
direction of the lab-coordinate system). In SESANS we
measure G(z) through the transmission of polarisation,
normalised with experimental effects, as a function of z.

P (z) = eΣt(G(z)−1), (7)

where

Σt = tλ2∆ρ2
0φ1φ2ξ. (8)

Here t is the sample thickness, λ the neutron wavelength
and ∆ρ0 is the neutron scattering-length density differ-
ence in the sample (i.e., the contrast between the two
phases in the sample).

The correlation length ξ is measured along the neutron
beam-axis of a SESANS experiment, which is perpendic-
ular to the z direction. ξ is a measure of the width of the
distribution γ(r), which is in principle a measure of the
size of the inhomogeneities in the sample (for a sphere
the correlation length is 3/4 of the sphere-diameter). It
can be interpreted as the mean-free-path of a neutron in
the sample.

At large z (above the typical size of the heterogeneities)
one expects no more correlations (G(∞) = 0), this gives
a so called saturation level of the polarisation:

P (∞) = e−Σt . (9)

Thus, the polarisation at saturation is proportional the
correlation length ξ of the sample-inhomogeneities.

C. Correlation function of a random two-phase
system

A cohesive powder is a particular case of a two phase
system that is heterogeneous at (most likely) many scales.
The attractive forces between grain pairs allow the build
up of connected networks and aggregates of low coordi-
nation number, resulting in large voids of air pockets and
low densities. In the end we have in mind a very porous
material carrying a low packing fraction of grains that
will be far from a random close packing of hard-spheres.

For a perfectly random heterogeneous material made
up of 3D solids bounded by smooth 2D surfaces the
density-density correlation function can be described by
the so called Debye-Andersson-Bueche (DAB) formalism
[16–18]:

γDAB(r) = e−r/a (10)



3

where a is a measure of the typical size of the hetero-
geneities. This function is in fact a special case the more
general von Karman correlation function [11, 19]:

γK(r) =
2

Γ(H)

( r

2a

)H

KH

( r

a

)
, (11)

where 0 < H < 1 is the so called Hurst exponent, related
to the dimensionality of the structure. The limits H =
0 and H = 1 correspond to space filling and smooth
Euclidian distributions respectively (see Fig. 1). KH is
the second order modified Bessel function and Γ is the
gamma function. For H = 1/2 this simplifies to the
DAB formula (in 1D such distribution function is neither
persistent nor anti-persistent, it is a memoryless Markov
chain).

A 1D reconstruction of von Karman density distribu-
tions for various H : s can be seen in Fig. 1. A low
Hurst exponent correspond to a high space filling capac-
ity and unity correspond to the Euclidian structure (a
smooth line in the example in Fig. 1). The reconstruc-
tion depicted here is done in reciprocal space followed by
inverse fast fourier transformation [11] in order to get the
spatial domain representation.

The projection of Eq. 11 is found by insertion in Eq. 4,
which leads too

GK(z) =
2

Γ(H + 1/2)

( z

2a

)H+1/2

KH+1/2

(z

a

)
. (12)

The corresponding correlation length for such density dis-
tribution will be:

ξK =
2
√

πaΓ(H + 1/2)
Γ(H)

, (13)

In conventional small angle neutron scattering one mea-
sures the Fourier transform of Eq. 11 which yields the
normalised structure factor

I(q) =
1

(1 + (qa)2)
3
2+H

, (14)

III. EXPERIMENTS AND SAMPLE
PROPERTIES

A powder sample was kindly provided by Degussa
(www.degussa.com). The product is called Sipernat-310,
which is a synthetic-precipitated silica used in coatings,
cosmetics, cements, rubbers, as filler etc. It is a typi-
cal cohesive powder containing fine grains around 5µm.
The sample was used without any further treatment in
ambient conditions.

We have used the SESANS setup at the Reactor Insti-
tute Delft (Delft University of Technology in the Nether-
lands) to perform the measurements. The instrument

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

 

 

H=0.5

H=0.9

H=0.2

0 10 20 30 40 50

∆
ρ

(x
)

x

H=0.9

H=0.2

H=0.5

x

γ(
x
)

a

5a

FIG. 1: The top figure shows examples of reconstructed 1D
density distributions ρ(x) based on the von Karman correla-
tion function Eq. 11. The corresponding correlation functions
are shown in the bottom figure. The characteristic size is here
a=1

contains two parallelogram-shaped magnetic field regions
with opposite magnetic induction direction (otherwise
identical). The sample is positioned between the field re-
gions. Any neutron scattering between the two fields will
break the symmetry of the setup and cause the beam to
depolarise. The strength of the field defines the so called
spin-echo length z, which will be perpendicular to the
beam direction and pointing in the direction of gravity.
The polarisation of the neutron beam is measured as a
function z. The beam is nearly monochromatic with a
wavelength of 0.21nm having a cross section at the sam-
ple position around 1cm2.

A simple uniaxial load-cell was used in order to mea-
sure the stress versus strain function of the powder (see
Fig. 2). Strain we define as being the relative decrease
in thickness of the sample ((t0 − t)/t0) achieved by the
applied stress. The stress/strain tester contains a cylin-
drical cavity with a movable hollow plunger that achieves
the compression inside the cavity. The plunger was
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Plunger with Al-window
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FIG. 2: This figure is illustrating the load cell used in the
stress-strain measurements on the cohesive powder. The ini-
tial height of the powder packing was 6.5mm and subsequently
strained by nine increments of 0.25mm. The stress was mea-
sured using Flexiforce load sensors situated at the first Al-
window.

moved by a separate screwing action (without rotat-
ing the plunger) until a desired incremental strain was
reached. We used nine increments of 0.25mm with an
initial powder height of 6.5mm. The cylindrical cavity
and the plunger are sealed off with aluminium windows
(aluminium is virtually transparent to neutrons). The
absolute stress was measured with Flexiforce load sen-
sors provided by Tekscan (www.tekscan.com).

The initial powder packing is a very soft, low-density
material and easily compacted (weakly aggregated). As
seen in the stress-strain curve, which shows a exponential
behaviour in the probed interval (Fig. 3).

IV. RESULTS AND DISCUSSION

A. First interpretation

When analysing the measurements it is often useful to
interpret what we simply see by eye. In Fig. 4 we see the
polarisation plotted as a function of z. In total, ten mea-
surements at ten different strain levels was carried out.
We show only four measurements for the sake of clarity,
otherwise the trends are consistent for all ten incremental
strains.

Increasing the strain moves the saturation polarisa-
tion upwards, thus the upper lying curves correspond to
higher stress and strain than the lower ones. Increasing
the strain makes the powder packing denser (φ) and thin-
ner (t), both contributing to less scattering and higher
polarisation saturation levels.

The second microstructural parameter contributing to
the end level is the correlation length ξ. We argue that
the rearrangement of particles into a denser state must
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FIG. 3: The stress versus grain packing-fraction relationship.
The inset shows a linear relationship between the logarithm of
the stress versus strain. Note that the first two points yielded
no measurable stress on the Flexiforce load sensors.

decrease the size of the heterogeneities (despite the for-
mation of force chains), giving a lower correlation length
with increasing strain. Such decrease would also con-
tribute to higher saturation polarisation levels.

At saturation we are able to read off the largest corre-
lating size of the microstructure on the horizontal-axis.
The measurement saturates around 5µm, being the size
of grains making up the powder.

The stress versus strain curve can be seen in Fig. 3.T
he curve shows that when plotting the logarithm of the
stress versus strain we have a linear relationship. The
powder is at its native state a very soft powder with low
density stabilised by adhesive forces in the form of cap-
illary and van der Waals forces. The hard core exclusion
between the silica grains finally makes the powder more
resistant to compaction in a exponential fashion.

B. Linear initial slopes

The powder is composed of grains having an unknown
density and the grain density is expected to be lower
as compared with the solid density of pure silica (2.2-
2.5g/cm3). From a primary grain density we are able to
obtain the grain packing fraction φgrain rather than the
skeleton packing fraction φsk calculated from solid silica
density. This density can be determined from the mea-
surement by analysing the initial slope of the polarisation
vs z curves.

φsk =
ρsample

ρSiO2

(15)
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FIG. 4: Polarisation plotted as a function of z. From
top to bottom these measurements correspond to a uniaxial
stress(strain) of 120kPa(35%), 7.4kPa(23%), 1kPa(15%) and
0kPa(3.8%). Unless shown, the error falls within the marker
symbol

φgrain =
ρsample

ρgrain
. (16)

Where ρsample is the density of the powder packing. The
final amplitude of the polarisation (saturation level) is
given by Eq. 9 and is read at a spin-echo length z related
to ξ. Thus, the gradient of the initial part of P (z) vs z
yields a quantity only depending on the sample-thickness
and sample composition, independent on structural ar-
rangement.

−d log(P )
dz

' tλ2∆ρ2
0φ(1− φ). (17)

The grain density can now be estimated from the initial
slopes of the experiments (see Fig. 5). Thus, dividing
the values of the slopes with sample thickness and the
primary particle packing-fraction φgrain should yield a
constant term for all experiments (see bottom right figure
in Fig. 5). The constant term is composed of the neutron
wavelength and the scattering length density according
to Eq. 8.

This analysis gives a density of ρgrain=1.1g/cm3

and packing fractions ranging from φgrain=0.34 up to
φgrain=0.53 for the highest strain.

C. Curve shapes and their amplitudes

For a more complete analysis of the SESANS experi-
ment we apply a model that describes an autocorrelation
function of the density distribution. From that model we
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FIG. 5: The initial slopes of the polarisation. The slopes
are proportional to the grain packing-fraction and the sample
thickness multiplied by a constant. Dividing out the known
thickness and the packing fraction (C = φgrain(1− φgrain)t)
should yield a constant term for all measurements. This anal-
ysis makes it possible to determine the grain density and con-
sequently the grain packing fraction

are able to calculate the corresponding projection as well
as the expected polarisation -shapes and amplitudes.

The thickness t, packing fraction φ, neutron wave-
length λ are all known experimental parameters that
contribute to the saturation level. The scattering length
density ∆ρ0 is a constant parameter given by the chem-
ical composition of the sample. Thus, in order for the
model to be consistent it has to yield a constant scat-
tering length-density term for all ten measurements. In
short, we have to find a model capable of describing both
the shape and the correlation length ξ of γ(r), producing
the saturation level observed in the measurement.

To model the data we use the von Karman corre-
lation function, which describes a statistical self affine
density distribution according to Eq:s 11, 12 and 13.
The model explains the microstructure with two param-
eters, the Hurst number H and a characteristics size a
of the density distribution. This yields, including exper-
imental parameters, a scattering length density of about
1.1×1014m−2 for all samples.

We extract two parameters from the model, the Hurst
exponent H and the characteristic size a of the hetero-
geneities. The characteristic size is decreasing with in-
creasing strain. In order for the powder to be compressed
the larger inhomogeneities, clusters and voids have to be
broken and collapsed. This first stage occurs at the lower
stress amplitudes and produces relatively large changes
in a. When the larger and weaker heterogeneities have
collapsed and produced a denser structure any further
densification is created by the rearrangement of primary
grains. This latter stage is governed by higher stresses
and smaller changes in the characteristic size of the het-
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FIG. 6: Extracted fit parameters according to Eq. 7 together
with stress-strain curve for the silica powder. The model
shows that the characteristic size a as well as the hurst expo-
nent decreases as a function of compression. Consistent with
the formation of a more space filling structure. The volume
fractions are here expressed in terms of the skeleton-packing
fraction φsk

erogeneities. This ”hard-core” behaviour is illustrated
when we plot the characteristic size a versus the stress
in Fig. 6, where we see how a reaches a sudden limit
around 1300nm and no further changes is seen for higher
stresses. All together we see that the decrease in micro-
scopic length scale a corresponds well with the total final
strain, both being around 30%

The Hurst exponent is decreasing with increasing
strain, consistent with the formation of a space filling
structure. The Hurst exponent contributes to the shape
of the curve as well as to the final level of the polarisation.

V. CONCLUSIONS

A stress strain measurement was conducted simulta-
neously with a microstructural investigation on a cohe-

sive silica powder (Sipernat-310). The microstructure
was characterised in terms of the autocorrelation func-
tion of the density distribution.

The primary grain density could be determined by
analysing the initial slopes of the measurements. This
yielded a factor of two lower density as compared to the
skeleton density of pure silica. The grain density was
used to calculate the packing fraction of grains contained
in the sample. We observe a divergence in the stress
versus packing-fraction at around 0.50.

We are able to follow the fractal nature of the powder
in terms of the so called Hurst exponent. We see that
a more space filling structures, low Hurst numbers, are
formed when increasing the strain.

When straining the sample the larger heterogeneities
such as clusters and voids will break up and collapse, this
process requires a lower stress amplitude. Further densi-
fication is governed by the movement and rearrangement
of primary grains which is harder to achieve and calls for
higher stresses. This can be seen in the non-linear decay
of the typical size a with strain and is also found in the
exponential behaviour of the stress-strain response curve.
Comparing the beginning and the end of the experiment
we see that the decrease in microscopic length scale a
corresponds well total applied strain, both being around
30% for the whole experiment.
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