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Abstract The Discrete Particle Method (DPM) is used to of magnitude. Examples range from rock slides, contain-
model granular flows down an inclined chute with varyinging upwards of 1000 fof material; to the flow of sinter,
basal roughness, thickness and inclination. We obserge thr pellets and coke into a blast furnace for iron-ore melting;
major regimes: arresting flows, steady uniform flows and acdown to the flow of sand in an hour-glass. The dynamics of
celerating flows. For flows over a smooth base, other (quasthese flows are influenced by many factors such as: polydis-
steady) regimes are observed: for small inclinations thve flo persity; variations in density; non-uniform shape; comple
can be highly energetic and strongly layered in depth; wherédasal topography; surface contact properties; coexistehc
as, for large inclinations it can be non-uniform and ostilla static, steady and accelerating material; and, flow obegacl
ing. and constrictions.

For steady uniform flows, depth profiles of density, ve-  Discrete Particle Methods (DPMs) are an extremely pow-
locity and stress are obtained using an improved coarserful way to investigate the effects of these and other facto
graining method, which provides accurate statistics even aNith the rapid recent improvement in computational power
the base of the flow. A shallow-layer model for granularthe full simulation of the flow in a small hour glass of mil-
flows is completed with macro-scale closure relations obtions of particles is now feasible. However, complete DPM
tained from micro-scale DPM simulations of steady flows.simulations of large-scale geophysical mass flow will, prob
We obtain functional relations for effective basal frictio ably, never be possible.
shape factor, mean density, and the normal stress anigotrop  One of the main goals of the present research is to simu-
as functions of layer thickness, flow velocity and basal teug |ate large scale and complex industrial flows using granular
ness. shallow-layer equations. In this paper we will take the first
step of using the DPM [CS79,SE®1,SGPL02,SLGO03,
Lud08] to simulate small granular flows of mono-dispersed
spherical particles in steady flow situations. We will use a
refined and novel analysis to investigate three particidar a
pects of shallow chute flows) how to obtain meaningful
macro-scale fields from the DPM simulatiai),how to as-
sess the flow dependence on the basal roughnesdijiand
1.1 Background hhow to validate the assumptions made in depth-averaged

theory.

Granular avalanche flows are common in both the natural The DPM simulations presented here will enable the con-

environments and industry. They occur across many ordegiruction of the mapping between the micro-scale and macro-
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may fail. Heterogeneous, multi-scale modelling (HMM) is flow is only possible in such a model at the angjéndepen-
then an alternative [WELQ7], in which the local consititu- dent of height. There is a considerable amount of experimen-
tive relations are directly used in the continuum model. Intal evidenceg.g, [DD99, GDR04], that suggests that such
HMM, continuum and micro-scale models are dynamicallya simple Coulomb law does not hold on rough beds or for
coupled with a two-way communication between the differ-moderate inclination angles. Furthermore, detailed eéxper
ent models in selective regions in both space and time, thusental investigations using glass beads [Pou99] lead to an
reducing computational expense and allowing simulation oimproved empirical ‘Pouliquen’ friction law characterise
complex granular flows. by two angles: the angle at which the material comes to
rest,d;, below which friction dominates over gravity and the
angle,d,, above which gravity dominates over friction and
the material accelerates. Between these two angles steady
flow is possible, and in the limid;, — & = J the original

Shallow-layer granular continuum models are often used toulomb style model is recovered.
simulate geophysical mass flows, including snow avalan-  Since its formulation a lot of work has been performed
ches [CGJ07], dense pyroclastic flows, debris flows [DI01]on extending and understanding this Pouliquen law. The orig
block and ash flows [DPRO8] and lahars [WSS08]. Such inal law was obtained by retarding flowing material and mea-
shallow-layer models involve approximations reducing thesuring the angle at which the material stopped as a function
properties of a huge number of individual particles to a handof heighthstop(8), or equivalently, by inverting this relation,
ful of averaged quantities. Originally these models were deestop(h), For most materials, granular included, a greater
rived from the general continuum incompressible mass angngle is required to initiate stationary than to retard flow-
momentum equations, using the long-wave approximatiofhg material. Pouliquen and Forterre [PF02], by measuring
[SH89,HSSN93, GWH99, WGH99, GTNO3, BT12] for shal- the angle required to start motion, measu6agy (h), i.e.,
low variations in the flow height and basal topography. Dethe friction law for initially stationary material. As exped
spite the massive reduction in degrees of freedom made, was greater thaés;opand this information was used to
shallow-layer models tend to be surprisingly accurate, anéxtend the friction law to all values of the height and veloc-
are thus an effective tool in modelling geophysical flows.ity within the steady regime. Borzsonyi & Ecke performed
Moreover, they are now used as a geological risk assessmeftseries of additional experiments: firstly, in [BE06] they
and hazard planning tool [DPP8]. In addition to these ge- |ooked at higher angles were the mean flow rates are close to
ological applications, shallow granular equations hawnbe the terminal velocity of a single particle, and found region
applied to analyse small-scale laboratory chute flows conwere the Pouliquen law is not valid and the Froude num-
taining obstacles [GTNO3], wedges [HHO5, GCO7] and conber becomes inversely proportional to the height, as ogbose
tractions [VATK*07], showing good quantitative agreementto the linear relationship observed for steady flow. Borz-
between theory and experiment. sonyi and Ecke, and Pouliquen and Forterre [BEO7,FP03]
In fluid dynamics, the Navier-Stokes equations are eshave all worked on extending the original law to be valid
tablished with full constitutive equations. Nonethelébg,  for more complicated non-spherical materials like sand and
shallow-layer equations or Saint-Venant equations aenoft metallic materials. Also, the effect of basal surface rough
used in large scale situations where it is impractical tvesol ness has been systemically studied in [GTDDO3] by vary-
the full Navier-Stokes equations. Our present aim is to diing the size of both the free flow and fixed basal particles.
rectly investigate the validity of the assumptions of granu For convenience, we defink to be the size ratio of the
lar shallow-layer models first from discrete particle simul fixed and the free particles. They observed a peak in rough-
tions, before obtaining fully 3D ‘kinetic theory’-styleneti-  ness at a certain diameter rathk, which depends on the
tutive relations and simplifying these via the depth-imé&gign compactness of the basal layer. Measured valuek a
process. A discussion of the full three-dimensional properfGTDDO03] ranged between 1 and 3 for a monolayer of fixed
ties of our particle simulations will be undertaken lategrél  particles. For fixed particles with smaller size ahd A,
we restrict our attention to the closures required for twothe range of angles where steady flow was observed de-
dimensional shallow-layer granular flow equations. creased, and eventually the steady flow regime completely
A key difference between shallow-layer fluid models andvanishedi.e., &, — é; — 0 asA — 0 (yielding Coulomb type
granular ones is the appearance of a basal friction coeffbehaviour). For smaller flow particle diameteig,, with
cient, u, being the ratio of the shear to normal traction attheA > A, there was also a reduction in friction, but weaker
base. In early granular models, a dry Coulomb-like frictionthan in the smalk case. For much largékr, the friction sat-
law was used [SH89]. It implieg to be constant, given by urated to a constant value, which they contributed to free
the tangent of the friction angle between the material aad thparticles that filled the holes in the basal surface and effec
base, i.e., 4 =tand. As a consequence constant uniformtively created a stable basal surface of free particles. In a

1.2 Shallow-layer models



later publication [GDDTO7], they extended this investiga-fully and computed botffstop and Bstart. For inclinations
tion to flows containing two particle sizes. 8 > Bstopthey observed a Bagnold rheology, ®F, 6siopa

Louge and Keast [LK01] modified the kinetic theory pre-linear profile, and fol ~ Bsopintermittent flow.
sented in [Jen93] by modelling enduring contacts via a fric-
tional rate-independent stress component in order to mbtai
steady flow on flat frictional inclines. This work was later 1.3 Overview of this study
extended to bumpy inclines [Lou03]. Jenkins [Jen06] took a
different approach and theoretically formulated a phenomeOur present research is novel on the following three counts:
nological modification of granular kinetic theory to accoun Firstly, we compute more meaningful macro-scale fields
for enduring particle contacts. His idea is that enduring-co from the DPM simulations than before by carefully choos-
tacts between grains, forced by the shearing, reduce the cohg the coarse graining function. In order to homogenise the
lision rate of dissipation. Therefore a modification to theDPM data, the micro-scale fields need to be coarse-grained
dissipation is introduced, which does not affect the stresso obtain macroscopic fields. Coarse-grained micro-sczlisfi
It leads to a law very similar to the one experimentally ob-of density, momentum and stress have been derived directly
tained by Pouliquen. Jenkins further extended the theory ifrom the mass and momentum balance equations, e.g., by
[Jen07] to very dissipative frictional particles, with 2t Goldhirsch [Gol10]. The quality of the statistics involved
cient of restitution less thanD. Later, a detailed comparison depends on the coarse graining wisithwhich defines the
with new experiments was performed, showing agreemenfmount of spatial smoothing. For small coarse-grainingtwid
for flows on low inclinations [JB10]. W, micro-scale variations remain visible, while for lange

Silbertet al. [SEG"01] used DPMs to simulated chute these smooth out in the macro-scale gradients. Since one of
flow of cohesionless particles. They found that a steady-stathe objectives is to obtain the value pfat the base, we use
flow regime exists over a wide range of inclination angles@ novel adaptation of Goldhirsch’ statistics near bouregari
heights and interaction parameters, in confirmation of thd his new approach [WTLB11] is consistent with the con-
experiments of Pouliquen [Pou99]. They found for steadylinuum equations everywhere, enabling the construction of
state flows that the volume fraction is constant throughougontinuum fields even within one coarse-graining width of
the flow, in agreement with the assumptions of shallow-layethe boundary.
theory [SH89]. They also observed that the shear stress is Secondly, we follow the approach of [GTDDO03] and vary
proportional to the square of the shear and the flow velocthe basal particle diameter to achieve different basal ieond
ity scales with the height to the powef3 This result co- tions. For particles with smaller basal than flowing diamete
incides with Bagnold’s analysis of dilute binary collison A < 1, the flow becomes more energetic and oscillatory be-
flows [Bag54]. They also observed small systematic deviahaviour is observed. This phenomena has previously been
tions from isotropic stress, which shows a deviation fromreported in [SGPLO02], but was achieved by changing the
fluid-like behaviour. However, normal stresses do not apbasal particles to a more regular, grid-like configuratiy.
proach a Coulomb-yield criterion structure at the angle ofnvestigating flow over fixed particles of different size itha
repose except near the surface, hinting that the failure dhe free, flowing particles, we are able to quantify the reugh
flow starts near the surface. They further investigated theess and numerically investigate the transition from rough
effect of different basal types in [SGPL02] and found thatto smooth surfaces. For smoother surfaces, we show that the
for an ordered chute base the steady state regime splits inp@rameter space can be split into to two types of steady flow,
three distinct flow regimes: at smaller angles, the flowingand we obtain a general friction law.
system self-organises into a state of low-dissipation flow Finally, we test the assumptions made in depth-averaged
consisting of in-plane ordering in the bulk; at higher an-theory and determine the required closure laws. For shallow
gles, a high-dissipation regime similar to that for a roughgranular flows, the flow can be described by depth-averag-
base but with considerable slip at the bottom is observedtd mass and momentum-balance equations [GTNO3]. Solv-
and, between these two sub-regions they observe a trangig the depth-averaged equations requires a constitugive r
tional flow regime characterised by large oscillations ia th lation for the basal friction, a way to account for mean den-
bulk averaged kinetic energy due to the spontaneous ordesity variations, the shape of the velocity profile and thespre
ing and disordering of the system as a function of time. Insure anisotropy. We extract such data from DPMs obtained
[TRJIDO7], a strongly sheared, dilute and agitated basatlay for steady uniform flows, and establish a novel, extended
could be observed supporting a compact bulk layer over aet of closure equations. Also, the depth-averaged eaqsatio
relatively smooth base. They essentially concluded for-tra are obtained under the assumptions that a) the density is
sitional flows that a steady and thus unstable state couyd ontonstant in space and time and does not vary through the
be reached at one inclination. Finally, [SLGO03] investight flow; b) the ratio between mean squared velocity and the
the initiation and cessation of granular chute flow more-caresquared mean velocity is known; c) the downward normal



stress is lithostatid,e., balances the gravitational forcesact-  The force acting on particleis a combination of the
ing on the flow; and, d) the ratio between the normal stressesody forces and the pairwise interaction of two particles.
is known. Grayet al. [GTNO3] assumed the latter ratio to The forcefj; represents the force on parti¢cigom the inter-

be one, whereas Savage and Hutter [SH89] use a Mohaction with particlej and can be decomposed into a normal
Coulomb closure law. The depth profiles of these quantitieand a tangential component,

are discussed by Silbest al.in [SEG'01, SGPL02, SLGO03]

for steady flow. We used the originally results of Silbetrat. fij = fil} + fitj : (2)

to validate our DPM simulations. Then, using our improved
statistical procedure, we will construct the granular ke
layer closer relations for a much wider range of flow regime
than had been considered before; concurrently, estatdjshi
the range in which the shallow-layer approximation is valid

We assume patrticles experience elastic as well as dissi-
ative forces in both normal and tangential directions.dé¢en
he normal force is modelled as a spring-dashpot with a lin-
ear elastic and a linear dissipative contribution,

fi} = K'qfi; — y"vij, (3)

1.4 Outline with spring constark”, damping coefficieny" and the nor-
mal relative velocity component,

We introduce the force model used in the DPM in Sect. 2,

and the statistical method used to obtain macroscopic deis; = (Vij - fiij )fiij. (4)

sity, velocity and stress profiles in Sect. 3. In Sect. 4, vge di

cuss the continuum shallow-layer equations for modellin

granular flow including some macro-scale closures. The s

up of the simulations is discussed in Sect. 5, and the stead?—S

state regime is mapped for flows over a rough basal sur- Kn Y0 2

face in Sect. 6. Depth profiles of the flow are introduced intc = 7/4/ — — ( ) , (5)

Sect. 7, which are then used to characterise the steady flow m; 2m;

over smoother surfaces in Sect. 8. Finally, the closure relgyih the reduced massi; = mm;/(m +m;). The normal
tions for the shallow-layer model are established in Sect. Gegtitution coefficient. (ratio of relative normal speed after
before we conclude in Sect. 10. and before collision) is calculated as

re = exp(—tcy"/(2my)). (6)

We also assume a linear elastic and a linear dissipative
A Discrete Particle Method (DPM) is used to perform theforce in the tangential direction,
simulation of a collection oN identical granular particles.
Boundaries are created by special fixed particles, which ge

erally will have different properties than the flow partile .., spring constank!, damping coefficieny!, elastic tan-

Particles interact by the standgrd spring-Qashpot intierac gential displacemenii}j (which is explained later), and total
model [CS79,WB86,Lud08], in which it is assumed thatrelative velocity of the particle surfaces at the contact,

particles are spherical and soft, and that pairs have atanost

or a central collision, no tangential forces are present, a
pe collision timet; between two particles can be calculated

2 Contact law description

£ = —K'al; — y'vij, (1)

single contact point. Vij = Vij — Vi} 4 bij x wi — bji x wj, (8)
Each particlé has a diameted;, densityp;, positionr;,

velocityv; and angular velocity;. For pairs of two particles  with bij = —((di — 37)/2)fi; the branch vector from point

{i,j}, we define the relative distance vectgy = ri —rj, i to the contact point; for equal size particlag= —ri; /2.

their separatiom;j = |rj;|, the unit normah;; = rj; /ri; and The elastic tangential force is used to model the effects

the relative velocity;; = v; —v;. Two particles are in con- of particle surface roughness. Near the contact point,Ismal

tact if their overlap, bumps on a real particle would stick to each other, due to the
normal force pressing them together, and elongate in the tan

&} = max(0, (di +d;)/2—rij), (1)  gential direction resulting in an elastic force proportibto

] » ] ] the elastic tangential displacement. The tangential dcspl
is positive. A single contact poimtat the centre of the over- ot is defined to be zero at the initial time of contact, and
lap is assumed, which is a valid assumption as long as the (ate of change is given by

overlap is small. For our simulations the overlap between
two particles is always below 1% of the particle radius, leenc d5}j ; (6}1- -Vij )i 9
justifying treating the contact as occurring at a singlepoi gt Vij — rij ’ ©)



where the first term is the relative tangential velocity & th equations. Hence, continuum fields have to be extracted from
contact point, and the second term ensuresd‘hatemains the discrete particle data. There are many papers in the lit-
normal tofj;. The second term is always orthogonal to theerature on how to go from the discrete to the continuum:
spring direction and, hence, does not affect the rate ofgdnan binning micro-scale fields into small volumes [IK50, SH82,
of the spring length: it simply rotates it, thus keeping itta Lud04,Lud09,LLV"01], averaging along planes [TED95],
gential. or coarse graining spatially and temporally [Bab97,SA04,
When the tangential to normal force ratio becomes largeGol10]. Here, we use the coarse-graining approach deskcribe
than the particle contact friction coefficients, for a real by [WTLB11] as this is still valid within one course-graimgn
particle the bumps would slip against each other. Their-elonwidth of the bounday.
gation is then shortened until the bumps can stick to each The coarse-graining method has the following advan-
other again. This is modelled by a static yield criterionntr  tages over other methods: (i) the fields produced automat-
cating the magnitude 05}]- as necessary to satisfﬁj| < ically satisfy the equations of continuum mechanics, even
uc|f;?|. Thus, the contact surfaces are treated as stuck whileear the flow base; (i) it is neither assumed that the par-
|fitj| < Hclff}| and as slipping otherwise, when the yield cri- ticles are rigid nor spherical; and, (iii) the results arerev
terion is satisfied . valid for single particles as no averaging over groups of par
The total force on particleis a combination of contact ticles is required. The only assumptions are that each-parti
forcesfi; with other particles and external forces such asle pair has a single point of contac, the particle shapes

gravity g. The resulting forcé; and torqueg; acting on par- ~ are convex), the contact area can be replaced by a contact
ticlei are point (i.e., the particles are not too soft), and that collisions
are not instantaneous.

N N
fi=g+ fij, and g = bij x fij. (10)
j:lz,Héi J':lz,ﬁéi

_ _ _ _ 3.2 Mass and momentum balance
Finally, using these expressions we arrive at Newton's equa

tions of motion for the translational and rotational degree 3 2 1 Notation and basic ideas
of freedom,
Pr. d Vectorial and tensorial components are denoted by Greek
mdt—z' =fi, and "a“" = qj, (11) letters in order to distinguish them from the Latin particle
indicesi, j. Bold vector notation will be used when conve-
with m; the mass an{] the inertia of particle. We integrate  nient.
(11) forward using Velocity-Verlet [AT93], formally secdn Assume a system given By; flowing particles and\,
order in time, with an adequate time stepAtf=t;/50. The  fixed basal particles witlN = N; + N,. Since we are inter-
collision timet. is given by (5), while (9) is integrated using ested in the flow, we will calculate macroscopic fields per-
first-order forward Euler. taining to the flowing particles only. From statistical me-
Hereafter, we distinguish between identical free flowingchanics, the microscopic mass density of the flof'C, at
and identical fixed basal particles. Base particles are modk pointr at timet is defined by
elled as having an infinite mass and are unaffected by body
forces: they do not move. This leaves two distinct types of - Nr
collision: flow-flow, and flow-base. Model parameters forP (r,t) = ,Zmé(r*ri ®), (12)
each of these collision types are set independently. =
whered(r) is the Dirac delta function anoh is the mass
of particlei. The following definition of the macroscopic
3 Statistics density of the flow is used

3.1 Coarse-graining Nt

p(Tvt): ZmW(T_Ti(t))v (13)
The main aims of this paper are to use discrete particle sim- =
ulations to both confirm the assumptions of and provide thenys replacing the Dirac delta function in (12) by an in-
required closure rules for the depth-averaged shallovewat tegraple ‘coarse-graining’ functiof” whose integral over
space is unity. We will take the coarse-graining function to

1 Meant for review stage onlit should be noted that in the absence .
of dissipative forces and slipping, the system can be destras an  P€ & Gaussian
Hamiltonian system: see Appendix A. Appendix B containaiebn
the tangential displacement. A pseudocode of the tandéotce cal- W (r—ri(t))
culation is provided in Appendix C. !

1 |r — i (t)|2
— 7(@)3 exp(i2W2 ) (14)



with width or variancev. Other choices of the coarse-grainingompute their temporal and spatial derivatives, respelgtiv
function are possible, but the Gaussian has the advantaged reach closure. Taking the time derivative of (16) gives
that it produces smooth fields and the required integrals can
be analysed exactly. According to Goldhirsch [Gol10], theZFa 9Pa — MVig (t r—ri(t))
coarse-graining field depends only weakly on the choice of ot at Z
function, and the widthv is the key parameter. 9
It is clear that asv — O the macroscopic density defined = ZmViaV/(T —7i)+ vaiaEV/(T —ri). (20)
in (14) reduces to the one in (13). The coarse-graining func- =
tion can also be seen as a convolution integral between tHésing (11), the first term in (20) can be expressed as
micro and macro definitions, i.e.,
Nt Nt

1) /V/ m'c(r’,t)dr’. (15) Aq = i;mviaW(T —ri)= i; fia # (1 —7i). (21)
In the simulations presented later the force on each par-
3.2.2 Mass balance ticle contains three contributions: particle-particléeiac-

tions, particle-base interactions, and the gravitatidoaly
Next we will consider how to obtain the other fields of inter- force. Hence,
est: thg momentum density vector and.the stre.ss tensqr. As Ny Ny
§tated in Sect. 3:1 the.macroscopllc variables will t?e defmegm _ Z fija + Z fiEa + Ma, 22)
in a way compatible with the continuum conservation laws. S
The coarse grained momentum density vegtor,t) is

k=1

defined by where fjj is the interaction force between particland j,
andf the interaction between partidland base particle,
Nt or base wall if the base is flat. Therefore, we rework (21) as
Pa(r,t) = ZmViaW(T—Ti)7 (16)
i= Nt Nf N

Aq = fija 7 + fRa ¥+ M#iga, (23
ZJ A ija ZZ ika 71 i; 9a,  (23)

where#; = # (r — ri). The last term in (23) can be sim-
plified to pgq by using (13). From Newton’s third law, the

where theviy’s are the velocity components of partidle
The macroscopic velocity field (r,t) is then defined as
the ratio of momentum and density fields,

Va(r,t) = palr,t)/p(r.t). (17) contact forces are equal and opposite, such that —fj;.
Hence,

It is straightforward to confirm that equations (13) and (16) N NN Ne N

satisfies exactly the continuity equation Zf fooop— i Zf fia ¥ = f Zf oW
ija”7i = jia = - ijo ’

op  pa 'le 1) 'le Li#j 'le Li#]

-0 18
ot arg (18) @4

where in the first step we interchanged the dummy summa-
tion indices. It follows from (24) that (23) can be written
as

3.2.3 Momentum balance g NN N Ny

Aq =3 fiijg (Wi — W)+ 2. + pg
Finally, we will consider the momentum conservation equa- Z'Z\j 1Z]7£i e : i;k; e ¢

tion with the aim of establishing the macroscopic stresd fiel Ni  Nj Nf Ny
In general, the desired momentum balance equations are writ = Z z fija (H—W5)+ Z Z fiﬁa%Jr PYa. (25)
ten as, i=1j=1+1 i=1k=1

with the Einstein summation convention for Greek letters.

Next, we will write Ay as the divergence of a tensor in
(19) orderto obtain a formula for the stress tensor. The follgwin
identity holds for any smooth functio#’

dpa B 0 daaﬁ
at ~ ar, PVt 5

where g, is the stress tensor, amg is the gravitational
acceleration vector.

Expressions (16) and (17) for the momentprand the
velocity V' have already been defined. The next step is to

o1 d
Wi—W = /O a—SV/(T—Ti—i-S'rij)dS

d 1
:rljﬁﬂ/‘o W(T—’ﬁ‘f's'r”)ds, (26)



whererjj = ri —rj; we used the chain rule and differentia-
tion to the full argument o/ (-) per component.

The next step extends the coarse-graining method to a
count for boundary forces. To obtain a similar expression fo
the interaction with base particles, we write

—V/iZ/O a—SW(T—Ti—i-S'I“ik)dS

s [
= rikﬁa,/o W(’I“—Ti-i-S'l"ik)dS,

which holds becaus#j decays towards infinity. Substitut-
ing identities (26), (27) and (13) into (25) leads to

(27)

Nf Nt 1
— fiiahi / W (r— i +sriy)ds
0I’B |Z\J 1 Hatiip 0 I .

N¢ Np

drﬁ Izz f

From [Gol10], it follows that the second term in (20) can be
expressed as follows

ika likB /O W (r — ri +Sri) ds+ pJa.
(28)

N¢

N¢
0
IsziaEW(T*Ti pVan+|Zm\/ia\/ip% :

7}
)**E

(29)

wherev] is the fluctuating velocity of particlg with com-
ponents given by

Vig(t,7) = Vig(t) — Vg (7,t). (30)

2 —0p
] -—-0
2 \/ __(9)(0-
-2 -1 0 1 2
X
. —0PpP
X T - -0
i 4 - - O
-1 0 1 2
X

Fig. 1: Stress and density profiles are shown for two one-
dimensional two-particle systems, each with two particles
of unit mass at positions = +1, and repelling each other
(so withd > 2 for our granular case). In the top figure, both
particles are flowing, while in the bottom figure the left par-
ticle is fixed and the right one flowing.

presence of the base, as detailed in [WTLB11]. The contri-
bution to the stress from the interaction of two flow parti-
clesi, j is spatially distributed along the contact line from
ri torj, while the contribution from the interaction of par-
ticlesi with a fixed particlek is distributed along the line
from r; to ry, extending further beyond,. We explain the
situation as follows, see Fig. 1. Stress and density profiles
are calculated using (15) and (32) for two one-dimensional
two-particle systems, each with two particles of unit mass a
positionsx = +1, repelling each other with a for¢é| = 1

and withw = 0.2. In the top figure, both particles belong

Substituting (28) and (29) into momentum balance (19) gieldo the flowing species, so the density is distributed around

N Nf

00'0,3 7] !
Nf Nb Nf

ika IkB/ W (r—ri+srij)ds— mea\/ 7/]

(31)

N i; kZZL f

Therefore the stress is given by

Nt

UaB:—Z

j=1+1
Nf Ny

_ b [7
izlkzlflkarlkﬁ/o W (

In our simulations the tangential forces contribute lessth
6% to the total stress in the system, such that the stress
almost symmetric.

Equation (32) differs from the results of [Gol10] by an

Nt

> fuaruﬁ/

T—Ti—l-S'l“ij)dS

Nt
T — 1+ Sri) ds— Z MVigVig #i
I

(32)

the particles’ centre of mass and the stress along the dontac
line. In the bottom figure, the left particle is a fixed base par
ticle and the right particle is a free flowing one, so density i
distributed around the flowing particle’s centre of mass and
the stress along the line extending from the flowing particle
to negative infinity.

The strength of this method is that the spatial coarse
graining fields by construction satisfy the mass and momen-
tum balance equations exactly at any given time, irrespec-
tive of the choice of the coarse graining function. Further
details about the accuracy of the stress definition (32) are
discussed in [WTLB11]. The expression for the energy is
also not treated in this publication, we refer the intemste
reader to [Bab97].

4sMathematical background

In this section, we briefly outline the existing knowledge on

additional term that accounts for the stress created by theontinuum shallow-layer theories for granular flow.



4.1 Shallow-layer model the dimensionless form of the mass and momentum conser-
vation equations (18) and (19), assuming only that the den-

Shallow-layer granular models have been shown to be asity is independent of depth at leading order. Density,a€lo

effective tool in modelling many geophysical mass flows.ity, and stress are depth averaged as follows

Early granular models were formulated by adding gravita- 1 s

tional acceleration and Coulomb basal friction to shallow—() ==/ ()dz (33)

layer fluid models [GEY67,KE73]. Similar dry granular mod- hJb

els have been derived using the long-wave approximatiof, the end, we retain the normal stress rd€ic= Oxx/ Oz2,

[SH89,HSSN93, lve97, GWH99, WGH99] for shallow vari- the shape factar = u?/?, and the frictionu as unknowns.

ations in the flow height and slope topography and includedthe goal is to investigate whether these unknowns can be

a Mohr-Coulomb rheology via the use of an earth pressurexpressed as either constants or functions of the remaining

coefficient. The key to these theories is to depth-integratghallow flow variables, to leading order ii(¢). The latter

general three-dimensional equations in the shallow direczariables are the flow thicknegs= h(x,t) and the depth-

tion, resulting in a system of two-dimensional equationigwh averaged velocity = 0(x,t). At leading order, the momen-

still retains some information about variations in thickee  ym equation normal to the base yields that the downward
Let Oxyzbe a coordinate system with tixeaxis down-  normal stress is lithostatici(z) = pgcosd(s—z) + O/(¢).

slope and ther-axis normal to a channel with mean slope pepth-averaging the remaining equations, while retaining

6. For simplicity, we further consider boundaries, flows, andonly terms of orderi(g!1Y), yields the dimensional depth-

external forcing to be (statistically) uniforminy. The ¢dmR  averaged shallow-layer equation$,[VATK T07,BT12],
uum macro-scale fields are thus indepulmendegt ohile

the DPM simulations remain three-dimensional and will be (Ph) + 9 (phu) =0, (34a)
periodic iny. The free-surface and base location are o ox
s(x,t) andz = b(x), respectively. The thickness of the flow _ P K, _
is thush(x,t) = s(x,t) —b(x), and the bulk density and ve- - (hou) + = (hPUU + Egth COS@) = ghpS, (34b)
locity components arp andu = (u,v = 0,w)!, respectively, ]
as functions ok,y, zandt. with
The three-dimensional flow viewed as continuum is de- b
scribed by the mass and momentum balance equations (18]~ SIN® — K= 1 = cos0 - 2 oS0 (34¢)

and (19). At the top and bottom surface, kinetic boundary _ _ . _
conditions are satisfie®(z—s)/Dt = 0 andD(z—b)/Dt= 10 demarcate the dimensional time and spatial scales, we

0 at their respective surfaces, and with material time deriv have used starred coordinates. These scales differ from the
tive ones used before in the particle dynamics and the dimen-
sionless ones used later in the DPM simulations. The shallow
D(-)/Dt=0(-)/dt+ud(-)/dx+wa(-)/0z layer equations (34) consist of the continuity equatioraj34
and the downslope momentum equation (34b). The system
(since we assumed= 0). Furthermore, the top surface is grises also via a straightforward control volume analy&is o
traction-free, while the traction at the basal surface is esgolumn of granular material viewed as continuum from base
sentially Coulomb-like. We decompose the tractiont: +  {g the free surface, using Reynolds-stress averaging and a
t, A in tangential and normal components, with normal COM4eading order closure with depth averages.
ponent of the tractiom, = —fi- (o), wherefi is the out- While the mean densitp can be modelled as a system
ward normal at the fixed base aads the stress tensor. The yriable by considering the energy balance equation, we wil
Coulomb ansatz implies thit= —pita|u/|u| with friction  555ume that it can be expressed as a function of height and
factor u > 0. Note thatu generally can be a function of the velocity p(h,0). Thus, the closure to equations (34) is de-
local thickness and the flow velocity. Its determinationss € termined when we can find the functiopgh, ), K (h, ),
sential to find a closed system of shallow-layer equations. a(h,d), andu(h,@). In Section 9.2, we will analyse if and

We consider flows that are shallow, such that a typicalyhen DPM simulations can determine these functions.
aspect ratios between flow thickness and length, normal

and alongslope velocity, or normal and downslope varia-

tions in basal topography, is small, of ord€ce). Further- 4.2 Granular friction laws for a rough basal surface

more, the typical friction factop is small enough to satisfy

u = 0(g¥) with y € (0,1). We follow the derivation of the The friction coefficientu, was originally [SH89] taken to
depth-averaged swallow layer equations for granular flovbe a simple Coulomb type = tand, whered is a fixed fric-
presented in [BT12] without assuming that the flow is in-tion angle. Note that in steady state for a flat base With
compressible. Instead we start the asymptotic analysis fro 0, the shallow-layer momentum equation (34b) then yields




¢ = tan@. Pure Coulomb friction implies that there is only
one inclination,6 = §, at which steady flow of constant
height and flow velocity exists. That turns out to be unre-
alistic. Three parameterisations f@thave been proposed in g
the literature.

Firstly, Forterre and Pouliquen [FP03] found steady flow
in laboratory investigations for a range of inclinations€o
cerning flow over rough basal surfaces. They measured tt
thicknesshstop Of stationary material, left behind when a
flowing layer was brought to rest, with the following fit

hetop(0)  tan(&) —tan(8)
Ad  tan@)—tan&y)’

where 4, is the minimum angle required for flovd, the
maximum angle at which steady uniform flow is possible,
d the particle diameter, arla characteristic dimensionless
length scale over which the friction varies. Note thab,
diverges for@ = & and is zero for@ = &. Forh > hgop,
steady flow exists in which the Froude number, the aspec.

ratio between flow speed and surface gravity-wave speegig 2: ppM simulation foN; /200= 17.5, inclination =

0 <6<, (35)

(F =u/+/gcosBh), is a linear function of the height, 24° and the diameter ratio of free and fixed particlés=
1, at timet = 2000; gravity directiorng as indicated. The
= Bihstop(e) =y, for for & <6<, (36)  domain is periodic irx- andy-directions. In thez-direction,

fixed particles (black) form a rough base while the surface is

wheref3 andy are constants independent of chute inclinationynconstrained. Colours indicate speed: increasing fram bl
and particle size. Provided one assumes the steadystate vija green to orange.

tan@ to hold (approximately) in the dynamic case as well,
it can be combined with (35) and (36) to find an improved
empirical friction law for which we can use any appropriate fit fagop It leads
subsequently to a more complicated evaluation of the fric-
tan(%) —tan4,) . (37) tion law for . We omit further details and compare our

Bh/(Ad(F +y)) +1 DPM simulations against these rules, using fits for the rough
This is a closure fou in terms of the flow variables, and basal surface. Additionally, we use the DPM to investigate
has been shown to have practical value. Note, that in thBow to extend these laws to smoother surfaces.
limit & — & = d the Coulomb model is recovered.

Secondly, in an earlier version [Pou99], another, expo-
nential fitting was proposed fdktop, as follows 5 Simulation description

o) _ | tan(9) —tan(&)

p=pr(hF)=tan(&) +

for 6] <60<d, (38) Inthissection, DPMis used to simulate monodispersed gran-

/ - 1\ 7\’
Ad tan(%;) —tan(4;) ular flows.
with the same limiting behaviour, and primes used to denote Parameters have been nondimensionalised such that the
the difference in the fit. It yields the friction factor flow particle diameted = 1, massn= 1 and the magnitude

o of gravityg = 1. The normal spring and damping constants
p = ' (h,F) = tand; + (tand; — tandy) e{ AAFTY) } (39) arek"=2.10°mg/d andy" = 50,/g/d; thus the contact du-

) _ ) ration ist; = 0.005,/d/g and the coefficient of restitution is
Equation (35) did, however, prove to be a better fit to expery _ g gg. The tangential spring and damping constants are
iments and is computationally cheaper to evaluate. ki = (2/7)k™ andy! = y", such that the frequency of normal

_ Finally, [Jen06] included a modified dissipation in the 5nq tangential contact oscillation and the normal and tan-
kinetic theory equations and was able to produce a law veryentig| dissipation are equal. The microscopic frictiofeo
similar to the original experimentally obtained model (36) ficient was taken to bgt =1/2.

I.€. The interaction parameters are chosen as in Si#ieit
F_ h tarf(0) 40 [SEG™01] to simulate glass particles of1l0nm size; this
~ P sop0) tark(3y) Y (40) corresponds to a dimensional time scale /g = 3.1ms
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jected, and the insertion domain is enlarged by increasing

-7 - D gzﬁi H to H +0.01 to ensure that there is enough space for all
106k T g - : - — —e=w particles. This process creates an initial packing fractib
7 T - o e=3r aboutp/pp = 0.3. Once the simulations starts the particles
e - - zzzg initially compact to an approximated heigh /200, giving
= % ///,Aﬁ: =TT 028 the particles in the chute enough kinetic energy to ingali
uf - g7 flow. Dimensionless time is integrated betwéen|0, 2000
E 1 —— 0-2¢ to allow the system to reach a steady state. A screen shot of
Tij — 0= the system in steady state is given in Fig. 2.
| o= To ensure that the size of the periodic box does not in-
zzz fluence the result, we compared density and velocity profiles
10t e g_op of the flow at an angl® = 24° andN; /200= 17.5 for do-
——— =205 main sizes.x = 10, 20, 40,Ly = 10 andLy = 10, 20, 40,
1¢° : : : ——6=20 Ly = Lx/2, and saw no significant changes.
0 500 1000 1500

t

. . o , 6 Arrested, steady, and accelerating flow
Fig. 3: The ratio of kinetic to mean elastic energy plotted

againsttime foNr /200= 20 flowing particles, basal rough- £rom the experiments of Pouliquen [Pou99], granular flow
nessA =1, and varying chute angle Flow stops for in- oyer 4 rough base is known to exist for a range of heights and
clinationsf < 20.5°, remains steady for 21< 8 < 29" and  jyclinations. DPMs by [SEG01] also showed that steady
accelerates fof > 30" (dashed lines). flows arose for a range of flow heights and (depth-averaged)
velocities or Froude numbers. Their simulations did, how-

) ) . ever, provide relatively few data points near the boundéry o
and dimensional velocity scaigdg=0.031ms *. The above 4rested and steady flow to allow a more adequate fit of the
parameters are identical to the simulations of Sille¢l., stopping height. The original data of Silbat al. is indi-
except that dissipation in tangential directigh,was added ¢ated by the red crosses in Fig. 4. In this section, we there-
to damp rotational degrees of freedom in arresting flow. Addj, o perform numerous DPMs at heights and angles near the
of such tangential damping removes all vibrational energyyemarcation line between the steady flow regime and the
for flows otherwise arrested. Silbest al. also investigated regime with static piles. To study the full range of steady
the sensitivity of the results to the particle interactiangm- 4,y regimes, simulations were performed for inclinatiéhs
eterstg, €, the I’atiokn/kt' and,_lC; they found that while the varying between 20and 60 ande/ZOO: 10, 20, 30, and

density of the bulk material is not sensitive to these irdera 4q | Section 8. we will repeat (some of) these simulations
tion parameters, the flow velocity increased with decregsing,, varying base roughness.

friction u©. Nonetheless, the qualitative behaviour of the ve-  \we define the flow as steady if the ratio of kinetic en-
locity profiles did not change. ergy normalised by the mean elastic potential energy be-
The chute is periodic and of size 2010 in thex- and  comes time independent. This is shown in Fig. 3, where we
y-directions and has a layer of fixed particles as a base. Thslot such an energy ratio for a rough base, constant height,
bottom particles are monodispersed with (nondimensionabind varying chute angle. The elastic potential energy is av-
diameterAd. Various basal roughnesses are investigated b¥raged ovet € [10002000 to minimise fluctuations after
takingA =0to 4inturn, withA =0 as flat base. This bottom start-up, but any interval larger than 100 appears sufficien
particle layer is obtained by performing a simulation on afFor chute angles at most 20 the kinetic energy vanishes
horizontal, smooth-bottom chute. It is filled with a randyml after a short time, thus the flow arrests; for chute ang|es
distributed set of particles of diametéd and we simulate petween 21— 29°, a constant value is reached, indicating
until a static layer about 12 particles thick is produce®eh  steady flow; and, for inclinations above“28ie energy keeps
a slice of particles with centres betweed [9.3,11]Ad are  increasing: thus flow steadily accelerates. If the energy ra
fixed and translated 11 diameters downwards to form th@o remained constant withine [180Q 2000, the flow was
base. The layer is thick enough to ensure that no flowingleemed steady, otherwise the flow was deemed to be either
particles can fall through the rough base during the fulksim accelerating or stopping.
ulations. Their positions are fixed. Unlike fluids, the free surface of granular flows, and thus
Initially, N particles are inserted into the chute. To in-the flow height, are not well defined. In [SEGL1], the height
sert a particle, a random locatigny,z) € [0,20] x [0,10] x  of the flow was estimated bl /200, which is equivalent
[0,H] is chosen, wherel = Nt /200 initially. If the particle  to assuming a constant packing fraction @fp, = /6.
at this position overlaps other particles, the insertioreis However, the exact height= s— b of the flow varies from
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55 reaches the maximum and minimum valuesogf respec-
50} tively,
45¢ K K
401 8 b=z — 1_2K(22—21), S=2+ 1_2K(22721). (42c)
35¢
_  80f The variable most sensitive to these height choiceg.is
25t However, it shows well-defined functional behaviour for our
20} definition of height, shown later. This is not the case if we
15} define height by the density or the method in [VAT&7].
10t The thresholdk = 2% was chosen because the results in
Fig. 13 were relatively insensitive to the choiceroft or
‘ ‘ ‘ L , above 2%.
18 20 22 24 26 28 30 To determine the demarcation lihg(6; A ) between ar-
0 rested and steady flow with good accuracy, we performed a

Fig. 4: Overview of DPM results fok = 1, with markers de- set of simulations with initial conditions determined by th

noting the flow state at= 2000: arrested, steady, and ac- following algorithm.. St_arting from an initial “filling heilgt_’
celeratingx flows. Grey dash-dotted lines mark thicknéss 'Nf/200= 40 and inclination = 24°, the angle was in-

for fixed N /200= 10, 20, 30, and 40. The demarcation line creased in steps of’until eventually a flowing state was

is fitted tohgiop() in equation (35) (solid line) anlugtop(e) reached. Then the angle was dgcreased/@ﬁ.]When the

in (38) (dotted line). Error bars mark intervals establighi flow arr.ested, the number of particles was increased by 400,
the demarcation line. Red crosses denote the demarcati@fierwise the angle was further decreased (% 1and so

between arrested and accelerating flow found in [sgg. ~ forth, till Nf/200= 60. Flow was defined to be arrested
when the energy rati&yin/(Eela) fell below 10> within

500 time units, otherwise the flow was classified as flow-
the approximated height due to compaction of the flow andng. To validate this apporach a few arrested flows were
Nt /200 is typically an overestimate. In [VATKO7], the sur-  continued aftet = 500, and a further decrease of kinetic
face of the flow was defined by the time-average of the maxenergy was observed. This procedure yields intervals of the
imum vertical position of all flow particles. One could also inclination angle for each height and, vice versa, height in
define the free surface of the flow as the height where theervals for each angle, between which the demarcation line
density vanishes. The latter two methods, however, have tHies. The values presented in [SEGL] deviate at most.6°
disadvantage that saltating particles can lead to sliglvily-  from our observations, perhaps due to the preparation of the
estimated flow heights. chute bottom, or the slightly different dissipation used. A

Instead, we will define the height via the downward nor-demarcating curve between steady and arrested flow was fit-
mal stress. For steady uniform flows the downward normatled to equations (35) and (38) by minimising the horizon-
stress is lithostatici.e., balances the gravitational weight, tal, respectively vertical, distance of the fit to theserivegs,

such that see Fig. 4. Fittindisto() yields better results thei;, (0)
® for all roughnesses and only the fit (35) will be used here-
0742) = / p(Z)gcosvdZ. (41)  after. Similar fits will be made in Section 8 for varying basal
‘ roughness.

This is a direct consequence of the momentum balance equa-

tions. Thus,02(2) has to decrease monotonically; the base

and _free surface_ are the heights at Wha'rzlg(z) reaches Fts 7 Statistics for uniform steady flow
maximum and minimum value, respectively. However, in or-
der to avoid effects of coarse graining or single particken
the boundary, we cut off the stregg,(z) on either boundary
by defining threshold heights

To obtain detailed information about steady flows, we use

the statistics defined in Sect. 3. Since the flows of interrest a

steady and uniform ix andy, density, velocity and stress

will be averaged oveg, y andt. The resulting depth pro-

files will depend strongly on the coarse-graining wigth

Zy =maxX{z: 0z;> K Maxozz} (42b)  which needs to be carefully selected. Representative depth
2k profiles for particular heights, inclinations and basalgiou

with k = 2%. We subsequently linearly extrapolate the stresgiesses will also be analysed.

profile in the interval(z;,z) to define the basbk and sur- Depth profiles for steady uniform flow are averaged us-

face heights as the height at which the linear extrapolationing a coarse graining widttv over x € (0,20], y € (0,10]

z3=min{z: 0z < (1—K) m%xazz} and (42a)
ViS
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Fig. 5: Depth-averaged norm of the momentum rate o 0-5]
changer = [2|&(pu|dz with &(pu) determined by (44)
for varying time averaging intervdl. Steady flow at height 0.45 0
N¢/200= 20 and inclinationd = 24° was used. Temporal
fluctuations decrease inversely proportional to the length
the time averaging interval. Dotted line is for illustratio Fig. 6: Particle volume fractiom/p, for Nf /200 = 40,
only. 6 = 24°, andA = 1 for varying coarse graining widths.
While the density is approximately constant in the bulk, mi-
croscopic layering effects are visible far< 0.5.

2 4 6 8 10 12 14 16 18 20
z

andt € [200Q 2000+ T]. The profile of a variablg is thus
defined as

; 1 [2000+T (10 20 v
<X>w(z)*m 000 /0 0 Xw(t,X,y,z)dxdydt 25
(43)

20
with Xy in turn the macroscopic field(s) of density, momen-

tum and stress, as defined in (13), (16) and (32). We avera¢

in time with time snapshots taken evegy2 units. 15
To determine an appropriate time averaging intefival _y

we calculate the rate of change in momentum from the den 10

sity, velocity and stress fields by

2(pu) |
; =0-0—pg—u-0O(pu). (44)
0 1 1 1 1 1
For steady flow, the temporal variations in mass and mo 0O 5 10 15 20 25
mentum should approach zero when averaged over a lor _ z—Db

enough time interval . This is shown in Fig. 5, where we

plot the depth-averaged norm of the momentum rate of char}i%d roughnes = 1. Sheaw,, and downward normal stress

for varying time averaging interval. Far> 100, the tempo- o
. gzzare balanced by gravitational forces. The normal stresses

ral fluctuations decrease to less than 2% of the largest term : ) !
— . . show anisotropic behaviour.
09, in the momentum equation. In the remainder, we choose
T =100 as the averaging interval.

The effect of varying coarse-graining widthis shown
in Fig. 6, which shows the-profile of particle volume frac- 1dentify in our averaged fields. Hence, we chouse 0.25
tion p/pp, Wherep,, is the particle density. For smalwe @S _the coarse-graining width, such that layering ef_fec—ts re
observe strong oscillations of abouB(particle diameters Main visible along with the rather sharp macroscopic gradi-
width, particularly at the base. The microscopic oscifiati ~ €Nts-
are increasingly smoothed out and finally vanish as we ap- The microscopic oscillations at the base indicate a strong
proachw=0.5. For largem, such asv> 1, the macroscopic layering effect of particles near the boundary, despite the
gradients at the base and surface are smoothed out, an upugh bottom surface. The macroscopic density throughout
wanted effect of the coarse-graining. The same behaviour e flow is almost constant in the bulk and decreases slightly
observed in the stress and velocity fields. Smoothing ovelowards the base. An approximately constant density profile
the microscopic structure makes it impossible to observés a feature of all steady flows and is a key assumption of
microscopic layering in the density, which we still wish to depth-averaging.

Fig. 7: Normal and shear stressesXpr/200= 30,6 = 28,
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ticles, with the limiting case of a flat bottom wall far= 0.
Such an extensive numerical study of the effects of chang-
ing bottom roughness appears to be novel. To that effect, the
DPM simulations from Section 6 were extended such that
results for basal roughnesses= 0, 1/2, 2/3, 5/6, 1, 15,
2 and 4 can be compared. Fbr=1/6 andA = 1/3 only
simulations to calculatisiop were undertaken.

A family of demarcation curvessioy(6; A ) between steady
and arrested flow is shown in Fig. 8. The curve fits are based
on

tan(s,,) - tar(6)
tan)—tana,,)” O <0

0 (45)

Fig. 8: Demarcation linbsiop(6; A ) for varying basal rough-  in which the dependencies dnare explicitly denoted. The
ness. Markers denote the midpoint of the intervals arountting parametersy; 5, &, Ay appearing in (45) are given
which the curve was fitted. Steady flow is observed ain Table 1. As in Sect. 6, a fit based on the original equation
smaller inclinations for smoother bases. While the smalle(35) (or (45)) rather than Pouliquen’s early fit (38) yielbs t
angle 9, , varies only slightly, the larger anglé, , de-  pest results.
creases rapidly with the smoothness. kot 0, the demar- For a flat or nearly flat bottom, such thatk 1/6, steady
cation line is vertical a6 = 12.5° (not shown). flow initiates and resides at or very tightly around one incli
nation for all heights, see Table 1. This is in agreement with
the angle found in the laboratory experiments of [GTDDO03].

Non-neglible stress components are plotted in Fig. 7. 1/3 < A < 4, we observe Pouliquen-style behaviour;
We have observed (not shown) that the stress componenise is shown in Fig. 8. The angid,, of flow initiation is

are nearly symmetric (the asymmetric part contributes Iesﬁearly constant with respect fa In contrast, the range of

0 i i ’
than 0.1% t_o t he d.eV|ator|c stress). .Sh.ear. stre_sgeand angles at which both steady and arrested flow is possible,
oy are negligible since the flow velocity yadirection van- 8,5 — 8,4, is maximal for 1< A < 1.5 and decreases for
i;hes. Fpr steady ,ﬂO.W’ the doyvnward ngrmal St“_ﬁ&) is smoother chutes with < 1, as shown in Table 1. This has
lithostatic and satisfies equation (41) with a maximum errop.an reported for laboratory experiments in [GTDDO3], who

of 0.4%. Since the density is nearly constant, we obtain 8. Jhserved a slight decrease of the intedyal— &, , for
linear stress profile, another assumption of depth-avelragP?\ ~ A ~ 2. However. theit\. was measured for basal par
c~~ & y c -

theory. Applying th_e momentum balance (19) to _ste_ady UNlicles fixed at the same height and depended on the com-
form flow further yields that the shear stress satisfigs= pactness of the base. We observe a slight decreadg;of

f.z p(Z)gsinddZ. Thus, the macro-gcale fr_'Ct'O_p salis- or A > 1.5; however, the fitting curves in Fig. 8 do mildly
fies u = 0xz/ 0,z = —0x/9; = tanb. This relation is locally overlap forA > 1

satisfied for all steady flow cases to an accuracy6of o -

tan(u)| < 0.6°. The rémainin normal stress comyonents We recall thady , andd, , are fitting parameters for the

o anlclia a-re.not constraingd by this mass baI:nce thtop-curve (45) which does not necessarily imply, though it
hXX b4 Fio. 7 sionifi ' by - i d. is expected, that the flow accelerates for angles greater tha
thus see in Fig. signi |cant ams_otropy n t €amp ltude 062)\. Surprisingly, while steady flow is observed exclusively
the normal stresses, in particularayy,. The confining stress ¢ € (811,5.1) whenA — 1, the range of angles associ-
i_s Iarges_t in the flow directiqn, except for very small inglin ated with étéady flow for smoé)ther chutes(whenA < 1)
tions. It is always weakest in the lateraly+direction with extends to greater inclinations wih> 5, , . For these latter
ac'aseséam > &, is defined as the smallest angle at which
accelerating flow is observed; the DPM simulations show

hstop(e;A) = AAd

tions of the density. Generally, the anisotropy increasts w
higher inclinations and smoother bases; this will be arealys

that
further in future work.
Oaccr =29°£1°forA > 1/2. (46)
8 Transition from rough to smooth base We summarise the density profiles seen without explic-

itly showing the results. For decreasing basal roughiess
Next, we study the effect of smoother bases on the range efe observe that the microscopic oscillations and the dip in
steady flows by decreasing the diametdrof the base par- density at the base increase, while the bulk density remains
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Fig. 9: Top: Overview of DPM simulations far=1/2, with
markers denoting the flow statetat 2000: arrested, lay-
eredx, oscillatingo, steady, and accelerating flows. De-
marcation linehsiop(8;1/2) is fitted according to (45). Bot-
tom left panel: Profile of particle volume fraction of laydre
flow at N¢ /200= 20, 6 = 22°. Bottom right panel: Ratio

of kinetic over mean elastic energy for oscillating flow at

Nt /200= 30,0 = 24°.

constant. FOA > 1.5 there is a low density in the basal re-
gion, since some of the free particles are small enough Wess in Fig

Al (& 1A DB I fer |
0 [[1L750/1L750— 1.446)3.394 ]|0.285
1/6[|14.750[14.750 —
1/3||16.34420.591/23.000
1/2|/17.89820.697/16.970/0.241/0.889 ||0.394)
2/3||17.767]26.107/5.692 [|0.210/0.239 ||0.142)
5/6]|18.223284794.411 ||0.194 —0.0020.144
1 |[17.561]32.257/3.836 ||0.191]—0.045]0.144
15([17.53932.926/3.685 ||0.188—0.036[0.147]
2 |[17.44829.483]5.455 ||0.185—0.033]|0.153
4 |[17.346/28.605/6.630 [|0.180—0.016/[0.161

Table 1: Table of fitting parametery », &, 5, Ay for the
curvehsiop(6;A) andp,, v, for the flow rule (48), including
the variance of the flow rule, €fF — Fyata) (F is the Froude
number fit andry 44 is the measured one), for all steady*
1/2) flows @ = 0).
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Fig. 10: Top: Overview of DPM simulations far= 0, with
markers denoting arrestad layeredx, steady disordered
*, and accelerating flows att = 2000 ¢ = 6000 for steady
disordered flows). Bottom panel: Profile of particle volume
fraction (left) and ratio of kinetic over mean elastic energ
(right) for N; /200= 30,0 = 24°.

sink a little into the base, forming a mixed layer of fixed and
free particles.
Velocity profiles forNs /200= 30 andf = 24° (6 = 22°
and 26 for A = 1/2) are shown for varying basal rough-
. 11. FoA = 1, we observe the Bagnold pro-
file [Bag54] for thick collisional flows, differing only at th
surface. For very thin flowsN; /200= 10) or inclinations
near the arresting flow regime, the profile differs strongly
from the Bagnold profile and becomes linear. For smoother
bases, the flow velocity increases, and the profile becomes
more concave. Weak to stronger slip velocities are observed
for A < 2/3.ForA =0, thicker flows have constant velocity
throughout the depth, almost corresponding to plug flow.
For A < 2/3, the flow is steady-layered and oscillating
atlow anglesd < &3, where

255°+05° if A =1/2,
330 =4 245°+£05° if A =2/3 andN;/200= 10,
Bsop(;A)  if A =2/3, Nj/200> 20 orA > 5/6.
(47)

At higher anglesgs 1/, < 0 < 0acc1/2, @ disordered re-
gime similar to that for a rough base is observed. This is il-
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lustrated in Fig. 9 fol = 1/2, where one observes the two

different steady state regimes. At smaller anglgs,» <

6 < 8312, the flowing system self-organizes into a state of
layered flow consisting of ordering in they—plane for the 14r
bulk (bottom left panel of Fig. 9), except for a small inter-
mediate regiong ~ J 15, Where a transitional flow regime

16¢r

1.2¢

can be found. It is characterised by large oscillations & th 5 b A=0,0=24
ratio of bulk averaged kinetic to elastic energy due to a spor} 08l A=1/2,6 =22
taneous ordering and disordering, or stop-and-go flow,ef th A=1/2,6 =26
system as a function of time (lower right panel). The same ~ °| ifi/zf 2:434
flow regimes have been observed in [SGPL02], where th o4} N 20—
smoother bottoms were achieved by arranging the base p: o2l N4 =28
ticles in a grid-like fashion. In contrast, we always usellyfu = = = Bagnold

disorded base and vary the roughness by changing the ba: 0
particle sizeAd.

We also observe steady flows far= 0 as the contact
friction is nonzero, see Fig. 10. While most of these flowsFig. 11: Flow velocity profile of thick flow foN /200= 30,
are layered flows, a narrow regime of disordered steady flow& = 24°, A =0 andA > 2/3 andf =22°,26°, forA =1/2.
is observed between the steady layered flows and the accélor a rough base with > 5/6, we see a Bagnold veloc-
erating cases. Unlike the steady disordered flows observety profile (dashed line), except near the surface. For smoot
for rough based > 1/2, these steady disordered flows ini- bases witl < 2/3, the profile becomes more convex. For
tially accelerate, then retard towards a steady state.dseth A =1/2, 0 < 24°, the flow velocity shows layering while
flows are not steady at= 2000, they are simulated until still observing the Bagnold profile. Far = 0, a consider-
t = 6000 to ensure that a steady state is reached. The denséble slip velocity is observed. Far> 1.5, the basal shear is
and velocity profiles (see Figs. 10 and 11) of these flows aremall due to flow particles trapped between basal particles
very similar to the supported regime that has been observes that the definition of the ba®¢x) is rather fuzzy.
for flows over nearly smooth bases in [TRID07] and hence
is expected to be unstable if the chute an§les perturbed.

0 01 02 03 04 05 06 07 08 09 1
(z—b)/h

hstop(6;A) is not defined. This is illustrated far = 1/2 in
Fig. 9. Instead, the Froude number is fitted Witk o(0; A =

9 Closure relations for the depth-averaged model 1) such that

—Ya, for 33, <6< dsecp- (48)

h
The goal of this section is to close the shallow-layer equaF = 5, m
stop\YU, A =

tions (34) by a determination of the basal frictipn the
mean density, the stress ratil, and the velocity profiler,  The results of such fits to the Pouliquen law are shown in
using our DPMs. Additionally, we will determine the flow Fig. 12 (right), with corresponding fitting parameters pro-
regimes for which such time-independent closure relationsided in Table 1. Shown is the Froude numbet U/+/gcosfh
in terms of the flow variables cannot be obtained. against the ratio of flow and stopping heighf$istop(0;A =
1), for the disordered steady flow regime, concerning an-
glesd; ) < 8 < d4¢cn - Even for the inclinations where a lin-
9.1 Frictionu in the shallow-layer model ear fit againsh/hsiop(0; A ) is possible, the data are seen to
o fit better using the stopping heighd;op(6;A = 1), the one
For the rough base several friction laws have been proposegh, pasal surfaca — 1, rather than with the actual stopping
as detailed in Section 4.2. In the following, we will comparehejghthg,p(6;A # 1). This is a key observation.
these friction laws for the base roughness of one particle |t further shows that the Froude numielincreases as
diameterA =1, as well as for other ratios. the roughnesa decreases, due to the lower resistance at the
To obtain a function for the basal frictiqn we used the  pase. The weaker Froude number dependenca forl.5
approach of Pouliquen, who found that for a rough base thgeen in the right panel of Fig. 12 is in line with the zero
Froude number is a linear functionlofhsio(6). Afirstap-  sjip observed at the base in Fig. 11. The full set of fitting
proach was to fit the Froude number to a linear function of)arameters and the standard error for the fit to (48) are found

h/hstop(8;A) across the range of non-accelerating DPMs;, Taple 1 with a standard error defined by
While this does work forA > 5/6, a (linear or other) fit

does not work well forA < 2/3 because for the smoother
bases steady flows occur for inclinatighs- , , , for which

entxHLo) = (3 /(N -1) " (@9)
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Fig. 12: Froude numbé¥ = u/\/ghover height forA =1 (left), A = 1/2 (centre), scaled by the stopping heighbp(6;A =
1) , and for selected basal roughnesses (right). Data with signk’ denote steady layeredy” steady, and$’ oscillating
flows. The data is fit usinbstop(6,A = 1) (solid lines).

We remark that a fit to equation (36) is marginally better tharh. The layered and oscillating flow regimes are thus momen-
Jenkins’ adaption (40), but the differences are too small tearily excluded.
discriminate accurately. All steady disordered flows show a constant density pro-
The situation for layered and oscillating flows is morefile in the bulk of the flowcf Fig. 6, while the density de-
complicated. We illustrate that for the cade= 1/2. Two  creases near the base and the surface. The lower density
fits are shown in Fig. 12 (centre), one for the layered caseegion at the base spans about two particle diameters for
(dotted line concerning the crosses), and one for the steady> 0, while the surface region spans always less ttthn 4
case (solid line concerning the circles). The oscillatiog/  Thus, a mean bulk density can roughly be defined as
seem to defy a sensible fit because the flow swings irreg-
ularly between the layered and disordered states. That os: 1 'Sf4dp(2>dz (51)
cillating behaviour was also shown in Fig. 9 (bottom nght —6d Jo+2d
panel).
For steady flow, the shallow-layer equations (34) yield
u = tan(8). In summary, for the steady flow regimes ob-
served in our DPM simulations, the friction coefficient of
the depth-averaged equations (34) is parameterised to be

In Fig. 13, the bulk volume fraction and the mean volume
fraction are shown for roughneds= 1 and varying height

and inclination. The bulk volume fraction decreases with in
clination 6, but is independent of flow height and rough-
ness, whereas the mean volume fraction depends also on

tan(&.1) — tan(81.1) flow height and roughness. We fit the mean bulk density of
p(h,F;A) =tan(d11) + N h/(Aid(F n VA))’+ 17+ (50) fil!nsteady disordered flows with > O to an arbitrary func-

for &35 < 60 < O4¢cp, Where the parameted 1, & 1,A1 —tit

are independent of the base; aftj, and y, are depend- P /Pp = Co—exp((6 —cz)/c1), (522)
ing explicitly on A. All values are found in Table 1, with
Oaccpr @nd oz, given in (46) and (47). Despite its determi-
nation for steady flows, such a closure fors assumed and 0.610,¢c; = 7.02°, andc, = 46.2°. (52b)
often observed to be a reasonable ‘leading order’ approaccf%J

for unsteady shallow-layer flows. Furthermore, for smobthegangard deviations of the mean bulk volume fraction and
bases, closure laws for layered and oscillating flows havg,aan volume fraction for all cases with> 0 are

eluded us. It seems that the homogenisation and steadiness

assumptions of depth-averaged shallow-layer flow breakdoy¢r(pfit — 5.) =0.002 and erfp/™ —p) =0.018 (52c)

in these cases.

with fitting parameters

Secondly, the normal stress rati§s= 0xx/0z,andK’ =
Oyy/ 0,z are determined. They describe the anisotropy of the
9.2 Function, K, a of shallow-layer model stress tensor and are expected to be unity under isotrogic an
Newtonian conditions. The range kffor steady disordered
DPM simulations of steady uniform flows are considered forflow is generally small, ranging from 0.98 to 1.07. The range
disordered steady flow Witﬁg\ <8< 3, todetermine clo- of K’ is also small, but significantly far from unity, ranging
sures forp, K anda as functions of continuum fieldsand  from 0.80 to Q90.



17

o X
10t
8 L
X
L O
n O s
&
4t X fit
¢ x o H =40
! o © O H=30
O x H=20
O H=10
o 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08

hetop(6;A = 1)/h

1.55¢ 5
1.5} i
1.45 i
140 T o
1.35 b 9
X
1.3¢ 9 R
3 B @ & X X x
R SRR CRRARE SRS RN
21 22 23 24 25 26 27 28
0

Fig. 14: Left figure: fitting parametd, as a function ohstop(6;1)/hfor A = 1 and varying heighth and inclinationf. The
solid line shows the linear fit used to obtairfrom equations (55). Right: Shape factofor A = 1 and varying height and
inclination 8. Markers denote the simulation data, while dotted linesotkefits using (55) with corresponding coefficients
from Table 2. Fitted values and simulation data are conddnfe solid line.
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Fig. 13: Mean volume fractiop/p,, for roughness\ = 1,
and varying number of particléd; and inclinations. The
mean volume fraction in the bull,/p,, denoted by, col-
lapses onto a function of the inclination (solid line), vehil

it shows a small dependence on the flow height, due to the

density decrease near base and surface.

The deviation oK andK’ from unity increases with in-
clination, withK increasing andk’ decreasing with inclina-
tion. This implies that the flow is contracting in one directi
and expanding in the other. For steady disordered fléws,
andK’ fit to functions linear inf,

KM=1+(6-dy)/do (53)
with dg = 132 andd; = 21.30° and
K™ =1+(6—dp)/dy (54)

with dj = —118 andd; = 6.27°. The model results give a
small standard error of g — K) = 0.014 and erfK’ —
K'ft) = 0.014. Given that the dependence on inclination is
small, we can tak& =~ 1, while K’ does not appear in the
2D shallow-layer granular equations.

3.51

h/Gd,u

oo 01 02 0.3 0405 06 07 08 09 1

(z—b)/h
Fig. 15: Depth profile of normalised straifh/u) d,u cor-
responding to velocity profiles shown in Fig. 11. For rough
bases, the strain is modelled by a Bagnold profile, except
near the base and surface. For smoother base<?/3, the
layered flow near the base increases in thicknessA Eob,
a large slip velocity and a shear band in the basal layer is ob-
served.

Finally, we develop a fit for the shape factofA) =
u?/u2,
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The fit is based on a phenomenological model of the ob- A oy Jerr
served velocity profiles, as shown in Fig. 11. For rough bases A _lla@)jer 5/6[[5.37/0.0371
A >5/6, a Bagnold velocity profile, 0 |1.0010.0027) |1 19.420.0395

1/2||1.14 |0.022 3/2|(9.69|0.0239
5_ 3/2 2/3|(1.20 |0.014 2 ]{12.0(0.0473
ug(2) = 3U (17 ((h—2)/h) ) , (55a) 4 |145/0.0543

is observed in the bulk of the flow; a linear profile in the
surface layer, which is abouti3hick; and, a convex profile
with no slip in the base layer, whose thicknégsincreases
as the height approaches the stopping height. No kinks occll rdered flow
at the intersection of the layers. Thus, we model the velocit

by

Table 2: Fitting for the shape factor=a(A) for A <2/3
anda = 0?/u2, u=u(zb,) for A > 5/6, and the standard
error. Closure relations are fitted to all data sets of steady
A A

< 0 < e

%8 (7= by )(1— 3 2 b |

du 019_2(27 A)( 7§b)\—7b)a Z< Dy, 0.45}
E(Z;b)\)z 5(2), by <z< maxs—5,b,), 0.4l
0025 (z=max(s—5,b,)), otherwise 035}

u(0;b,) =0forA >5/6. (55b) 0.3}
The straind,uin Fig. 15 is fitted well with (55). The param- — 0.25¢
eterb, decreases with increasing distance from the stoppin 02|
height, and a simple fit reads 0.15
0.1

wherehs;op(8,1) was chosen sindatop(6,A ) does not pro-

vide values for all inclinations for which steady flow is ob-

served. Subsequently, the fit to the shape fag{dr) = 02/u? (z=b)/h

can be computed numerically and compared to the measuredy. 16: Inertial number(z) for N¢ /200= 30 at inclination

values in Fig. 14. The coefficientg are givenin Table 2. g = 25° for varying roughnesa. The basal region shows
ForA <2/3, the dependence of the shape factor on heighirge variations in which increase for smoother bases.

and inclination diminishes and can be approximated with a

constant valuex(A). The Bagnold profile disappears and

the flow becomes more convex and plug-like, as shown irsince the friction is determined by the inclinatipn= tan(8),

Fig. 11. Each velocity profile will be analysed separatelywe thus expect a constant valuel 6f the bulk. Depth pro-

next. files of | are plotted in Fig. 16 for varying roughnesses
For A =0, the slip is so large that we can assume plugrhe inertial number remains constant in the bulk, but shows

flow to hold. There is almost no slip far = 2/3 and a slip  large variations in the basal and surface layers. At the sur-

of approximatelyu(0)/ maxu(z) = 1/6 for A = 1/2. We  face, the pressure vanishes while the strain rate remains fi-

neglect the variations at the surface and the bulk and assumge (see Fig. 11), causing the inertial number to appraach i

0 I I I I I I I I I )
0 01 02 03 04 05 06 07 08 09 1

alinear shear rate vanishing at the surfacelfer 1/2,A = finity. At the base we observe different behaviour for rough
2/3. Thus, we fit the velocity profiles as and for smooth basal surfaces. For high geometric rough-
ness,A > 2/3, the inertial number increases towards the
u@2) z/h(2 - z/h), A =2/3, base, reflecting the decrease in strain rate previouslyshow
& =016+ 0.84(z/h(2—1z/h)), A =1/2, (56) in Fig. 15. For smoother basds< 2/3, the basal region is
1, A=0, thicker and the inertial number increases towards the base.

) o _ ForA =0, the inertial number reaches such high values that
The corresponding coefficients(A) are found in Table 2 the flow needs to be classed as collisional, which is con-

and provide a good fit to the data. firmed by the density profile for the the steady disordered
The Bagnold velocity profile in the bulk region can be ¢a5es, as shown in Fig. 10.

deduced, without assuming collisional flow, from a local
rheology model [GDRO04] where it is assumed that the fric-
tion u is a function of the inertial number,

Assuming that thet(1)-rheology holds, the velocity should
fita Bagnold profile and therefore we expect a constant shape
factora = 5/4. As both density and friction depend only on

the inertial number, a further prediction is that the denisit
1(2) = (92u)/ ( Gzz/pp/d) : (57) & function of the frictionp = p(u = tand), in agreement
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with the density fit in equation (52). In [GDRO04], is was fur- Bagnold, while the strain rate remains finite at the surface,
ther assumed th# = 1. The friction can also be expressed and decreases towards the base. This is in qualitative-agree
in terms of the inertial number: due to the Bagnold velocityment with what we observe in our DPM simulations, see
profile, the inertial number of the flow can be modeled inFigs. 11 and 15. However, this non-local rheology could not

terms of the flow variables as predict other observed details, such as the inverse propor-
r 5 ad 5Fd cg tionality of the Froude number on the stopping height, see
"~ 2hyghcoss 2 h’ ®8)  (48).

S o In summary, the functiong, a andK depend on the in-
where we use the notatioro distinguish from the definition  jination 8 and the heighh. The inclination® in turn can

of the local inertial number (57). From (58) it immediately pe \written as a function of the friction coefficiept such

follows that the Froude number is proportional to the heightihat g — tan%(p(h, 0)). This allows us to describe the pa-
without an offset as assumed in (48). We note thapiflg-  rameters of the shallow-layer model in terms of the heliight
rheology does not predict a height dependent stopping anglgyyghnesa, and frictionu (h, @) and thus provides a closure
Bstop(h), as is observed in the simulations: sinee= U(1),  proper for the system. The different behavior for the vagyin

there is also and inverse functior: | (i = tan6), therefore s remains an open issue, since we only provided empirical
| is independent of the height of the flow. Instead there isjis apove.

a single minimal angleg, ,, for which steady flows exist.
In order to obtain a fit, we assume that steady flow is not
possible above an angl ., and fitp(l) as 10 Conclusion

tan(Jmaxa ) —tan(d ) 10.1S
(ah)t+1 (59) R

with fitting parameters;,, anda, given in Table 3. This In this article, an extensive series of DPM simulations were
fit is similar to the fit ob?:iined in (50), except thp(l_) is used to determine closure relations for the often usedshall

now fitted directly. Fon > 5/6, u shows a well-defined de- Iay_er m(_)dgl of granular flows on inclined chute_s. Assuming
pendence of; however, this functional dependance vanisheg/niformity in the Iaterah/—dlrecfuon, the model is a dePth'
for smoother based < 2/3, as the flow velocity become averaged continuum model with the macro-scale variables
less Bagnold-like, see Figure 11, and the offset from a tinea1icknes$= h(x,t) and mean velocity = u(x.t). The flow
relationship betweeR andh increases, see Figure 12. consisted of monodispersed particles of diamdtand the
These deviations from thg(l )-rheology for a rough base base Of_ mongdisperged particles ,Of ‘_’ia",‘e"d‘ Particle
have also been observed in [GDRO4]; consequently, a noflows with variations in heightt and inclinationd were nu-

local rheology has been proposed by Pouliquen and ForterfBerically investigated for varying basal roughnésseveal-
in [PF09], where rearrangements at one position are trighd @ range of parameters for which steady and uniform flow

gered by stress fluctuations elsewhere in the flow. This nonY@s observed.

local rheology predicts for rough bases that the bulk flow is W_e observed the _following pheno_menology:_at §mall in-
clinations the flow quickly arrests, while at large incliioats

the flow continues to accelerate. Between these two regimes

() =tan(dy) +

there was a range of inclinations in which steady flows oc-
A o161 [Brag[lem_Jorr, | d €f. Fig. 4). The curvéigor(0; 1), a function of height
5 1000081181898 10013 100025 curre (: ig. .). e curvéisiop(0; ),a_unc ion of heig
1/2][2.11 |17.9/368 ||0.00540.0026 versus inclination, forms the demarcation between amleste
2/3|[3.45 [17.8[359 [|0.00160.0031] and steady flow, as a function of basal roughness (Figs. 4 and
5/6]|5.25 |182|34.4 ]/0.00220.0026 8). For smaller basal roughness, steady states arise deésmal
1 |72 |17.6|333 ]/0.00340.0025 inclinations and heights, and the range of angles shrinks fo
151[7.17 ]175|33.4 {/0.00340.0025 hich steady flow i ible. Other t ¢ steady fl
51725 11741335 110.00330.0025 which steady flow is possible. Other types of steady flow
7 1622 |18 1343 1/0.00310.0027 were observed at small inclinations for small base pagticle

showing a strong layering in depth, or oscillatory flows§ (
Fig. 9). For a flat frictional base, the steady disorderedglow
show a strong shear at the base.

Depth profiles for density, velocity and stress were con-
structed using coarse-grained macroscopic fields. Theeear
graining width was carefully chosen to preserve some mi-

Table 3: Table of fitting parametegg and 6y ), as well
as the previously measured angle of rep@gg, ForA =0,
the fitting returns an almost linear fit to the data.

The last two columns show the variance of the friction

fitted t;y equation (59), efr= (N—1)"*5i_w(U(1) = croscopic structure as well as macroscopic gradieftsig. 6).
tar}f’)) , and fitted by gquauon (50), er= (N —  The assumptions of depth-averaged theory were confirmed
1)~ S (u(h,F) —tan(6))*. in the simulations for a certain range of steady, uniform
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flows: the density was almost constant with depth, and th&ured by models that are strictly only valid for the slowly-
downward normal stress as well as shear stress were lithearying cases. Consequently, a systematic study of the va-
static. We have only derived closure relations from statist lidity of the granular shallow-layer model is required. By
cally steady DPM simulations; however, it is often assumedespectively extending the “hydraulic” analysis for flged

that such closure laws, obtained from either DPM simulagranular matter and water in Vremahal. [VATK *07] and
tions or experiments, can be used to close the time-dependdtkers and Bokhove [AB08], granular flows within constric-
granular shallow-layer equations. tions become an analytically-treatable target. Such flows i

Consequently, four closure relations could be determinedonstrictions reach a steady state and appear (partiaiy) a
basal frictionpu, stress ratiok, mean densityp, and the cessible by direct DPM simulations.
shape of the velocity profile. What do these results enable us to do? Whether the steady

Firstly, basal frictionu = tan8 was shown to be a func- DPM-based closures are valid across granular “hydraulic”
tion of height and flow velocity, see Eq. (50). Pouliquen'sjumps in such steady and constricted flows is of interest.
approach was found to be valid far= 1, with the Froude Whether the steady DPM-based closures hold for (slow) tran-
number as a linear function 6f hs;op(8; A =1). Thisfitting  sient routes towards such steady states is of interest, too.
approach was extended to smoother basesMj#iil, where  What closures should be used outside the formal range of
the Froude number was fittedtghsio o 6; A = 1) instead of ~ applicability for the smoother bases, so for the layered and
using the respectivi/hsiop(6;A) for the actuald or basal  oscillating flows forBstop(h;A) < 8 < 33, and the acceler-
roughness. The stopping curve associated with the diametating flows for@ > J,..,, appears a tantalising, and as yet,
Ad =1 of the flowing particles seems more relevant tharopen question.
the stopping height with the actuil One possible explana- ~ What are we not able do? Although, we did observe
tion is that there is a boundary layer of intermittently slow|ayered and oscillating flows in our DPM simulations, it is
flow particles that originated in the bulk, and that shietis t - doubtful whether the homogenisation assumption that led to
smoother base from the bulk flow. the shallow-layer model is sufficient. Nonetheless, thlit

Secondly, closure relations for the mean dengitytress  static balance relation is shown to hold for the DPM simu-
anisotropyK and shape factar were established as follows. lations, as expected from standard asymptotic analysis us-
The mean density was fitted as a decreasing function of iring the aspect ratio of normal to planar velocity and length
clination, see Eq. (52); the stress anisotropy was found tgcales.
be increasing with inclination, but the variations were Bma
enough to assumi€ = 1; the shape factor was obtained by
fitting the velocity profiles at the base with a convex func-
tion, a Bagnold profile in the bulk, and linear profile at the10.3 Outlook
base, with the base height proportionahtg,,(6;A = 1).

The determined closures are valid for the range of inAlternatively, a multi-scale modelling approach might be
clinationsd; ) < 6 < d4¢ca, Where steady disordered flows adopted such as the heterogeneuous, multiscale methodol-
are observed. For rough bases with> 5/6, all steady flows  ogy [WEL*07], among others, in which closure relations
where disordered, and therefa¥g, = Bstop(h; A ), With Bst0p(h; Xor discretisationsd.g, [PBS'07]) depth-averaged shallow-
the inverse of thehsop(6; A )—curve between arrested and Jayer models are coupled to DPM simulations in selected re-
dynamic flow. For smaller roughness with< 2/3, layered  gions in space and time. Thus computational costs would be
and oscillating flows arose for inclinatiofigop(h;A) <8 < diminished while accurate closure relations are gathered *

&3 2, for which we are (as yet) unable to capture closure rethe fly’ in time and space.
lations. For future work, we advocate the extension of our DPM
simulations by investigating the three-dimensional ctesu
relations. We surmise that reduced lithostatic modelsfal-s
10.2 Open questions low granular flows could be more consistently derived from
three-dimensional continuum models with stress closwzes d
What does the granular shallow-layer model enable us ttermined from DPM simulations in combination with labo-
do, and what can we not do with it? In the range of steadyatory measurements. These new models would be reduced
flows, this continuum model can be used to predict steadgind therefore computationally still manageable for large-
and time-dependent flows. Strictly speaking, this is only al scale debris flows; for example, when the degrees of free-
lowed for steady flow in the established inclination rangedom in the vertical remain limited, but are extended beyond
032 < B < d4¢cn, but it can be expected to remain valid only one degree of freedom. Such reduced modelling is akin
for the slowly-varying dynamic cases as well. It is often theto hydrostatic modelling in water-wave and coastal hydro-
case, however, that even rapidly-changing flows can be caplynamics.
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We will now show that the total enerdy = T +V satisfies the Hamil-
tonian equations,

oH _ _dpi OoH _ doi

o dt’ d  dt’ (662)

OH  dr; OH  da;

ap  dt s T dt (66D)
To derive (66a), we calculate

oH a kt 2

ar  an ( mi- g+;<7|6 319 )) ©7

term by term. We can show that
a k"

17} 0,(di +dj)/2—r;
o 25n2 = K"max(0, (di +d;j)/2—ri}) max(0, ( (;rri i)/2—rij)
= K'max(0, (di +d;)/2—rij) W

fk“max(O, (di +dj)/2— I’ij) :J

ij
= —K"]nij, (68)
where we used the fact that mx(d; +d;)/2—r;j) is continuous in
time.

Further, we take the derivativi,, 8!; (a denotes the vector coor-

dinate) by the chain rule and use (9) to show that
dria(t) — dra(t)  at

Vj=wj=wj=0, Vip=0,b#a

1 ri
— <Via€a+( Via€a - Nij)Nij +(5|J (—Via€a)) rg )
ij

ia

¢ Tij
jarz
ré

(69)

a— MijaNij —

wheree, denotes the-th basis vector of the coordinate system. Here,

(69) becomes

S 6t 2 _ kt6t ‘96%1'
(9I’|a Oria
r
= kt6f] . <€anijanlj d]a Il)
]
= K'8}; - €a = k' 5, (70)

where the cancellation of terms arises because the taafyspting is
orthogonal to the normal vector. After substituting (70§ 468) into
(67) we obtain

Z—E = %(mri-g+;k—;q§'2+k§t6}j|z).
= ‘m'g‘;iknfi?”ij—kttsh = —%- (71)
Next, we calculate

;:a s 2, /2001 = 3 K8 75‘ (72)

We take the derivative"aia(t)&j using the chain rule and equations (9)

and (8)
06}1- at 06}]»
daig(t) daip(t) ot WiV} —w; 0, w0
_ ot 0(—wea % bij)
B aaia(t) ot Vi=Vj=w=0, wp=0b#a
= —ea X byjj. (73)

Substituting (73) into (72) we obtain

JoH t "
Y —];k 8} - (eaxbyj) = J;i(kltsij x bij)a, (74)
where we used the identity
Cc-(eaxd)=—(cxd)aVe,deRS (75)
Thus, using (72) and thak; andn;; are parallel, we obtain
JoH t xt _ dgi
v *;(bij xK&jj) = ;(bij <fij) = — 4 (76)
Subsequently, we derive (66b) since
12 ' .
opi dpi2m  m  dt
and
oH d ¢’ ¢ da
96 b 2 i dt - (78)

Finally, we show that the total energy is conserved. Sincesma
my, radiusr; and spring constant¢', k! are constantd has no direct
dependence onand thus

e (79)

Using and (66) and (79) yields

d ~0H J9H dri  dH dai GH dpi  dH dgy

at P = et 2 Gn G g dt Tap dt 9 at
_OH dpi dri déi doi  dri dpi  doi doy
6t dt dt  dt dt  dt dt  dt dt
=0, (80)

Fig. 17 shows the energy balance of two particles collidiog-n
collinear in the dissipation- and yield-free case. One @tke jump
in energy at the end of contact, where potential tangerndialg energy
is converted into internal energy.

6~ <. SRR
5’ '\V\ ~ /‘/‘/
4t -=T

- — - Vela
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t

Fig. 17: Energy balance of two particles colliding non-
collinear in the dissipation- and yield-free case. The kine
and elastic potential energy are in balance, until the parti
cles loose contact and potential spring energy is converted
into internal energy.
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B Orthogonality of the tangential spring

To show that the tangential spring is orthogonaktg note that the
tangential spring is initially of zero length and thereforéhogonal to
rij; further

d(oj rij)  déj;

t
o A
(81 -Vij)rij
= <V}j — IJT -rij +5in -Vij
i
= V}j -Tij =0 (81)

Thus, we can integrate equation (81) to obtain a continyaushogo-
nal tangential spring Witk‘ii‘j -rij =0.

C Algorithms for time integration and the calculation of
the tangential force

The algorithm for the time integration and the calculatidrihe tan-
gential force is shown in Algorithms 1 and 2.

Algorithm 1: Time integration

Data: Initial positions and translational and angular velasti
r? v0 wP, massesn, inertiasl;, time stepAt
ri «— 12, vi +— V0, wj +— w0 Vvi
(fi,a) «— forces-and-torque§rj, vj,wi}\ ;) Vi
fori=1,2,...,Ndo
Vi e—vi+ 4 r;—' vi
wj — wj+ %%‘ Vi
ri <— ri +Atv; Vi
foreach particle pair (i, j) in contactdo
if contact is nevihen &f; «— 0
a}- PRy S (5itj Vij)rij

i ij r,2J

8L +— ol + Atal

(fi,q) «— forces-and-torque{$rj,vj,wj}’j\‘:l) Vi
Vi «— Vi + % rfni_l Vi
wj — wj+ %?—i' Vi

Algorithm 2: Calculation of the tangential force, in-
cluding sliding
fl; «— —K'8l — YV
if (Iffj| > kelf}|) then
ft ‘fﬂ' ft
ij & Hepgg it

8 *k%(f%j +Yi))




