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ABSTRACT 

 
Continuum mechanical models and appropriate measuring methods were applied to describe the flow 
behaviour of cohesive powders. These methods were successfully applied for practical design of 
process apparatus, e.g. silos. In addition, studies on the particle mechanics give better physical 
understanding of essential constitutive functions of a powder “continuum”. At present, by means of the 
discrete element method (DEM) (Cundall 1992) a method is available which allows one to consider in 
details the contact and adhesion forces within Newton’s equations of motion for each particle in a 
dynamic system. Thereby the introduction of irreversible inelastic contact flattening by the model, “stiff 
particles with soft contacts”, is essential to describe the increase of adhesion force. Therefore, the 
dynamic behaviour of cohesive powder flow can be "microscopically" investigated and understood. 
The contact model between high-disperse particles (about 1 µm) will be discussed. Using this, the 
results of steady-state flow, incipient yielding and consolidation of TiO2 powder will be presented. 
Dynamic formation of the shear zone is also shown and compared with experiments in a Jenike shear 
cell (Jenike 1964). 
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1 INTRODUCTION 
 
Continuum-mechanical models and measurement methods on their base are used most often in the 
powder mechanics in order to describe the flow behaviour of a cohesive powder packing. These 
methods are successfully applied especially in the field of practical apparatus and machine design in 
process engineering, for example silos. In addition, the essential property functions of the powder 
“continuum” can be better described and understood with the help of particle mechanics (Tomas 
2001). 
 
The Discrete Element Method (DEM) (Cundall 1992) is a new strategy, which allows one to take into 
account the contact and adhesive forces into the equations of motion of the particles. In this context, 
the implementation of an irreversible inelastic contact flattening, which is an essential element and 
physical reason of the increase of the adhesive force, is of vital importance. This allows the dynamic 
behaviour of cohesive bulk materials to be studied and understood „microscopically“. 
 
In this paper, we first present and discuss a realistic and flexible microscopic model for contact laws 
with elastic, permanently plastic, and adhesion forces, as based on macroscopic observations from 
bulk-experiments (Tomas 2001, Tomas 2002). The model in a simplified form is applied to the Jenike 
shear test, in order to show that at least some qualitative agreement between numerical “experiment” 
and reality is possible with DEM. 
 

2 CONTACT LAW 
 
The yield limits of the cohesive powders can be derived from their physical basis. Hence, the concept 
„stiff particles with soft contacts“ is convenient, which allows to explain by the elastic-plastic behaviour 
of a sphere contact with the unloading/reloading hysteresis (Tomas 2002, Walton 1986). Further, the 
non-linear adhesive normal force model (Fig. 1) is applied, which describes the instantaneous contact 
hardening in terms of a typical contact law. Next, the three flow behaviour parameters of a continuum 
(steady-state yield locus, instantaneous yield locus and consolidation yield locus) are formulated by 
means of this contact model (Tomas 2002). 
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We consider the contact of two mono-disperse isotropic and smooth spherical particles as the typical 
components of a particle packing under the static load FN. 
 

 
Fig. 1: Characteristic contact force as function of deformation for Titania Powder (d50=610 nm, moisture XW=0,4%) – 

non-linear elastic, linear plastic, adhesive, dissipative contact model 
 
As the particles approach each other (Fig. 1, curve from –∞ to FH0), the Van-der-Waals adhesive force 
is build up. Then we receive an elastic contact flattening described by Hertz (1882), as the effect of the 
created adhesive force FH0 itself or/and the effect of an additional static load FN, for example the dead 
weight of a powder packing. 
 
If the normal load FN increases, the yield point Y in the Fig. 1 is reached, where the deformation 
merges into the linear plastic flow. The slope of this line is the measure for the elastic-plastic contact 
stiffness. Lower slope means plastically soft or compliant contact behaviour, and vice versa, the higher 
the slope, the stiffer is the contact behaviour. A confined plastic field is built in the circular contact 
centre after loading. 
 
The unloading causes the elastic contribution to recover along the curve U-E in Fig. 1. Further 
unloading below the point E is only possible when a tension force is applied. The contact fails at point 
A. However, the contact could still be reloaded again along the curve A-U. The lens-shaped area 
between the reloading and unloading curves is the measure for the energy dissipation during one 
cycle (Tomas 2001). Therefore, our contact shows the typical hysteresis and in case of dynamic 
reloading/unloading cycles (oscillations) the damping as a response, which does not depend upon an 
applied velocity. 
 
The adhesion boundary FH,A in the failure point A is the boundary stress function as well. Its slope 
corresponds to the stiffness in the tension force region. The higher the slope, the more compliant is 
the contact behaviour and the higher could be the adhesion force of the particle contact. A lower slope 
corresponds to a stiff contact with almost constant adhesion force. 
 

3 THE MODEL SYSTEM 
 
One possibility to gain insight about the material behavior of a granular packing is to perform 
elementary tests in the laboratory. Here, we chose as alternative the simulation with the discrete 
element model (D’Addetta 2002, Oda 2000, Kruyt 2001, Luding 2001). 
 
The classical translational shear cell, developed by Jenike (1964), is modelled (Fig. 2). Considering a 
suitable CPU-time for a certain of particles one should imagine that we simulate here only a small two-
dimensional (2D) element from the real shear cell. Fig. 2 shows the model for 2000 titanium dioxide 
particles with diameter of about (1±0,5) µm. The upper wall (shear lid) is stress controlled, i.e. when 
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the reaction force FN changes because of the particle reorganization, the height of the shear lid is 
changed as well. The normal stress σ=FN/A is equal to 3 kPa (A is equal to dZ in the 2D case). The 
horizontal shear rate of the upper ring is preset. As the direct response, the corresponding values of 
the reaction force are obtained, which acts on the lateral walls. Furthermore, the corresponding shear 
stresses τ=FS/A are calculated. The shear rate applied here is about 1-4 mm/min (similar to the one 
used in the Jenike shear cell in laboratory tests). 
 

 
Fig. 2: The model system for the simulations 

(lines in the particle system show the contact forces, with line thickness proportional to force) 
 

4 SIMULATIONS AND RESULTS 
 
Resulting forces acting on each particle, are determined by means of applying the force-displacement 
law for a particle contact in the particle system. These values are used then for the motion laws in 
order to update the whole system. 
 
The first simulations are performed only with the linear adhesion contact law, which was implemented 
by the software (PFC2D, Itasca Inc.). A constant adhesion force of 1-10 mN (0,1-1% of average 
contact forces of loading) was used to approximate the load-history dependent pull-off force in Fig. 1. 
New results with the more general dissipative contact model for adhesive particles will be presented in 
a later paper. 
 
Fig. 3 shows the force network during the shearing. The force lines run mostly from the upper left wall, 
where the shear force acts, to the lower right wall, where the corresponding resisting force acts. This 
correlates also sufficiently with the fact, that the orientation of the major principal stress σ1 is just as 
tilted in the shear direction. 
 

 
Fig. 3: Force distribution at the maximum value of shear stress 

 
Fig. 4 presents the whole particle system after shearing both for the simulations (left) and the 
experiment (right). The shear zone and the angle γ, the so-called shear distortion are clearly 
recognised here. The angle γ is defined as a function of the shear displacement and the shear zone 
height. 
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Fig. 4: Location of the shear zone and determination of the shear distortion. 

Left: simulation, right: experiment 
 
Fig. 5 shows the velocity vectors during the shearing. It is clearly shown that the motion takes place 
mostly in the upper ring, and the velocities in the upper ring are approximately equal to each other. 
Therefore, the stationary flow is reached at the end of the shear distortion. 
 

 
Fig. 5: Velocity vectors at the stationary flow 

 

 
Fig. 6: Left: force-displacement diagram (stationary flow) and 

Right: volumetric strain for three different porosity values 
 
Fig. 6 shows the force-displacement diagram (left) and the volumetric strain (right) at the constant 
normal stress of σN=3 kPa for three different values of porosity ε=1-ρb/ρs (where ρb is the bulk material 
density, and ρs – the solid density), i.e. three so-called preshear tests. The upper curve is obtained at 
a two-dimensional porosity of the particle system of ε2D=0.16 (it corresponds appr. ε3D=0.46 for three 
dimensions – see Deresiewicz 1958). The typical behaviour of the overconsolidated powder is 
observed in this case. The middle curve at ε2D=0.18 (ε3D~0.50) shows almost ideal stationary flow. The 
fluctuations of the shear force can be explained by means of the temporary and local shear-thickening 
and shear-thinning processes. The lower curve corresponds to ε2D=0.20 (ε3D~0.54) and shows the 
tendency of an underconsolidated material. 
 
Taking into account the shear testing experiences, the good qualitative agreement is reached between 
the simulation results and the laboratory tests. 
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5 SUMMARY AND CONCLUSIONS 

 
It is worth to notice here that the qualitative agreement of the simulations with experiments is reached. 
The future work includes the following problems to be solved: implementation of the general contact 
model for adhesive particles in the DEM-algorithm; measurements of particle contact deformation by 
means of the Particle Interaction Apparatus (based on Atomic Force Microscopy in cooperation with 
M.Kappl and H.-J. Butt (2002)), in order to calibrate the contact model; further simulations with 
increased number of particles and implemented adhesion force contact model (Jenike shear cell, 
vibrational shear cell); justification of the DEM-models by means of comparison of the simulations with 
laboratory measurements at the translational shear cell. 
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