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Abstract The Discrete Particle Method (DPM) is used to
model granular flows down an inclined chute with varying
basal roughness, thickness and inclination. We observe three
major regimes: arresting flows, steady uniform flows and ac-
celerating flows. For flows over a smooth base, other (quasi-
steady) regimes are observed: for small inclinations the flow
can be highly energetic and strongly layered in depth; where-
as, for large inclinations it can be non-uniform and oscillat-
ing.

For steady uniform flows, depth profiles of density, ve-
locity and stress are obtained using an improved coarse-
graining method, which provides accurate statistics even at
the base of the flow. A shallow-layer model for granular
flows is completed with macro-scale closure relations ob-
tained from micro-scale DPM simulations of steady flows.
We obtain functional relations for effective basal friction,
shape factor, mean density, and the normal stress anisotropy
as functions of layer thickness, flow velocity and basal rough-
ness.

Keywords Discrete Particle Method· Coarse graining·
Granular chute flow· Depth-averaging· Shallow-layer
equations

1 General introduction

1.1 Background

Granular avalanche flows are common in both the natural
environments and industry. They occur across many orders
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of magnitude. Examples range from rock slides, contain-
ing upwards of 1000m3 of material; to the flow of sinter,
pellets and coke into a blast furnace for iron-ore melting;
down to the flow of sand in an hour-glass. The dynamics of
these flows are influenced by many factors such as: polydis-
persity; variations in density; non-uniform shape; complex
basal topography; surface contact properties; coexistence of
static, steady and accelerating material; and, flow obstacles
and constrictions.

Discrete Particle Methods (DPMs) are an extremely pow-
erful way to investigate the effects of these and other factors.
With the rapid recent improvement in computational power
the full simulation of the flow in a small hour glass of mil-
lions of particles is now feasible. However, complete DPM
simulations of large-scale geophysical mass flow will, prob-
ably, never be possible.

One of the main goals of the present research is to simu-
late large scale and complex industrial flows using granular
shallow-layer equations. In this paper we will take the first
step of using the DPM [CS79,SEG+01,SGPL02,SLG03,
Lud08] to simulate small granular flows of mono-dispersed
spherical particles in steady flow situations. We will use a
refined and novel analysis to investigate three particular as-
pects of shallow chute flows:i) how to obtain meaningful
macro-scale fields from the DPM simulation,ii) how to as-
sess the flow dependence on the basal roughness, andiii)
how to validate the assumptions made in depth-averaged
theory.

The DPM simulations presented here will enable the con-
struction of the mapping between the micro-scale and macro-
scale variables and functions, thus enabling constructionof
a closed set of continuum equations. These mappings (clo-
sure relations) can then be used in continuum shallow-layer
models and compared with full DPM simulations (DPMs).
For certain situations, precomputed closures should work;
but, in very complicated situations pre-established relations
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may fail. Heterogeneous, multi-scale modelling (HMM) is
then an alternative [WEL+07], in which the local consititu-
tive relations are directly used in the continuum model. In
HMM, continuum and micro-scale models are dynamically
coupled with a two-way communication between the differ-
ent models in selective regions in both space and time, thus
reducing computational expense and allowing simulation of
complex granular flows.

1.2 Shallow-layer models

Shallow-layer granular continuum models are often used to
simulate geophysical mass flows, including snow avalan-
ches [CGJ07], dense pyroclastic flows, debris flows [DI01],
block and ash flows [DPP+08] and lahars [WSS08]. Such
shallow-layer models involve approximations reducing the
properties of a huge number of individual particles to a hand-
ful of averaged quantities. Originally these models were de-
rived from the general continuum incompressible mass and
momentum equations, using the long-wave approximation
[SH89,HSSN93,GWH99,WGH99,GTN03,BT12] for shal-
low variations in the flow height and basal topography. De-
spite the massive reduction in degrees of freedom made,
shallow-layer models tend to be surprisingly accurate, and
are thus an effective tool in modelling geophysical flows.
Moreover, they are now used as a geological risk assessment
and hazard planning tool [DPP+08]. In addition to these ge-
ological applications, shallow granular equations have been
applied to analyse small-scale laboratory chute flows con-
taining obstacles [GTN03], wedges [HH05,GC07] and con-
tractions [VATK+07], showing good quantitative agreement
between theory and experiment.

In fluid dynamics, the Navier-Stokes equations are es-
tablished with full constitutive equations. Nonetheless,the
shallow-layer equations or Saint-Venant equations are often
used in large scale situations where it is impractical to solve
the full Navier-Stokes equations. Our present aim is to di-
rectly investigate the validity of the assumptions of granu-
lar shallow-layer models first from discrete particle simula-
tions, before obtaining fully 3D ‘kinetic theory’-style consti-
tutive relations and simplifying these via the depth-integration
process. A discussion of the full three-dimensional proper-
ties of our particle simulations will be undertaken later. Here
we restrict our attention to the closures required for two-
dimensional shallow-layer granular flow equations.

A key difference between shallow-layer fluid models and
granular ones is the appearance of a basal friction coeffi-
cient,µ , being the ratio of the shear to normal traction at the
base. In early granular models, a dry Coulomb-like friction
law was used [SH89]. It impliesµ to be constant, given by
the tangent of the friction angle between the material and the
base,δ , i.e., µ = tanδ . As a consequence constant uniform

flow is only possible in such a model at the angleδ , indepen-
dent of height. There is a considerable amount of experimen-
tal evidence,e.g., [DD99,GDR04], that suggests that such
a simple Coulomb law does not hold on rough beds or for
moderate inclination angles. Furthermore, detailed experi-
mental investigations using glass beads [Pou99] lead to an
improved empirical ‘Pouliquen’ friction law characterised
by two angles: the angle at which the material comes to
rest,δ1, below which friction dominates over gravity and the
angle,δ2, above which gravity dominates over friction and
the material accelerates. Between these two angles steady
flow is possible, and in the limitδ1→ δ2 = δ the original
Coulomb style model is recovered.

Since its formulation a lot of work has been performed
on extending and understanding this Pouliquen law. The orig-
inal law was obtained by retarding flowing material and mea-
suring the angle at which the material stopped as a function
of heighthstop(θ ), or equivalently, by inverting this relation,
θstop(h). For most materials, granular included, a greater
angle is required to initiate stationary than to retard flow-
ing material. Pouliquen and Forterre [PF02], by measuring
the angle required to start motion, measuredθstart (h), i.e.,
the friction law for initially stationary material. As expected
θstart was greater thanθstopand this information was used to
extend the friction law to all values of the height and veloc-
ity within the steady regime. Borzsonyi & Ecke performed
a series of additional experiments: firstly, in [BE06] they
looked at higher angles were the mean flow rates are close to
the terminal velocity of a single particle, and found regions
were the Pouliquen law is not valid and the Froude num-
ber becomes inversely proportional to the height, as opposed
to the linear relationship observed for steady flow. Borz-
sonyi and Ecke, and Pouliquen and Forterre [BE07,FP03]
have all worked on extending the original law to be valid
for more complicated non-spherical materials like sand and
metallic materials. Also, the effect of basal surface rough-
ness has been systemically studied in [GTDD03] by vary-
ing the size of both the free flow and fixed basal particles.
For convenience, we defineλ to be the size ratio of the
fixed and the free particles. They observed a peak in rough-
ness at a certain diameter ratio,λc, which depends on the
compactness of the basal layer. Measured values ofλc in
[GTDD03] ranged between 1 and 3 for a monolayer of fixed
particles. For fixed particles with smaller size andλ < λc,
the range of angles where steady flow was observed de-
creased, and eventually the steady flow regime completely
vanished,i.e., δ2−δ1→ 0 asλ → 0 (yielding Coulomb type
behaviour). For smaller flow particle diameters,i.e., with
λ > λc, there was also a reduction in friction, but weaker
than in the smallλ case. For much largerλ , the friction sat-
urated to a constant value, which they contributed to free
particles that filled the holes in the basal surface and effec-
tively created a stable basal surface of free particles. In a
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later publication [GDDT07], they extended this investiga-
tion to flows containing two particle sizes.

Louge and Keast [LK01] modified the kinetic theory pre-
sented in [Jen93] by modelling enduring contacts via a fric-
tional rate-independent stress component in order to obtain
steady flow on flat frictional inclines. This work was later
extended to bumpy inclines [Lou03]. Jenkins [Jen06] took a
different approach and theoretically formulated a phenome-
nological modification of granular kinetic theory to account
for enduring particle contacts. His idea is that enduring con-
tacts between grains, forced by the shearing, reduce the col-
lision rate of dissipation. Therefore a modification to the
dissipation is introduced, which does not affect the stress.
It leads to a law very similar to the one experimentally ob-
tained by Pouliquen. Jenkins further extended the theory in
[Jen07] to very dissipative frictional particles, with a coeffi-
cient of restitution less than 0.7. Later, a detailed comparison
with new experiments was performed, showing agreement
for flows on low inclinations [JB10].

Silbert et al. [SEG+01] used DPMs to simulated chute
flow of cohesionless particles. They found that a steady-state
flow regime exists over a wide range of inclination angles,
heights and interaction parameters, in confirmation of the
experiments of Pouliquen [Pou99]. They found for steady-
state flows that the volume fraction is constant throughout
the flow, in agreement with the assumptions of shallow-layer
theory [SH89]. They also observed that the shear stress is
proportional to the square of the shear and the flow veloc-
ity scales with the height to the power 3/2. This result co-
incides with Bagnold’s analysis of dilute binary collisions
flows [Bag54]. They also observed small systematic devia-
tions from isotropic stress, which shows a deviation from
fluid-like behaviour. However, normal stresses do not ap-
proach a Coulomb-yield criterion structure at the angle of
repose except near the surface, hinting that the failure of
flow starts near the surface. They further investigated the
effect of different basal types in [SGPL02] and found that
for an ordered chute base the steady state regime splits into
three distinct flow regimes: at smaller angles, the flowing
system self-organises into a state of low-dissipation flow
consisting of in-plane ordering in the bulk; at higher an-
gles, a high-dissipation regime similar to that for a rough
base but with considerable slip at the bottom is observed;
and, between these two sub-regions they observe a transi-
tional flow regime characterised by large oscillations in the
bulk averaged kinetic energy due to the spontaneous order-
ing and disordering of the system as a function of time. In
[TRJD07], a strongly sheared, dilute and agitated basal layer
could be observed supporting a compact bulk layer over a
relatively smooth base. They essentially concluded for tran-
sitional flows that a steady and thus unstable state could only
be reached at one inclination. Finally, [SLG03] investigated
the initiation and cessation of granular chute flow more care-

fully and computed bothθstop and θstart. For inclinations
θ ≫ θstop they observed a Bagnold rheology, forθ >∼θstop a
linear profile, and forθ ≈ θstop intermittent flow.

1.3 Overview of this study

Our present research is novel on the following three counts:
Firstly, we compute more meaningful macro-scale fields

from the DPM simulations than before by carefully choos-
ing the coarse graining function. In order to homogenise the
DPM data, the micro-scale fields need to be coarse-grained
to obtain macroscopic fields. Coarse-grained micro-scale fields
of density, momentum and stress have been derived directly
from the mass and momentum balance equations, e.g., by
Goldhirsch [Gol10]. The quality of the statistics involved
depends on the coarse graining widthw, which defines the
amount of spatial smoothing. For small coarse-graining width
w, micro-scale variations remain visible, while for largew
these smooth out in the macro-scale gradients. Since one of
the objectives is to obtain the value ofµ at the base, we use
a novel adaptation of Goldhirsch’ statistics near boundaries.
This new approach [WTLB11] is consistent with the con-
tinuum equations everywhere, enabling the construction of
continuum fields even within one coarse-graining width of
the boundary.

Secondly, we follow the approach of [GTDD03] and vary
the basal particle diameter to achieve different basal condi-
tions. For particles with smaller basal than flowing diameter,
λ < 1, the flow becomes more energetic and oscillatory be-
haviour is observed. This phenomena has previously been
reported in [SGPL02], but was achieved by changing the
basal particles to a more regular, grid-like configuration.By
investigating flow over fixed particles of different size than
the free, flowing particles, we are able to quantify the rough-
ness and numerically investigate the transition from rough
to smooth surfaces. For smoother surfaces, we show that the
parameter space can be split into to two types of steady flow,
and we obtain a general friction law.

Finally, we test the assumptions made in depth-averaged
theory and determine the required closure laws. For shallow
granular flows, the flow can be described by depth-averag-
ed mass and momentum-balance equations [GTN03]. Solv-
ing the depth-averaged equations requires a constitutive re-
lation for the basal friction, a way to account for mean den-
sity variations, the shape of the velocity profile and the pres-
sure anisotropy. We extract such data from DPMs obtained
for steady uniform flows, and establish a novel, extended
set of closure equations. Also, the depth-averaged equations
are obtained under the assumptions that a) the density is
constant in space and time and does not vary through the
flow; b) the ratio between mean squared velocity and the
squared mean velocity is known; c) the downward normal
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stress is lithostatic,i.e., balances the gravitational forces act-
ing on the flow; and, d) the ratio between the normal stresses
is known. Grayet al. [GTN03] assumed the latter ratio to
be one, whereas Savage and Hutter [SH89] use a Mohr-
Coulomb closure law. The depth profiles of these quantities
are discussed by Silbertet al.in [SEG+01,SGPL02,SLG03]
for steady flow. We used the originally results of Silbertet at.
to validate our DPM simulations. Then, using our improved
statistical procedure, we will construct the granular shallow-
layer closer relations for a much wider range of flow regimes
than had been considered before; concurrently, establishing
the range in which the shallow-layer approximation is valid.

1.4 Outline

We introduce the force model used in the DPM in Sect. 2,
and the statistical method used to obtain macroscopic den-
sity, velocity and stress profiles in Sect. 3. In Sect. 4, we dis-
cuss the continuum shallow-layer equations for modelling
granular flow including some macro-scale closures. The set
up of the simulations is discussed in Sect. 5, and the steady-
state regime is mapped for flows over a rough basal sur-
face in Sect. 6. Depth profiles of the flow are introduced in
Sect. 7, which are then used to characterise the steady flow
over smoother surfaces in Sect. 8. Finally, the closure rela-
tions for the shallow-layer model are established in Sect. 9,
before we conclude in Sect. 10.

2 Contact law description

A Discrete Particle Method (DPM) is used to perform the
simulation of a collection ofN identical granular particles.
Boundaries are created by special fixed particles, which gen-
erally will have different properties than the flow particles.
Particles interact by the standard spring-dashpot interaction
model [CS79,WB86,Lud08], in which it is assumed that
particles are spherical and soft, and that pairs have at mosta
single contact point.

Each particlei has a diameterdi , densityρi, positionr i ,
velocityvi and angular velocityωi . For pairs of two particles
{i, j}, we define the relative distance vectorr i j = r i − r j ,
their separationr i j = |r i j |, the unit normal̂ni j = r i j /r i j and
the relative velocityvi j = vi − v j . Two particles are in con-
tact if their overlap,

δ n
i j = max(0,(di +d j)/2− r i j ), (1)

is positive. A single contact pointc at the centre of the over-
lap is assumed, which is a valid assumption as long as the
overlap is small. For our simulations the overlap between
two particles is always below 1% of the particle radius, hence
justifying treating the contact as occurring at a single point.

The force acting on particlei is a combination of the
body forces and the pairwise interaction of two particles.
The forcef i j represents the force on particlei from the inter-
action with particlej and can be decomposed into a normal
and a tangential component,

f i j = f n
i j + f t

i j . (2)

We assume particles experience elastic as well as dissi-
pative forces in both normal and tangential directions. Hence
the normal force is modelled as a spring-dashpot with a lin-
ear elastic and a linear dissipative contribution,

f n
i j = knδ n

i j n̂i j − γ nvn
i j , (3)

with spring constantkn, damping coefficientγn and the nor-
mal relative velocity component,

vn
i j = (vi j · n̂i j )n̂i j . (4)

For a central collision, no tangential forces are present, and
the collision timetc between two particles can be calculated
as

tc = π/

√

kn

mi j
−
(

γ n

2mi j

)2

, (5)

with the reduced massmi j = mimj/(mi +mj). The normal
restitution coefficientrc (ratio of relative normal speed after
and before collision) is calculated as

rc = exp(−tcγ n/(2mi j )). (6)

We also assume a linear elastic and a linear dissipative
force in the tangential direction,

f t
i j =−ktδδδ t

i j − γ tvt
i j , (7)

with spring constantkt , damping coefficientγ t , elastic tan-
gential displacementδδδ t

i j (which is explained later), and total
relative velocity of the particle surfaces at the contact,

vt
i j = vi j − vn

i j +bi j ×ωi−b ji ×ω j , (8)

with bi j = −
(

(di − δ n
i j )/2

)

n̂i j the branch vector from point
i to the contact point; for equal size particlesbi j =−r i j/2.

The elastic tangential force is used to model the effects
of particle surface roughness. Near the contact point, small
bumps on a real particle would stick to each other, due to the
normal force pressing them together, and elongate in the tan-
gential direction resulting in an elastic force proportional to
the elastic tangential displacement. The tangential displace-
ment is defined to be zero at the initial time of contact, and
its rate of change is given by

dδδδ t
i j

dt
= vt

i j −
(δδδ t

i j ·vi j )n̂i j

r i j
, (9)
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where the first term is the relative tangential velocity at the
contact point, and the second term ensures thatδδδ t

i j remains
normal ton̂i j . The second term is always orthogonal to the
spring direction and, hence, does not affect the rate of change
of the spring length: it simply rotates it, thus keeping it tan-
gential.

When the tangential to normal force ratio becomes larger
than the particle contact friction coefficient,µc, for a real
particle the bumps would slip against each other. Their elon-
gation is then shortened until the bumps can stick to each
other again. This is modelled by a static yield criterion, trun-
cating the magnitude ofδδδ t

i j as necessary to satisfy|f t
i j | ≤

µc|f,ni j |. Thus, the contact surfaces are treated as stuck while
|f t

i j | < µc|f n
i j | and as slipping otherwise, when the yield cri-

terion is satisfied1 .
The total force on particlei is a combination of contact

forces f i j with other particles and external forces such as
gravityg. The resulting forcef i and torqueqi acting on par-
ticle i are

f i = g+
N

∑
j=1, j 6=i

f i j , and qi =
N

∑
j=1, j 6=i

bi j × f i j . (10)

Finally, using these expressions we arrive at Newton’s equa-
tions of motion for the translational and rotational degrees
of freedom,

mi
d2r i

dt2 = f i , and Ii
d
dt
ωi = qi , (11)

with mi the mass andIi the inertia of particlei. We integrate
(11) forward using Velocity-Verlet [AT93], formally second
order in time, with an adequate time step of∆ t = tc/50. The
collision timetc is given by (5), while (9) is integrated using
first-order forward Euler.

Hereafter, we distinguish between identical free flowing
and identical fixed basal particles. Base particles are mod-
elled as having an infinite mass and are unaffected by body
forces: they do not move. This leaves two distinct types of
collision: flow-flow, and flow-base. Model parameters for
each of these collision types are set independently.

3 Statistics

3.1 Coarse-graining

The main aims of this paper are to use discrete particle sim-
ulations to both confirm the assumptions of and provide the
required closure rules for the depth-averaged shallow-water

1 Meant for review stage only.It should be noted that in the absence
of dissipative forces and slipping, the system can be described as an
Hamiltonian system: see Appendix A. Appendix B contains details on
the tangential displacement. A pseudocode of the tangential force cal-
culation is provided in Appendix C.

equations. Hence, continuum fields have to be extracted from
the discrete particle data. There are many papers in the lit-
erature on how to go from the discrete to the continuum:
binning micro-scale fields into small volumes [IK50,SH82,
Lud04,Lud09,LLV+01], averaging along planes [TED95],
or coarse graining spatially and temporally [Bab97,SA04,
Gol10]. Here, we use the coarse-graining approach described
by [WTLB11] as this is still valid within one course-graining
width of the bounday.

The coarse-graining method has the following advan-
tages over other methods: (i) the fields produced automat-
ically satisfy the equations of continuum mechanics, even
near the flow base; (ii) it is neither assumed that the par-
ticles are rigid nor spherical; and, (iii) the results are even
valid for single particles as no averaging over groups of par-
ticles is required. The only assumptions are that each parti-
cle pair has a single point of contact (i.e., the particle shapes
are convex), the contact area can be replaced by a contact
point (i.e., the particles are not too soft), and that collisions
are not instantaneous.

3.2 Mass and momentum balance

3.2.1 Notation and basic ideas

Vectorial and tensorial components are denoted by Greek
letters in order to distinguish them from the Latin particle
indicesi, j. Bold vector notation will be used when conve-
nient.

Assume a system given byNf flowing particles andNb

fixed basal particles withN = Nf +Nb. Since we are inter-
ested in the flow, we will calculate macroscopic fields per-
taining to the flowing particles only. From statistical me-
chanics, the microscopic mass density of the flow,ρmic, at
a pointr at timet is defined by

ρmic(r, t) =
Nf

∑
i=1

miδ (r−ri(t)) , (12)

whereδ (r) is the Dirac delta function andmi is the mass
of particle i. The following definition of the macroscopic
density of the flow is used

ρ(r, t) =
Nf

∑
i=1

miW (r−ri(t)) , (13)

thus replacing the Dirac delta function in (12) by an in-
tegrable ‘coarse-graining’ functionW whose integral over
space is unity. We will take the coarse-graining function to
be a Gaussian

W (r−ri(t)) =
1

(
√

2πw)3
exp

(

−|r−ri(t)|2
2w2

)

(14)
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with width or variancew. Other choices of the coarse-graining
function are possible, but the Gaussian has the advantage
that it produces smooth fields and the required integrals can
be analysed exactly. According to Goldhirsch [Gol10], the
coarse-graining field depends only weakly on the choice of
function, and the widthw is the key parameter.

It is clear that asw→ 0 the macroscopic density defined
in (14) reduces to the one in (13). The coarse-graining func-
tion can also be seen as a convolution integral between the
micro and macro definitions, i.e.,

ρ(r, t) =
∫

W (r−r′)ρmic(r′, t)dr′. (15)

3.2.2 Mass balance

Next we will consider how to obtain the other fields of inter-
est: the momentum density vector and the stress tensor. As
stated in Sect. 3.1 the macroscopic variables will be defined
in a way compatible with the continuum conservation laws.

The coarse grained momentum density vectorp(r, t) is
defined by

pα(r, t) =
Nf

∑
i=1

miviαW (r−ri), (16)

where theviα ’s are the velocity components of particlei.
The macroscopic velocity fieldV (r, t) is then defined as
the ratio of momentum and density fields,

Vα(r, t) = pα(r, t)/ρ(r, t). (17)

It is straightforward to confirm that equations (13) and (16)
satisfies exactly the continuity equation

∂ρ
∂ t

+
∂ pα

∂ rα
= 0, (18)

with the Einstein summation convention for Greek letters.

3.2.3 Momentum balance

Finally, we will consider the momentum conservation equa-
tion with the aim of establishing the macroscopic stress field.
In general, the desired momentum balance equations are writ-
ten as,

∂ pα
∂ t

=− ∂
∂ rβ

[

ρVαVβ
]

+
∂σαβ

∂ rβ
+ρgα , (19)

whereσαβ is the stress tensor, andgα is the gravitational
acceleration vector.

Expressions (16) and (17) for the momentump and the
velocity V have already been defined. The next step is to

compute their temporal and spatial derivatives, respectively,
and reach closure. Taking the time derivative of (16) gives

∂ pα
∂ t

=
∂
∂ t

Nf

∑
i=1

miviα(t)W (r−ri(t))

=

Nf

∑
i=1

mi v̇iαW (r−ri)+

Nf

∑
i=1

miviα
∂
∂ t

W (r−ri). (20)

Using (11), the first term in (20) can be expressed as

Aα ≡
Nf

∑
i=1

mi v̇iαW (r−ri) =

Nf

∑
i=1

fiαW (r−ri). (21)

In the simulations presented later the force on each par-
ticle contains three contributions: particle-particle interac-
tions, particle-base interactions, and the gravitationalbody
force. Hence,

fiα =

Nf

∑
j=1, j 6=i

fi j α +
Nb

∑
k=1

f b
ikα +migα , (22)

where fi j is the interaction force between particlei and j,
and f b

ik the interaction between particlei and base particlek,
or base wall if the base is flat. Therefore, we rework (21) as

Aα =

Nf

∑
i=1

Nf

∑
j=1, j 6=i

fi j αWi +

Nf

∑
i=1

Nb

∑
k=1

f b
ikαWi +∑

i=1
miWigα , (23)

whereWi = W (r− ri). The last term in (23) can be sim-
plified to ρgα by using (13). From Newton’s third law, the
contact forces are equal and opposite, such thatfi j = − f ji .
Hence,

Nf

∑
i=1

Nf

∑
j=1, j 6=i

fi j αWi =

Nf

∑
i=1

Nf

∑
j=1,i 6= j

f jiαW j =−
Nf

∑
i=1

Nf

∑
j=1,i 6= j

fi j αW j ,

(24)

where in the first step we interchanged the dummy summa-
tion indices. It follows from (24) that (23) can be written
as

Aα =
1
2

Nf

∑
i=1

Nf

∑
j=1, j 6=i

fi j α (Wi−W j)+

Nf

∑
i=1

Nb

∑
k=1

f b
ikαWi +ρgα

=

Nf

∑
i=1

Nf

∑
j=i+1

fi j α (Wi−W j)+

Nf

∑
i=1

Nb

∑
k=1

f b
ikαWi +ρgα . (25)

Next, we will write Aα as the divergence of a tensor in
order to obtain a formula for the stress tensor. The following
identity holds for any smooth functionW

W j −Wi =

∫ 1

0

∂
∂s

W (r−ri + sri j )ds

= r i j β
∂

∂ rβ

∫ 1

0
W (r−ri + sri j )ds, (26)
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whereri j = ri−r j ; we used the chain rule and differentia-
tion to the full argument ofW (·) per component.

The next step extends the coarse-graining method to ac-
count for boundary forces. To obtain a similar expression for
the interaction with base particles, we write

−Wi =

∫ ∞

0

∂
∂s

W (r−ri + srik)ds

= r ikβ
∂

∂ rβ

∫ ∞

0
W (r−ri + srik)ds, (27)

which holds becauseWi decays towards infinity. Substitut-
ing identities (26), (27) and (13) into (25) leads to

Aα =− ∂
∂ rβ

Nf

∑
i=1

Nf

∑
j=i+1

fi j α r i j β

∫ 1

0
W (r−ri + sri j )ds

− ∂
∂ rβ

Nf

∑
i=1

Nb

∑
k=1

f b
ikα r ikβ

∫ ∞

0
W (r−ri + srik)ds+ρgα .

(28)

From [Gol10], it follows that the second term in (20) can be
expressed as follows

Nf

∑
i

miviα
∂
∂ t

W (r−ri) =−
∂

∂ rβ

[

ρVαVβ +

Nf

∑
i

miv
′
iαv′iβ Wi

]

,

(29)

wherev′i is the fluctuating velocity of particlei, with com-
ponents given by

v′iα(t,r) = viα(t)−Vα(r, t). (30)

Substituting (28) and (29) into momentum balance (19) yields

∂σαβ

∂ rβ
=

∂
∂ rβ

[

−
Nf

∑
i=1

Nf

∑
j=i+1

fi j α r i j β

∫ 1

0
W (r−ri + sri j )ds

−
Nf

∑
i=1

Nb

∑
k=1

f b
ikα r ikβ

∫ ∞

0
W (r−ri+sri j )ds−

Nf

∑
i

miv
′
iαv′iβ Wi

]

.

(31)

Therefore the stress is given by

σαβ =−
Nf

∑
i=1

Nf

∑
j=i+1

fi j α r i j β

∫ 1

0
W (r−ri + sri j )ds

−
Nf

∑
i=1

Nb

∑
k=1

f b
ikα r ikβ

∫ ∞

0
W (r−ri +srik)ds−

Nf

∑
i

miv
′
iαv′iβ Wi .

(32)

In our simulations the tangential forces contribute less than
6% to the total stress in the system, such that the stress is
almost symmetric.

Equation (32) differs from the results of [Gol10] by an
additional term that accounts for the stress created by the

x

ρ
σ
∂xσ

-2 -1 0 1 2
-2

0

2

x

ρ
σ
∂xσ

-2 -1 0 1 2
-2

0

2

Fig. 1: Stress and density profiles are shown for two one-
dimensional two-particle systems, each with two particles
of unit mass at positionsx = ±1, and repelling each other
(so withd > 2 for our granular case). In the top figure, both
particles are flowing, while in the bottom figure the left par-
ticle is fixed and the right one flowing.

presence of the base, as detailed in [WTLB11]. The contri-
bution to the stress from the interaction of two flow parti-
cles i, j is spatially distributed along the contact line from
r i to r j , while the contribution from the interaction of par-
ticles i with a fixed particlek is distributed along the line
from r i to r k, extending further beyondr k. We explain the
situation as follows, see Fig. 1. Stress and density profiles
are calculated using (15) and (32) for two one-dimensional
two-particle systems, each with two particles of unit mass at
positionsx = ±1, repelling each other with a force| f | = 1
and with w = 0.2. In the top figure, both particles belong
to the flowing species, so the density is distributed around
the particles’ centre of mass and the stress along the contact
line. In the bottom figure, the left particle is a fixed base par-
ticle and the right particle is a free flowing one, so density is
distributed around the flowing particle’s centre of mass and
the stress along the line extending from the flowing particle
to negative infinity.

The strength of this method is that the spatial coarse
graining fields by construction satisfy the mass and momen-
tum balance equations exactly at any given time, irrespec-
tive of the choice of the coarse graining function. Further
details about the accuracy of the stress definition (32) are
discussed in [WTLB11]. The expression for the energy is
also not treated in this publication, we refer the interested
reader to [Bab97].

4 Mathematical background

In this section, we briefly outline the existing knowledge on
continuum shallow-layer theories for granular flow.
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4.1 Shallow-layer model

Shallow-layer granular models have been shown to be an
effective tool in modelling many geophysical mass flows.
Early granular models were formulated by adding gravita-
tional acceleration and Coulomb basal friction to shallow-
layer fluid models [GEY67,KE73]. Similar dry granular mod-
els have been derived using the long-wave approximation
[SH89,HSSN93,Ive97,GWH99,WGH99] for shallow vari-
ations in the flow height and slope topography and included
a Mohr-Coulomb rheology via the use of an earth pressure
coefficient. The key to these theories is to depth-integrate
general three-dimensional equations in the shallow direc-
tion, resulting in a system of two-dimensional equations which
still retains some information about variations in thickness.

Let Oxyzbe a coordinate system with thex-axis down-
slope and thez-axis normal to a channel with mean slope
θ . For simplicity, we further consider boundaries, flows, and
external forcing to be (statistically) uniform in y. The contin-
uum macro-scale fields are thus indepulmendent ofy, while
the DPM simulations remain three-dimensional and will be
periodic in y. The free-surface and base location arez =

s(x, t) andz= b(x), respectively. The thickness of the flow
is thush(x, t) = s(x, t)−b(x), and the bulk density and ve-
locity components areρ andu = (u,v= 0,w)t , respectively,
as functions ofx,y,zandt.

The three-dimensional flow viewed as continuum is de-
scribed by the mass and momentum balance equations (18)
and (19). At the top and bottom surface, kinetic boundary
conditions are satisfied:D(z−s)/Dt = 0 andD(z−b)/Dt =
0 at their respective surfaces, and with material time deriva-
tive

D(·)/Dt = ∂ (·)/∂ t +u∂ (·)/∂x+w∂ (·)/∂z

(since we assumedv = 0). Furthermore, the top surface is
traction-free, while the traction at the basal surface is es-
sentially Coulomb-like. We decompose the tractiont = tt +
tn n̂ in tangential and normal components, with normal com-
ponent of the tractiontn = −n̂ · (σ n̂), wheren̂ is the out-
ward normal at the fixed base andσ is the stress tensor. The
Coulomb ansatz implies thattt = −µ |tn|u/|u| with friction
factorµ > 0. Note thatµ generally can be a function of the
local thickness and the flow velocity. Its determination is es-
sential to find a closed system of shallow-layer equations.

We consider flows that are shallow, such that a typical
aspect ratioε between flow thickness and length, normal
and alongslope velocity, or normal and downslope varia-
tions in basal topography, is small, of orderO(ε). Further-
more, the typical friction factorµ is small enough to satisfy
µ = O(εγ) with γ ∈ (0,1). We follow the derivation of the
depth-averaged swallow layer equations for granular flow
presented in [BT12] without assuming that the flow is in-
compressible. Instead we start the asymptotic analysis from

the dimensionless form of the mass and momentum conser-
vation equations (18) and (19), assuming only that the den-
sity is independent of depth at leading order. Density, veloc-
ity, and stress are depth averaged as follows

(̄) =
1
h

∫ s

b
() dz. (33)

In the end, we retain the normal stress ratioK = σ̄xx/σ̄zz,
the shape factorα = u2/ū2, and the frictionµ as unknowns.
The goal is to investigate whether these unknowns can be
expressed as either constants or functions of the remaining
shallow flow variables, to leading order inO(ε). The latter
variables are the flow thicknessh = h(x, t) and the depth-
averaged velocity ¯u= ū(x, t). At leading order, the momen-
tum equation normal to the base yields that the downward
normal stress is lithostatic,σzz(z) = ρ̄gcosθ (s− z)+O(ε).
Depth-averaging the remaining equations, while retaining
only terms of orderO(ε1+γ ), yields the dimensional depth-
averaged shallow-layer equations,cf. [VATK +07,BT12],

∂ (ρ̄h)
∂ t⋆

+
∂

∂x⋆
(ρ̄hu) = 0, (34a)

∂
∂ t⋆

(hρ̄ū)+
∂

∂x⋆

(

hρ̄αu2+
K
2

gh2ρ̄ cosθ
)

= ghρ̄S, (34b)

with

S= sinθ − µ
ū
|ū| cosθ − ∂b

∂x⋆
cosθ . (34c)

To demarcate the dimensional time and spatial scales, we
have used starred coordinates. These scales differ from the
ones used before in the particle dynamics and the dimen-
sionless ones used later in the DPM simulations. The shallow-
layer equations (34) consist of the continuity equation (34a)
and the downslope momentum equation (34b). The system
arises also via a straightforward control volume analysis of a
column of granular material viewed as continuum from base
to the free surface, using Reynolds-stress averaging and a
leading order closure with depth averages.

While the mean densitȳρ can be modelled as a system
variable by considering the energy balance equation, we will
assume that it can be expressed as a function of height and
velocity ρ̄(h, ū). Thus, the closure to equations (34) is de-
termined when we can find the functions̄ρ(h, ū), K(h, ū),
α(h, ū), andµ(h, ū). In Section 9.2, we will analyse if and
when DPM simulations can determine these functions.

4.2 Granular friction laws for a rough basal surface

The friction coefficient,µ , was originally [SH89] taken to
be a simple Coulomb typeµ = tanδ , whereδ is a fixed fric-
tion angle. Note that in steady state for a flat base withb=

0, the shallow-layer momentum equation (34b) then yields
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µ = tanθ . Pure Coulomb friction implies that there is only
one inclination,θ = δ , at which steady flow of constant
height and flow velocity exists. That turns out to be unre-
alistic. Three parameterisations forµ have been proposed in
the literature.

Firstly, Forterre and Pouliquen [FP03] found steady flow
in laboratory investigations for a range of inclinations con-
cerning flow over rough basal surfaces. They measured the
thicknesshstop of stationary material, left behind when a
flowing layer was brought to rest, with the following fit

hstop(θ )
Ad

=
tan(δ2)− tan(θ )
tan(θ )− tan(δ1)

, δ1 < θ < δ2, (35)

whereδ1 is the minimum angle required for flow,δ2 the
maximum angle at which steady uniform flow is possible,
d the particle diameter, andA a characteristic dimensionless
length scale over which the friction varies. Note thathstop

diverges forθ = δ1 and is zero forθ = δ2. For h > hstop,
steady flow exists in which the Froude number, the aspect
ratio between flow speed and surface gravity-wave speed
(F = ū/

√
gcosθh), is a linear function of the height,

F = β
h

hstop(θ )
− γ, for for δ1 < θ < δ2, (36)

whereβ andγ are constants independent of chute inclination
and particle size. Provided one assumes the steady stateµ =
tanθ to hold (approximately) in the dynamic case as well,
it can be combined with (35) and (36) to find an improved
empirical friction law

µ = µ⋆(h,F) = tan(δ1)+
tan(δ2)− tan(δ1)

βh/(Ad(F + γ))+1
. (37)

This is a closure forµ in terms of the flow variables, and
has been shown to have practical value. Note, that in the
limit δ1→ δ2 = δ the Coulomb model is recovered.

Secondly, in an earlier version [Pou99], another, expo-
nential fitting was proposed forhstop, as follows

h′stop(θ )
A′d

= ln
tan(θ )− tan(δ ′1)
tan(δ ′2)− tan(δ ′1)

, for δ ′1 < θ < δ ′2 (38)

with the same limiting behaviour, and primes used to denote
the difference in the fit. It yields the friction factor

µ = µ ′(h,F) = tanδ ′1+
(

tanδ ′2− tanδ ′1
)

e

{

−β ′h
A′d(F+γ′)

}

. (39)

Equation (35) did, however, prove to be a better fit to exper-
iments and is computationally cheaper to evaluate.

Finally, [Jen06] included a modified dissipation in the
kinetic theory equations and was able to produce a law very
similar to the original experimentally obtained model (36),
i.e.

F = βJ
h

hstop(θ )
tan2(θ )
tan2(δ1)

− γJ, (40)

z

g

y
x

Fig. 2: DPM simulation forNf /200= 17.5, inclinationθ =

24◦ and the diameter ratio of free and fixed particles,λ =

1, at timet = 2000; gravity directiong as indicated. The
domain is periodic inx- andy-directions. In thez-direction,
fixed particles (black) form a rough base while the surface is
unconstrained. Colours indicate speed: increasing from blue
via green to orange.

for which we can use any appropriate fit forhstop. It leads
subsequently to a more complicated evaluation of the fric-
tion law for µ . We omit further details and compare our
DPM simulations against these rules, using fits for the rough
basal surface. Additionally, we use the DPM to investigate
how to extend these laws to smoother surfaces.

5 Simulation description

In this section, DPM is used to simulate monodispersed gran-
ular flows.

Parameters have been nondimensionalised such that the
flow particle diameterd = 1, massm= 1 and the magnitude
of gravity g= 1. The normal spring and damping constants
arekn = 2·105mg/d andγ n = 50

√

g/d; thus the contact du-
ration istc = 0.005

√

d/g and the coefficient of restitution is
ε = 0.88. The tangential spring and damping constants are
kt = (2/7)kn andγ t = γ n, such that the frequency of normal
and tangential contact oscillation and the normal and tan-
gential dissipation are equal. The microscopic friction coef-
ficient was taken to beµc = 1/2.

The interaction parameters are chosen as in Silbertet al.
[SEG+01] to simulate glass particles of 0.1mm size; this
corresponds to a dimensional time scale of

√

d/g= 3.1ms



10

t

E
ki

n
/
〈E

e
la
〉

θ = 60◦

θ = 50◦

θ = 40◦

θ = 31◦

θ = 30◦

θ = 29◦

θ = 28◦

θ = 27◦

θ = 26◦

θ = 25◦

θ = 24◦

θ = 23◦

θ = 22◦

θ = 21◦

θ = 20.5◦

θ = 20◦

0 500 1000 1500
100

101

102

103

104

105

Fig. 3: The ratio of kinetic to mean elastic energy plotted
against time forNf /200= 20 flowing particles, basal rough-
nessλ = 1, and varying chute anglesθ . Flow stops for in-
clinationsθ ≤ 20.5◦, remains steady for 21◦ ≤ θ ≤ 29◦ and
accelerates forθ ≥ 30◦ (dashed lines).

and dimensional velocity scale
√

dg= 0.031ms−1. The above
parameters are identical to the simulations of Silbertet al.,
except that dissipation in tangential direction,γt , was added
to damp rotational degrees of freedom in arresting flow. Adding
of such tangential damping removes all vibrational energy
for flows otherwise arrested. Silbertet al. also investigated
the sensitivity of the results to the particle interaction param-
eterstc, ε, the ratiokn/kt , andµc; they found that while the
density of the bulk material is not sensitive to these interac-
tion parameters, the flow velocity increased with decreasing
friction µc. Nonetheless, the qualitative behaviour of the ve-
locity profiles did not change.

The chute is periodic and of size 20× 10 in thex- and
y-directions and has a layer of fixed particles as a base. The
bottom particles are monodispersed with (nondimensional)
diameterλd. Various basal roughnesses are investigated by
takingλ = 0 to 4 in turn, withλ = 0 as flat base. This bottom
particle layer is obtained by performing a simulation on a
horizontal, smooth-bottom chute. It is filled with a randomly
distributed set of particles of diameterλd and we simulate
until a static layer about 12 particles thick is produced. Then
a slice of particles with centres betweenz∈ [9.3,11]λd are
fixed and translated 11 diameters downwards to form the
base. The layer is thick enough to ensure that no flowing
particles can fall through the rough base during the full sim-
ulations. Their positions are fixed.

Initially, Nf particles are inserted into the chute. To in-
sert a particle, a random location(x,y,z) ∈ [0,20]× [0,10]×
[0,H] is chosen, whereH = Nf /200 initially. If the particle
at this position overlaps other particles, the insertion isre-

jected, and the insertion domain is enlarged by increasing
H to H +0.01 to ensure that there is enough space for all
particles. This process creates an initial packing fraction of
aboutρ/ρp = 0.3. Once the simulations starts the particles
initially compact to an approximated heightNf /200, giving
the particles in the chute enough kinetic energy to initialise
flow. Dimensionless time is integrated betweent ∈ [0,2000]
to allow the system to reach a steady state. A screen shot of
the system in steady state is given in Fig. 2.

To ensure that the size of the periodic box does not in-
fluence the result, we compared density and velocity profiles
of the flow at an angleθ = 24◦ andNf /200= 17.5 for do-
main sizesLx = 10, 20, 40,Ly = 10 andLx = 10, 20, 40,
Ly = Lx/2, and saw no significant changes.

6 Arrested, steady, and accelerating flow

From the experiments of Pouliquen [Pou99], granular flow
over a rough base is known to exist for a range of heights and
inclinations. DPMs by [SEG+01] also showed that steady
flows arose for a range of flow heights and (depth-averaged)
velocities or Froude numbers. Their simulations did, how-
ever, provide relatively few data points near the boundary of
arrested and steady flow to allow a more adequate fit of the
stopping height. The original data of Silbertet al. is indi-
cated by the red crosses in Fig. 4. In this section, we there-
fore perform numerous DPMs at heights and angles near the
demarcation line between the steady flow regime and the
regime with static piles. To study the full range of steady
flow regimes, simulations were performed for inclinationsθ
varying between 20◦ and 60◦ andNf /200= 10, 20, 30, and
40. In Section 8, we will repeat (some of) these simulations
for varying base roughness.

We define the flow as steady if the ratio of kinetic en-
ergy normalised by the mean elastic potential energy be-
comes time independent. This is shown in Fig. 3, where we
plot such an energy ratio for a rough base, constant height,
and varying chute angle. The elastic potential energy is av-
eraged overt ∈ [1000,2000] to minimise fluctuations after
start-up, but any interval larger than 100 appears sufficient.
For chute angles at most 20.5◦ the kinetic energy vanishes
after a short time, thus the flow arrests; for chute angles
between 21◦− 29◦, a constant value is reached, indicating
steady flow; and, for inclinations above 29◦ the energy keeps
increasing: thus flow steadily accelerates. If the energy ra-
tio remained constant withint ∈ [1800,2000], the flow was
deemed steady, otherwise the flow was deemed to be either
accelerating or stopping.

Unlike fluids, the free surface of granular flows, and thus
the flow height, are not well defined. In [SEG+01], the height
of the flow was estimated byNf /200, which is equivalent
to assuming a constant packing fraction ofρ/ρp = π/6.
However, the exact heighth= s−b of the flow varies from
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Fig. 4: Overview of DPM results forλ = 1, with markers de-
noting the flow state att = 2000: arrested•, steady◦, and ac-
celerating∗ flows. Grey dash-dotted lines mark thicknessh
for fixedNf /200= 10, 20, 30, and 40. The demarcation line
is fitted tohstop(θ ) in equation (35) (solid line) andh′stop(θ )
in (38) (dotted line). Error bars mark intervals establishing
the demarcation line. Red crosses denote the demarcation
between arrested and accelerating flow found in [SEG+01].

the approximated height due to compaction of the flow and
Nf /200 is typically an overestimate. In [VATK+07], the sur-
face of the flow was defined by the time-average of the max-
imum vertical position of all flow particles. One could also
define the free surface of the flow as the height where the
density vanishes. The latter two methods, however, have the
disadvantage that saltating particles can lead to slightlyover-
estimated flow heights.

Instead, we will define the height via the downward nor-
mal stress. For steady uniform flows the downward normal
stress is lithostatic,i.e., balances the gravitational weight,
such that

σzz(z) =
∫ ∞

z
ρ(z′)gcosθ dz′. (41)

This is a direct consequence of the momentum balance equa-
tions. Thus,σzz(z) has to decrease monotonically; the base
and free surface are the heights at whichσzz(z) reaches its
maximum and minimum value, respectively. However, in or-
der to avoid effects of coarse graining or single particles near
the boundary, we cut off the stressσzz(z) on either boundary
by defining threshold heights

z1 = min{z : σzz< (1−κ)max
z∈R

σzz} and (42a)

z2 = max{z : σzz> κ max
z∈R

σzz} (42b)

with κ =2%. We subsequently linearly extrapolate the stress
profile in the interval(z1,z2) to define the baseb and sur-
face heights as the height at which the linear extrapolation

reaches the maximum and minimum values ofσzz, respec-
tively,

b= z1−
κ

1−2κ
(z2− z1), s= z2+

κ
1−2κ

(z2− z1). (42c)

The variable most sensitive to these height choices isρ̄ .
However, it shows well-defined functional behaviour for our
definition of height, shown later. This is not the case if we
define height by the density or the method in [VATK+07].
The thresholdκ = 2% was chosen because the results in
Fig. 13 were relatively insensitive to the choice ofκ at or
above 2%.

To determine the demarcation linehs(θ ;λ ) between ar-
rested and steady flow with good accuracy, we performed a
set of simulations with initial conditions determined by the
following algorithm. Starting from an initial ‘filling height’
Nf /200= 40 and inclinationθ = 24◦, the angle was in-
creased in steps of 1◦ until eventually a flowing state was
reached. Then the angle was decreased by 1/2◦. When the
flow arrested, the number of particles was increased by 400,
otherwise the angle was further decreased by 1/2◦, and so
forth, till Nf /200= 60. Flow was defined to be arrested
when the energy ratioEkin/〈Eela〉 fell below 10−5 within
500 time units, otherwise the flow was classified as flow-
ing. To validate this apporach a few arrested flows were
continued aftert = 500, and a further decrease of kinetic
energy was observed. This procedure yields intervals of the
inclination angle for each height and, vice versa, height in-
tervals for each angle, between which the demarcation line
lies. The values presented in [SEG+01] deviate at most 0.5◦

from our observations, perhaps due to the preparation of the
chute bottom, or the slightly different dissipation used. A
demarcating curve between steady and arrested flow was fit-
ted to equations (35) and (38) by minimising the horizon-
tal, respectively vertical, distance of the fit to these intervals,
see Fig. 4. Fittinghstop(θ ) yields better results thanh′stop(θ )
for all roughnesses and only the fit (35) will be used here-
after. Similar fits will be made in Section 8 for varying basal
roughness.

7 Statistics for uniform steady flow

To obtain detailed information about steady flows, we use
the statistics defined in Sect. 3. Since the flows of interest are
steady and uniform inx andy, density, velocity and stress
will be averaged overx, y and t. The resulting depth pro-
files will depend strongly on the coarse-graining widthw,
which needs to be carefully selected. Representative depth
profiles for particular heights, inclinations and basal rough-
nesses will also be analysed.

Depth profiles for steady uniform flow are averaged us-
ing a coarse graining widthw over x ∈ (0,20], y ∈ (0,10]
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Fig. 5: Depth-averaged norm of the momentum rate of
change,r =

∫ s
b |∂t(ρu|dz, with ∂t(ρu) determined by (44)

for varying time averaging intervalT. Steady flow at height
Nf /200= 20 and inclinationθ = 24◦ was used. Temporal
fluctuations decrease inversely proportional to the lengthof
the time averaging interval. Dotted line is for illustration
only.

andt ∈ [2000,2000+T]. The profile of a variableχ is thus
defined as

〈χ〉Tw(z) =
1

200T

∫ 2000+T

2000

∫ 10

0

∫ 20

0
χw(t,x,y,z)dxdydt,

(43)

with χw in turn the macroscopic field(s) of density, momen-
tum and stress, as defined in (13), (16) and (32). We average
in time with time snapshots taken everytc/2 units.

To determine an appropriate time averaging intervalT,
we calculate the rate of change in momentum from the den-
sity, velocity and stress fields by

∂ (ρu)
∂ t

= ∇ ·σ−ρg−u ·∇(ρu). (44)

For steady flow, the temporal variations in mass and mo-
mentum should approach zero when averaged over a long
enough time intervalT. This is shown in Fig. 5, where we
plot the depth-averaged norm of the momentum rate of change
for varying time averaging interval. ForT ≥ 100, the tempo-
ral fluctuations decrease to less than 2% of the largest term,
ρ̄g, in the momentum equation. In the remainder, we choose
T = 100 as the averaging interval.

The effect of varying coarse-graining widthw is shown
in Fig. 6, which shows thez-profile of particle volume frac-
tion ρ/ρp, whereρp is the particle density. For smallw we
observe strong oscillations of about 0.9 particle diameters
width, particularly at the base. The microscopic oscillations
are increasingly smoothed out and finally vanish as we ap-
proachw= 0.5. For largerw, such asw≥ 1, the macroscopic
gradients at the base and surface are smoothed out, an un-
wanted effect of the coarse-graining. The same behaviour is
observed in the stress and velocity fields. Smoothing over
the microscopic structure makes it impossible to observe
microscopic layering in the density, which we still wish to

z

ρ/
ρ p

w= 0.1
w= 0.25
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Fig. 6: Particle volume fractionρ/ρp for Nf /200= 40,
θ = 24◦, andλ = 1 for varying coarse graining widthsw.
While the density is approximately constant in the bulk, mi-
croscopic layering effects are visible forw< 0.5.
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Fig. 7: Normal and shear stresses forNf /200= 30,θ = 28◦,
and roughnessλ = 1. Shearσxz and downward normal stress
σzzare balanced by gravitational forces. The normal stresses
show anisotropic behaviour.

identify in our averaged fields. Hence, we choosew= 0.25
as the coarse-graining width, such that layering effects re-
main visible along with the rather sharp macroscopic gradi-
ents.

The microscopic oscillations at the base indicate a strong
layering effect of particles near the boundary, despite the
rough bottom surface. The macroscopic density throughout
the flow is almost constant in the bulk and decreases slightly
towards the base. An approximately constant density profile
is a feature of all steady flows and is a key assumption of
depth-averaging.
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Fig. 8: Demarcation linehstop(θ ;λ ) for varying basal rough-
ness. Markers denote the midpoint of the intervals around
which the curve was fitted. Steady flow is observed at
smaller inclinations for smoother bases. While the smaller
angle δ1,λ varies only slightly, the larger angleδ2,λ de-
creases rapidly with the smoothness. Forλ = 0, the demar-
cation line is vertical atθ = 12.5◦ (not shown).

Non-neglible stress components are plotted in Fig. 7.
We have observed (not shown) that the stress components
are nearly symmetric (the asymmetric part contributes less
than 0.1% to the deviatoric stress). Shear stressesσyx and
σyz are negligible since the flow velocity iny-direction van-
ishes. For steady flow, the downward normal stressσzz(z) is
lithostatic and satisfies equation (41) with a maximum error
of 0.4%. Since the density is nearly constant, we obtain a
linear stress profile, another assumption of depth-averaged
theory. Applying the momentum balance (19) to steady uni-
form flow further yields that the shear stress satisfiesσxz=
∫ ∞

z ρ(z′)gsinθ dz′. Thus, the macro-scale frictionµ satis-
fies µ = σxz/σzz= −gx/gz = tanθ . This relation is locally
satisfied for all steady flow cases to an accuracy of|θ −
tan−1(µ)|< 0.6◦. The remaining normal stress components,
σxx andσyy, are not constrained by this mass balance. We
thus see in Fig. 7 significant anisotropy in the amplitude of
the normal stresses, in particular inσyy. The confining stress
is largest in the flow direction, except for very small inclina-
tions. It is always weakest in the lateral ory–direction with
fluctuations at the base that are in phase with the fluctua-
tions of the density. Generally, the anisotropy increases with
higher inclinations and smoother bases; this will be analysed
further in future work.

8 Transition from rough to smooth base

Next, we study the effect of smoother bases on the range of
steady flows by decreasing the diameterλd of the base par-

ticles, with the limiting case of a flat bottom wall forλ = 0.
Such an extensive numerical study of the effects of chang-
ing bottom roughness appears to be novel. To that effect, the
DPM simulations from Section 6 were extended such that
results for basal roughnessesλ = 0, 1/2, 2/3, 5/6, 1, 1.5,
2 and 4 can be compared. Forλ = 1/6 andλ = 1/3 only
simulations to calculatehstop were undertaken.

A family of demarcation curveshstop(θ ;λ ) between steady
and arrested flow is shown in Fig. 8. The curve fits are based
on

hstop(θ ;λ ) = Aλ d
tan(δ2,λ )− tan(θ )
tan(θ )− tan(δ1,λ )

, δ1,λ < θ < δ2,λ ,

(45)

in which the dependencies onλ are explicitly denoted. The
fitting parametersδ1,λ , δ2,λ , Aλ appearing in (45) are given
in Table 1. As in Sect. 6, a fit based on the original equation
(35) (or (45)) rather than Pouliquen’s early fit (38) yields the
best results.

For a flat or nearly flat bottom, such thatλ ≤ 1/6, steady
flow initiates and resides at or very tightly around one incli-
nation for all heights, see Table 1. This is in agreement with
the angle found in the laboratory experiments of [GTDD03].
For 1/3 < λ ≤ 4, we observe Pouliquen-style behaviour;
this is shown in Fig. 8. The angleδ1,λ of flow initiation is
nearly constant with respect toλ . In contrast, the range of
angles at which both steady and arrested flow is possible,
δ2,λ − δ1,λ , is maximal for 1≤ λ ≤ 1.5 and decreases for
smoother chutes withλ < 1, as shown in Table 1. This has
been reported for laboratory experiments in [GTDD03], who
also observed a slight decrease of the intervalδ2,λ −δ1,λ for
λ > λc ≈ 2. However, theirλc was measured for basal par-
ticles fixed at the same height and depended on the com-
pactness of the base. We observe a slight decrease ofδ2,λ
for λ ≥ 1.5; however, the fitting curves in Fig. 8 do mildly
overlap forλ ≥ 1.

We recall thatδ1,λ andδ2,λ are fitting parameters for the
hstop-curve (45) which does not necessarily imply, though it
is expected, that the flow accelerates for angles greater than
δ2,λ . Surprisingly, while steady flow is observed exclusively
for θ ∈ (δ1,1,δ2,1) whenλ = 1, the range of angles associ-
ated with steady flow for smoother chutes (i.e., whenλ < 1)
extends to greater inclinations withθ > δ2,λ . For these latter
cases,δacc,λ > δ2,λ is defined as the smallest angle at which
accelerating flow is observed; the DPM simulations show
that

δacc,λ = 29◦±1◦ for λ ≥ 1/2. (46)

We summarise the density profiles seen without explic-
itly showing the results. For decreasing basal roughnessλ ,
we observe that the microscopic oscillations and the dip in
density at the base increase, while the bulk density remains
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Fig. 9: Top: Overview of DPM simulations forλ = 1/2, with
markers denoting the flow state att = 2000: arrested•, lay-
ered×, oscillating⋄, steady◦, and accelerating∗ flows. De-
marcation linehstop(θ ;1/2) is fitted according to (45). Bot-
tom left panel: Profile of particle volume fraction of layered
flow at Nf /200= 20, θ = 22◦. Bottom right panel: Ratio
of kinetic over mean elastic energy for oscillating flow at
Nf /200= 30,θ = 24◦.

constant. Forλ ≥ 1.5 there is a low density in the basal re-
gion, since some of the free particles are small enough to

λ δ1,λ δ2,λ Aλ βλ γλ err

0 11.750 11.750− 1.446 3.394 0.285
1/6 14.750 14.750−
1/3 16.344 20.591 23.000
1/2 17.898 20.697 16.970 0.241 0.889 0.394
2/3 17.767 26.107 5.692 0.210 0.239 0.142
5/6 18.223 28.479 4.411 0.194−0.002 0.144
1 17.561 32.257 3.836 0.191−0.045 0.144
1.5 17.539 32.926 3.685 0.188−0.036 0.147
2 17.448 29.483 5.455 0.185−0.033 0.153
4 17.346 28.605 6.630 0.180−0.016 0.161

Table 1: Table of fitting parametersδ1,λ , δ2,λ , Aλ for the
curvehstop(θ ;λ ) andβλ , γλ for the flow rule (48), including
the variance of the flow rule, err(F−Fdata) (F is the Froude
number fit andFdata is the measured one), for all steady (λ ≥
1/2) flows (λ = 0).
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Fig. 10: Top: Overview of DPM simulations forλ = 0, with
markers denoting arrested•, layered×, steady disordered
⋆, and accelerating∗ flows att = 2000 (t = 6000 for steady
disordered flows). Bottom panel: Profile of particle volume
fraction (left) and ratio of kinetic over mean elastic energy
(right) for Nf /200= 30,θ = 24◦.

sink a little into the base, forming a mixed layer of fixed and
free particles.

Velocity profiles forNf /200= 30 andθ = 24◦ (θ = 22◦

and 26◦ for λ = 1/2) are shown for varying basal rough-
ness in Fig. 11. Forλ = 1, we observe the Bagnold pro-
file [Bag54] for thick collisional flows, differing only at the
surface. For very thin flows (Nf /200= 10) or inclinations
near the arresting flow regime, the profile differs strongly
from the Bagnold profile and becomes linear. For smoother
bases, the flow velocity increases, and the profile becomes
more concave. Weak to stronger slip velocities are observed
for λ < 2/3. Forλ = 0, thicker flows have constant velocity
throughout the depth, almost corresponding to plug flow.

For λ ≤ 2/3, the flow is steady-layered and oscillating
at low anglesθ < δ3,λ , where

δ3,λ =











25.5◦±0.5◦ if λ = 1/2,

24.5◦±0.5◦ if λ = 2/3 andNf /200= 10,

θstop(h;λ ) if λ = 2/3, Nf /200≥ 20 orλ ≥ 5/6.

(47)

At higher angles,δ3,1/2 < θ < δacc,1/2, a disordered re-
gime similar to that for a rough base is observed. This is il-
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lustrated in Fig. 9 forλ = 1/2, where one observes the two
different steady state regimes. At smaller angles,δ1,1/2 <

θ < δ3,1/2, the flowing system self-organizes into a state of
layered flow consisting of ordering in thex–y–plane for the
bulk (bottom left panel of Fig. 9), except for a small inter-
mediate region,θ ≈ δ3,1/2, where a transitional flow regime
can be found. It is characterised by large oscillations in the
ratio of bulk averaged kinetic to elastic energy due to a spon-
taneous ordering and disordering, or stop-and-go flow, of the
system as a function of time (lower right panel). The same
flow regimes have been observed in [SGPL02], where the
smoother bottoms were achieved by arranging the base par-
ticles in a grid-like fashion. In contrast, we always use a fully
disorded base and vary the roughness by changing the basal
particle sizeλd.

We also observe steady flows forλ = 0 as the contact
friction is nonzero, see Fig. 10. While most of these flows
are layered flows, a narrow regime of disordered steady flows
is observed between the steady layered flows and the accel-
erating cases. Unlike the steady disordered flows observed
for rough basesλ ≥ 1/2, these steady disordered flows ini-
tially accelerate, then retard towards a steady state. As these
flows are not steady att = 2000, they are simulated until
t = 6000 to ensure that a steady state is reached. The density
and velocity profiles (see Figs. 10 and 11) of these flows are
very similar to the supported regime that has been observed
for flows over nearly smooth bases in [TRJD07] and hence
is expected to be unstable if the chute angle,θ , is perturbed.

9 Closure relations for the depth-averaged model

The goal of this section is to close the shallow-layer equa-
tions (34) by a determination of the basal frictionµ , the
mean densitȳρ, the stress ratioK, and the velocity profileα,
using our DPMs. Additionally, we will determine the flow
regimes for which such time-independent closure relations
in terms of the flow variables cannot be obtained.

9.1 Frictionµ in the shallow-layer model

For the rough base several friction laws have been proposed,
as detailed in Section 4.2. In the following, we will compare
these friction laws for the base roughness of one particle
diameter,λ = 1, as well as for other ratiosλ .

To obtain a function for the basal frictionµ , we used the
approach of Pouliquen, who found that for a rough base the
Froude number is a linear function ofh/hstop(θ ). A first ap-
proach was to fit the Froude number to a linear function of
h/hstop(θ ;λ ) across the range of non-accelerating DPMs.
While this does work forλ ≥ 5/6, a (linear or other) fit
does not work well forλ ≤ 2/3 because for the smoother
bases steady flows occur for inclinationsθ > δ2,λ , for which

(z−b)/h

u/
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Fig. 11: Flow velocity profile of thick flow forNf /200= 30,
θ = 24◦, λ = 0 andλ ≥ 2/3 andθ = 22◦,26◦, for λ = 1/2.
For a rough base withλ ≥ 5/6, we see a Bagnold veloc-
ity profile (dashed line), except near the surface. For smooth
bases withλ ≤ 2/3, the profile becomes more convex. For
λ = 1/2, θ < 24◦, the flow velocity shows layering while
still observing the Bagnold profile. Forλ = 0, a consider-
able slip velocity is observed. Forλ ≥ 1.5, the basal shear is
small due to flow particles trapped between basal particles
so that the definition of the baseb(x) is rather fuzzy.

hstop(θ ;λ ) is not defined. This is illustrated forλ = 1/2 in
Fig. 9. Instead, the Froude number is fitted withhstop(θ ;λ =

1) such that

F =βλ
h

hstop(θ ,λ = 1)
−γλ , for δ3,λ < θ < δacc,λ . (48)

The results of such fits to the Pouliquen law are shown in
Fig. 12 (right), with corresponding fitting parameters pro-
vided in Table 1. Shown is the Froude numberF = ū/

√
gcosθh

against the ratio of flow and stopping heightsh/hstop(θ ;λ =
1), for the disordered steady flow regime, concerning an-
glesδ3,λ < θ < δacc,λ . Even for the inclinations where a lin-
ear fit againsth/hstop(θ ;λ ) is possible, the data are seen to
fit better using the stopping heighthstop(θ ;λ = 1), the one
for basal surfaceλ = 1, rather than with the actual stopping
heighthstop(θ ;λ 6= 1). This is a key observation.

It further shows that the Froude numberF increases as
the roughnessλ decreases, due to the lower resistance at the
base. The weaker Froude number dependence forλ ≥ 1.5
seen in the right panel of Fig. 12 is in line with the zero
slip observed at the base in Fig. 11. The full set of fitting
parameters and the standard error for the fit to (48) are found
in Table 1 with a standard error defined by

err({xi}Ni=1) =
(

N

∑
i=1

x2
i /(N−1)

)1/2
. (49)
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Fig. 12: Froude numberF = u/
√

ghover height forλ = 1 (left),λ = 1/2 (centre), scaled by the stopping heighthstop(θ ;λ =

1) , and for selected basal roughnesses (right). Data with symbols ‘×’ denote steady layered, ‘◦’ steady, and ‘⋄’ oscillating
flows. The data is fit usinghstop(θ ,λ = 1) (solid lines).

We remark that a fit to equation (36) is marginally better than
Jenkins’ adaption (40), but the differences are too small to
discriminate accurately.

The situation for layered and oscillating flows is more
complicated. We illustrate that for the caseλ = 1/2. Two
fits are shown in Fig. 12 (centre), one for the layered case
(dotted line concerning the crosses), and one for the steady
case (solid line concerning the circles). The oscillating flows
seem to defy a sensible fit because the flow swings irreg-
ularly between the layered and disordered states. That os-
cillating behaviour was also shown in Fig. 9 (bottom right
panel).

For steady flow, the shallow-layer equations (34) yield
µ = tan(θ ). In summary, for the steady flow regimes ob-
served in our DPM simulations, the friction coefficient of
the depth-averaged equations (34) is parameterised to be

µ(h,F ;λ ) = tan(δ1,1)+
tan(δ2,1)− tan(δ1,1)

βλ h/(A1d(F + γλ ))+1
, (50)

for δ3,λ < θ < δacc,λ , where the parametersδ1,1, δ2,1,A1

are independent of the base; and,βλ and γλ are depend-
ing explicitly on λ . All values are found in Table 1, with
δacc,λ andδ3,λ given in (46) and (47). Despite its determi-
nation for steady flows, such a closure forµ is assumed and
often observed to be a reasonable ‘leading order’ approach
for unsteady shallow-layer flows. Furthermore, for smoother
bases, closure laws for layered and oscillating flows have
eluded us. It seems that the homogenisation and steadiness
assumptions of depth-averaged shallow-layer flow break down
in these cases.

9.2 Functions̄ρ,K,α of shallow-layer model

DPM simulations of steady uniform flows are considered for
disordered steady flow withδ λ

3 < θ ≤ δ λ
acc, to determine clo-

sures forρ̄, K andα as functions of continuum fields ¯u and

h. The layered and oscillating flow regimes are thus momen-
tarily excluded.

All steady disordered flows show a constant density pro-
file in the bulk of the flow,cf Fig. 6, while the density de-
creases near the base and the surface. The lower density
region at the base spans about two particle diameters for
λ > 0, while the surface region spans always less than 4d.
Thus, a mean bulk density can roughly be defined as

ρ̄c =
1

h−6d

∫ s−4d

b+2d
ρ(z)dz. (51)

In Fig. 13, the bulk volume fraction and the mean volume
fraction are shown for roughnessλ = 1 and varying height
and inclination. The bulk volume fraction decreases with in-
clination θ , but is independent of flow height and rough-
ness, whereas the mean volume fraction depends also on
flow height and roughness. We fit the mean bulk density of
all steady disordered flows withλ > 0 to an arbitrary func-
tion

ρ̄ f it
c /ρp = c0−exp((θ − c2)/c1), (52a)

with fitting parameters

c0 = 0.610,c1 = 7.02◦,andc2 = 46.2◦. (52b)

Standard deviations of the mean bulk volume fraction and
mean volume fraction for all cases withλ > 0 are

err(ρ̄ f it
c − ρ̄c) = 0.002, and err(ρ̄ f it

c −ρ)= 0.018. (52c)

Secondly, the normal stress ratiosK = σ̄xx/σ̄zzandK′ =
σ̄yy/σ̄zz are determined. They describe the anisotropy of the
stress tensor and are expected to be unity under isotropic and
Newtonian conditions. The range ofK for steady disordered
flow is generally small, ranging from 0.98 to 1.07. The range
of K′ is also small, but significantly far from unity, ranging
from 0.80 to 0.90.
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Fig. 14: Left figure: fitting parameterbλ as a function ofhstop(θ ;1)/h for λ = 1 and varying heighth and inclinationθ . The
solid line shows the linear fit used to obtainα from equations (55). Right: Shape factorα for λ = 1 and varying heighth and
inclinationθ . Markers denote the simulation data, while dotted lines denote fits using (55) with corresponding coefficients
from Table 2. Fitted values and simulation data are connected by a solid line.
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Fig. 13: Mean volume fraction̄ρ/ρp for roughnessλ = 1,
and varying number of particlesNf and inclinationsθ . The
mean volume fraction in the bulk,̄ρ/ρp, denoted by∗, col-
lapses onto a function of the inclination (solid line), while
it shows a small dependence on the flow height, due to the
density decrease near base and surface.

The deviation ofK andK′ from unity increases with in-
clination, withK increasing andK′ decreasing with inclina-
tion. This implies that the flow is contracting in one direction
and expanding in the other. For steady disordered flows,K
andK′ fit to functions linear inθ ,

K f it = 1+(θ −d1)/d0 (53)

with d0 = 132◦ andd1 = 21.30◦ and

K′ f it = 1+(θ −d′1)/d′0 (54)

with d′0 = −118◦ andd′1 = 6.27◦. The model results give a
small standard error of err(K−K f it ) = 0.014 and err(K′−
K′ f it ) = 0.014. Given that the dependence on inclination is
small, we can takeK ≈ 1, while K′ does not appear in the
2D shallow-layer granular equations.
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Fig. 15: Depth profile of normalised strain,(h/ū)∂zu cor-
responding to velocity profiles shown in Fig. 11. For rough
bases, the strain is modelled by a Bagnold profile, except
near the base and surface. For smoother bases,λ ≤ 2/3, the
layered flow near the base increases in thickness. Forλ = 0,
a large slip velocity and a shear band in the basal layer is ob-
served.

Finally, we develop a fit for the shape factorα(λ ) =
ū2/u2.
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The fit is based on a phenomenological model of the ob-
served velocity profiles, as shown in Fig. 11. For rough bases
λ ≥ 5/6, a Bagnold velocity profile,

uB(z) =
5
3

ū
(

1−
(

(h− z)/h
)3/2

)

, (55a)

is observed in the bulk of the flow; a linear profile in the
surface layer, which is about 5d thick; and, a convex profile
with no slip in the base layer, whose thicknessbλ increases
as the height approaches the stopping height. No kinks occur
at the intersection of the layers. Thus, we model the velocity
by

∂u
∂z

(z;bλ ) =











∂uB
∂z (z= bλ )(1− 2

3
bλ−z
bλ−b), z< bλ ,

∂uB
∂z (z), bλ ≤ z< max(s−5,bλ),

∂uB
∂z (z= max(s−5,bλ )), otherwise,

u(0;bλ ) = 0 for λ ≥ 5/6. (55b)

The strain∂zu in Fig. 15 is fitted well with (55). The param-
eterbλ decreases with increasing distance from the stopping
height, and a simple fit reads

bλ = dλ hstop(θ ,1)/h, (55c)

wherehstop(θ ,1) was chosen sincehstop(θ ,λ ) does not pro-
vide values for all inclinations for which steady flow is ob-
served. Subsequently, the fit to the shape factorα(λ )= ū2/u2

can be computed numerically and compared to the measured
values in Fig. 14. The coefficientsbλ are given in Table 2.

Forλ ≤ 2/3, the dependence of the shape factor on height
and inclination diminishes and can be approximated with a
constant valueα(λ ). The Bagnold profile disappears and
the flow becomes more convex and plug-like, as shown in
Fig. 11. Each velocity profile will be analysed separately
next.

For λ = 0, the slip is so large that we can assume plug
flow to hold. There is almost no slip forλ = 2/3 and a slip
of approximatelyu(0)/maxzu(z) = 1/6 for λ = 1/2. We
neglect the variations at the surface and the bulk and assume
a linear shear rate vanishing at the surface forλ = 1/2, λ =
2/3. Thus, we fit the velocity profiles as

u(z)
ū

=











z/h(2− z/h), λ = 2/3,

0.16+0.84(z/h(2− z/h)), λ = 1/2,

1, λ = 0,

(56)

The corresponding coefficientsα(λ ) are found in Table 2
and provide a good fit to the data.

The Bagnold velocity profile in the bulk region can be
deduced, without assuming collisional flow, from a local
rheology model [GDR04] where it is assumed that the fric-
tion µ is a function of the inertial number,

I(z) = (∂zux)/

(

√

σzz/ρp/d

)

. (57)

λ α(λ ) err

0 1.00 0.0027
1/2 1.14 0.022
2/3 1.20 0.014

λ bλ err

5/6 5.37 0.0371
1 9.42 0.0395
3/2 9.69 0.0239
2 12.0 0.0473
4 14.5 0.0543

Table 2: Fitting for the shape factorα = α(λ ) for λ ≤ 2/3
andα = ū2/u2, u= u(z;bλ ) for λ ≥ 5/6, and the standard
error. Closure relations are fitted to all data sets of steady
unordered flow,δ λ

3 < θ ≤ δ λ
acc.
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Fig. 16: Inertial numberI(z) for Nf /200= 30 at inclination
θ = 25◦ for varying roughnessλ . The basal region shows
large variations inI which increase for smoother bases.

Since the friction is determined by the inclination,µ = tan(θ ),
we thus expect a constant value ofI in the bulk. Depth pro-
files of I are plotted in Fig. 16 for varying roughnessesλ .
The inertial number remains constant in the bulk, but shows
large variations in the basal and surface layers. At the sur-
face, the pressure vanishes while the strain rate remains fi-
nite (see Fig. 11), causing the inertial number to approach in-
finity. At the base we observe different behaviour for rough
and for smooth basal surfaces. For high geometric rough-
ness,λ > 2/3, the inertial number increases towards the
base, reflecting the decrease in strain rate previously shown
in Fig. 15. For smoother basesλ ≤ 2/3, the basal region is
thicker and the inertial number increases towards the base.
Forλ = 0, the inertial number reaches such high values that
the flow needs to be classed as collisional, which is con-
firmed by the density profile for the the steady disordered
cases, as shown in Fig. 10.

Assuming that theµ(I)-rheology holds, the velocity should
fit a Bagnold profile and therefore we expect a constant shape
factorα = 5/4. As both density and friction depend only on
the inertial number, a further prediction is that the density is
a function of the friction,ρ̄ = ρ̄(µ = tanθ ), in agreement
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with the density fit in equation (52). In [GDR04], is was fur-
ther assumed thatK = 1. The friction can also be expressed
in terms of the inertial number: due to the Bagnold velocity
profile, the inertial number of the flow can be modeled in
terms of the flow variables as

Ī =
5
2

ūd

h
√

ghcosθ
=

5
2

Fd
h
, (58)

where we use the notation̄I to distinguish from the definition
of the local inertial number (57). From (58) it immediately
follows that the Froude number is proportional to the height,
without an offset as assumed in (48). We note that theµ(Ī)-
rheology does not predict a height dependent stopping angle,
θstop(h), as is observed in the simulations: sinceµ = µ(Ī),
there is also and inverse function̄I = Ī(µ = tanθ ), therefore
Ī is independent of the height of the flow. Instead there is
a single minimal angle,θ1,λ , for which steady flows exist.
In order to obtain a fit, we assume that steady flow is not
possible above an angleθmax,λ and fitµ(Ī) as

µ(Ī) = tan(δ1,λ )+
tan(δmax,λ )− tan(δ1,λ )

(aλ Ī)−1+1
(59)

with fitting parametersδmax,λ andaλ given in Table 3. This
fit is similar to the fit obtained in (50), except thatµ(Ī) is
now fitted directly. Forλ ≥ 5/6, µ shows a well-defined de-
pendence of̄I ; however, this functional dependance vanishes
for smoother basesλ ≤ 2/3, as the flow velocity become
less Bagnold-like, see Figure 11, and the offset from a linear
relationship betweenF andh increases, see Figure 12.

These deviations from theµ(I)-rheology for a rough base
have also been observed in [GDR04]; consequently, a non-
local rheology has been proposed by Pouliquen and Forterre
in [PF09], where rearrangements at one position are trig-
gered by stress fluctuations elsewhere in the flow. This non-
local rheology predicts for rough bases that the bulk flow is

λ aλ θ1,λ θmax,λ err1 err2
0 0.0008 11.8 89.8 0.013 0.0025
1/2 2.11 17.9 36.8 0.0054 0.0026
2/3 3.45 17.8 35.9 0.0016 0.0031
5/6 5.25 18.2 34.4 0.0022 0.0026
1 7.2 17.6 33.3 0.0034 0.0025
1.5 7.17 17.5 33.4 0.0034 0.0025
2 7.25 17.4 33.5 0.0033 0.0025
4 6.22 18 34.3 0.0031 0.0027

Table 3: Table of fitting parametersaλ andθmax,λ , as well
as the previously measured angle of repose,θ1,λ . Forλ = 0,
the fitting returns an almost linear fit to the data.
The last two columns show the variance of the friction
fitted by equation (59), err1 = (N − 1)−1∑i=1N(µ(Ī) −
tan(θ ))2, and fitted by equation (50), err2 = (N −
1)−1∑i=1N(µ(h,F)− tan(θ ))2.

Bagnold, while the strain rate remains finite at the surface,
and decreases towards the base. This is in qualitative agree-
ment with what we observe in our DPM simulations, see
Figs. 11 and 15. However, this non-local rheology could not
predict other observed details, such as the inverse propor-
tionality of the Froude number on the stopping height, see
(48).

In summary, the functions̄ρ, α andK depend on the in-
clination θ and the heighth. The inclinationθ in turn can
be written as a function of the friction coefficientµ such
that θ = tan−1(µ(h, ū)). This allows us to describe the pa-
rameters of the shallow-layer model in terms of the heighth,
roughnessλ , and frictionµ(h, ū) and thus provides a closure
proper for the system. The different behavior for the varying
λ ’s remains an open issue, since we only provided empirical
fits above.

10 Conclusion

10.1 Summary

In this article, an extensive series of DPM simulations were
used to determine closure relations for the often used shallow-
layer model of granular flows on inclined chutes. Assuming
uniformity in the lateraly–direction, the model is a depth-
averaged continuum model with the macro-scale variables
thicknessh= h(x, t) and mean velocity ¯u= ū(x, t). The flow
consisted of monodispersed particles of diameterd and the
base of monodispersed particles of diameterλd. Particle
flows with variations in heighth and inclinationθ were nu-
merically investigated for varying basal roughnessλ , reveal-
ing a range of parameters for which steady and uniform flow
was observed.

We observed the following phenomenology: at small in-
clinations the flow quickly arrests, while at large inclinations
the flow continues to accelerate. Between these two regimes
there was a range of inclinations in which steady flows oc-
curred (cf.Fig. 4). The curvehstop(θ ;λ ), a function of height
versus inclination, forms the demarcation between arrested
and steady flow, as a function of basal roughness (Figs. 4 and
8). For smaller basal roughness, steady states arise at smaller
inclinations and heights, and the range of angles shrinks for
which steady flow is possible. Other types of steady flow
were observed at small inclinations for small base particles,
showing a strong layering in depth, or oscillatory flows (cf.
Fig. 9). For a flat frictional base, the steady disordered flows
show a strong shear at the base.

Depth profiles for density, velocity and stress were con-
structed using coarse-grained macroscopic fields. The coarse-
graining width was carefully chosen to preserve some mi-
croscopic structure as well as macroscopic gradients (cf.Fig. 6).
The assumptions of depth-averaged theory were confirmed
in the simulations for a certain range of steady, uniform
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flows: the density was almost constant with depth, and the
downward normal stress as well as shear stress were litho-
static. We have only derived closure relations from statisti-
cally steady DPM simulations; however, it is often assumed
that such closure laws, obtained from either DPM simula-
tions or experiments, can be used to close the time-dependent
granular shallow-layer equations.

Consequently, four closure relations could be determined:
basal frictionµ , stress ratioK, mean densityρ̄ , and the
shape of the velocity profileα.

Firstly, basal frictionµ = tanθ was shown to be a func-
tion of height and flow velocity, see Eq. (50). Pouliquen’s
approach was found to be valid forλ = 1, with the Froude
number as a linear function ofh/hstop(θ ;λ = 1). This fitting
approach was extended to smoother bases withλ 6= 1, where
the Froude number was fitted toh/hstop(θ ;λ = 1) instead of
using the respectiveh/hstop(θ ;λ ) for the actualλ or basal
roughness. The stopping curve associated with the diameter
λd = 1 of the flowing particles seems more relevant than
the stopping height with the actualλ . One possible explana-
tion is that there is a boundary layer of intermittently slow
flow particles that originated in the bulk, and that shields the
smoother base from the bulk flow.

Secondly, closure relations for the mean densityρ̄ , stress
anisotropyK and shape factorα were established as follows.
The mean density was fitted as a decreasing function of in-
clination, see Eq. (52); the stress anisotropy was found to
be increasing with inclination, but the variations were small
enough to assumeK ≈ 1; the shape factor was obtained by
fitting the velocity profiles at the base with a convex func-
tion, a Bagnold profile in the bulk, and linear profile at the
base, with the base height proportional tohstop(θ ;λ = 1).

The determined closures are valid for the range of in-
clinationsδ3,λ < θ < δacc,λ , where steady disordered flows
are observed. For rough bases withλ ≥ 5/6, all steady flows
where disordered, and thereforeδ3,λ = θstop(h;λ ), with θstop(h;λ )
the inverse of thehstop(θ ;λ )–curve between arrested and
dynamic flow. For smaller roughness withλ ≤ 2/3, layered
and oscillating flows arose for inclinationsθstop(h;λ )< θ <

δ3,λ , for which we are (as yet) unable to capture closure re-
lations.

10.2 Open questions

What does the granular shallow-layer model enable us to
do, and what can we not do with it? In the range of steady
flows, this continuum model can be used to predict steady
and time-dependent flows. Strictly speaking, this is only al-
lowed for steady flow in the established inclination range
δ3,λ < θ < δacc,λ , but it can be expected to remain valid
for the slowly-varying dynamic cases as well. It is often the
case, however, that even rapidly-changing flows can be cap-

tured by models that are strictly only valid for the slowly-
varying cases. Consequently, a systematic study of the va-
lidity of the granular shallow-layer model is required. By
respectively extending the “hydraulic” analysis for fluidised
granular matter and water in Vremanet al. [VATK +07] and
Akers and Bokhove [AB08], granular flows within constric-
tions become an analytically-treatable target. Such flows in
constrictions reach a steady state and appear (partially) ac-
cessible by direct DPM simulations.

What do these results enable us to do? Whether the steady
DPM-based closures are valid across granular “hydraulic”
jumps in such steady and constricted flows is of interest.
Whether the steady DPM-based closures hold for (slow) tran-
sient routes towards such steady states is of interest, too.
What closures should be used outside the formal range of
applicability for the smoother bases, so for the layered and
oscillating flows forθstop(h;λ ) < θ < δ3,λ and the acceler-
ating flows forθ > δacc,λ , appears a tantalising, and as yet,
open question.

What are we not able do? Although, we did observe
layered and oscillating flows in our DPM simulations, it is
doubtful whether the homogenisation assumption that led to
the shallow-layer model is sufficient. Nonetheless, the litho-
static balance relation is shown to hold for the DPM simu-
lations, as expected from standard asymptotic analysis us-
ing the aspect ratio of normal to planar velocity and length
scales.

10.3 Outlook

Alternatively, a multi-scale modelling approach might be
adopted such as the heterogeneuous, multiscale methodol-
ogy [WEL+07], among others, in which closure relations
for discretisations (e.g., [PBS+07]) depth-averaged shallow-
layer models are coupled to DPM simulations in selected re-
gions in space and time. Thus computational costs would be
diminished while accurate closure relations are gathered ‘on
the fly’ in time and space.

For future work, we advocate the extension of our DPM
simulations by investigating the three-dimensional closure
relations. We surmise that reduced lithostatic models for shal-
low granular flows could be more consistently derived from
three-dimensional continuum models with stress closures de-
termined from DPM simulations in combination with labo-
ratory measurements. These new models would be reduced
and therefore computationally still manageable for large-
scale debris flows; for example, when the degrees of free-
dom in the vertical remain limited, but are extended beyond
only one degree of freedom. Such reduced modelling is akin
to hydrostatic modelling in water-wave and coastal hydro-
dynamics.
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A System of Hamiltonian equations in the
dissipation-free limit

The purpose of this appendix is to show that the particle system in
the dissipation- and yield-free limit,i.e., γ n = γ t = 0 and µc → ∞,
is a Hamiltonian system. It subsequently facilitates the derivation of
so-called conservative or symplectic discretization schemes, in time.
These have been shown and are believed to provide better long-term
statistics than classical time discretization schemes. Furthermore, anal-
ysis of the Hamiltonian limit allows one to clearly demarcate the trans-
fer of energy between its kinetic, elastic, and internal components.

We show that the normal and tangential forces are elastic, that is
the system does not dissipate energy; instead kinetic energy is con-
verted into potential energy in the springs and vice versa. If the tan-
gential spring is not fully unloaded when two particles loose contact,
the potential energy stored in the tangential spring is converted into
internal potential energy in each particle (vibrations).

We use the notation given in §2. In the dissipation- and yield-free
limit, the contact force between particlesi, j is given by

fi j = knδ n
i j n̂i j −ktδδδ t

i j , (60)

whereδ n
i j andδδδ t

i j are given by equations (1) and (9). The equations of
motion for translational and angular momentum of particlei are given
by,

d
dt

r i =pi/mi ,
d
dt

αi = φi (61a)

(61b)

d
dt

pi =mig+∑
j 6=i

fi j ,
d
dt

φi = ∑
j 6=i

bi j × fi j , (61c)

in three dimensiones, whereri is the position,αi is the angle,pi the
momentum andφi the angular momentum of particlei.

To define the Hamiltonian system, we pair these generalized posi-
tion and momentum vectors as follows

Q(t) = {r i(t),αi(t)}Ni=1, P(t) = {pi(t),φi(t)}Ni=1. (62)

Then the kinetic energy can be calculated using only the general-
ized momentaP as follows

T(P) =
N

∑
i=1

( |pi |2
2mi

+
|φi |2
2Ii

)

. (63)

The potential energy is a combination of the potential of gravity, the
potential of the normal and tangential springs and the internal poten-
tial energy in the particles, created from the remaining potential of the
tangential spring at the timete

i j that a particle pair{i, j} looses contact,

{te
i j}= {t :

di +d j

2
−|r i j (t)| = 0,

d
dt
|r i j (t)| > 0} (64)

with r i j = r j (t)− r i(t). The potential can be expressed in terms of the
position and the tangential springs at all times, which itself is a function
of the previous positions of the particle pair,

V(Q) = Vgrav(Q)+Vela(Q)+Vint(Q). (65a)

where the gravitational, elastic and internally stored potential energy is
defined by

Vgrav(Q) =
N

∑
i=1

−mi r i ·g (65b)

Vela(Q) =
N

∑
i=1

N

∑
j=i+1

(

kn

2
|δi jδi jδi j

n|2+ kt

2
|δδδ t

i j |2
)

. (65c)

Vint (Q) =
N

∑
i=1

N

∑
j=i+1

∑
te
i j<t

(

kt

2
|δδδ t

i j (t
e
i j
−)|2

)

. (65d)



23

We will now show that the total energyH = T +V satisfies the Hamil-
tonian equations,

∂H
∂ r i

=−dpi

dt
,

∂H
∂αi

=−dφi

dt
, (66a)

∂H
∂pi

=
dr i

dt
, and

∂H
∂φi

=
dαi

dt
. (66b)

To derive (66a), we calculate

∂H
∂ r i

=
∂

∂ r i

(

−mir i ·g+∑
j 6=i

(

kn

2
|δδδ n

i j |2+
kt

2
|δδδ t

i j |2
)

)

(67)

term by term. We can show that

∂
∂ r i

kn

2
δ n

i j
2 = kn max(0, (di +d j )/2− r i j )

∂ max(0, (di +d j)/2− r i j )

∂ r i

= kn max(0, (di +d j )/2− r i j )
∂ ((di +d j )/2− r i j )

∂ r i

= −kn max(0, (di +d j )/2− r i j )
r i j

r i j

= −knδ n
i j ni j , (68)

where we used the fact that max(0, (di +d j )/2− r i j ) is continuous in
time.

Further, we take the derivative∂riaδδδ t
i j (a denotes the vector coor-

dinate) by the chain rule and use (9) to show that

∂δδδ t
i j

∂ r ia(t)
=

∂ t
∂ r ia(t)

·
∂δδδ t

i j

∂ t

∣

∣

∣

∣

∣

v j=ωi=ω j=0, vib=0,b6=a

=
1

via
·
(

viaǫa+(−viaǫa ·ni j )ni j +(δδδ t
i j · (−viaǫa))

r i j

r2
i j

)

= ǫa−ni jani j −δ t
i ja

r i j

r2
i j

, (69)

whereǫa denotes thea-th basis vector of the coordinate system. Here,
(69) becomes

∂
∂ r ia

kt

2
δδδ t

i j
2
= ktδδδ t

i j ·
∂δδδ t

i j

∂ r ia

= ktδδδ t
i j ·
(

ǫa−ni jani j −δ t
i ja

r i j

r2
i j

)

= ktδδδ t
i j · ǫa = kt δ t

i ja, (70)

where the cancellation of terms arises because the tangential spring is
orthogonal to the normal vector. After substituting (70) and (68) into
(67) we obtain

∂H
∂ r i

=
∂

∂ r i
(−mir i ·g+∑

j 6=i

kn

2
|δ n

i jδ n
i jδ n
i j |2+

kt

2
|δδδ t

i j |2).

= −mi ·g−∑
j 6=i

knδ n
i j ni j −ktδδδ t

i j = − dpi

dt
. (71)

Next, we calculate

∂H
∂ αia

=
∂

∂ αia
∑
j 6=i

kt/2|δδδ t
i j |2 = ∑

j 6=i

ktδδδ t
i j ·

∂
∂αia

δδδ t
i j . (72)

We take the derivative∂αia(t)δδδ
t
i j using the chain rule and equations (9)

and (8)

∂δδδ t
i j

∂ αia(t)
=

∂ t
∂ αia(t)

∂δδδ t
i j

∂ t

∣

∣

∣

∣

∣

vi=v j=ω j=0, ωib=0,b6=a

=
∂ t

∂ αia(t)
∂ (−ωiǫa×bi j )

∂ t

∣

∣

∣

∣

vi=v j=ω j=0, ωib=0,b6=a

= −ǫa×bi j . (73)

Substituting (73) into (72) we obtain

∂H
∂ αia

= −∑
j 6=i

ktδδδ t
i j · (ǫa×bi j ) = ∑

j 6=i

(ktδδδ t
i j ×bi j )a, (74)

where we used the identity

c· (ǫa×d) =−(c×d)a ∀c,d ∈ R
3. (75)

Thus, using (72) and thatbi j andni j are parallel, we obtain

∂H
∂αi

= −∑
j 6=i

(bi j ×ktδδδ t
i j ) = ∑

j 6=i

(bi j × fi j ) = − dφi

dt
. (76)

Subsequently, we derive (66b) since

∂H
∂pi

=
∂

∂pi

|pi |2
2mi

=
pi

mi
=

dr i

dt
, (77)

and

∂H
∂φi

=
∂

∂φi

φi
2

2Ii
=

φi

Ii
=

dαi

dt
. (78)

Finally, we show that the total energy is conserved. Since mass
mi , radiusr i and spring constantskn, kt are constant,H has no direct
dependence ont and thus

∂H
∂ t

= 0. (79)

Using and (66) and (79) yields

d
dt

H(t, r ,P) =
∂H
∂ t

+
N

∑
i=1

∂H
∂ r i
· dr i

dt
+

∂H
∂αi
· dαi

dt
+

∂H
∂pi
· dpi

dt
+

∂H
∂φi
· dφi

dt

=
∂H
∂ t
− dpi

dt
· dr i

dt
− dφi

dt
· dαi

dt
+

dr i

dt
· dpi

dt
+

dαi

dt
· dφi

dt
= 0, (80)

Fig. 17 shows the energy balance of two particles colliding non-
collinear in the dissipation- and yield-free case. One can see the jump
in energy at the end of contact, where potential tangential spring energy
is converted into internal energy.
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Fig. 17: Energy balance of two particles colliding non-
collinear in the dissipation- and yield-free case. The kinetic
and elastic potential energy are in balance, until the parti-
cles loose contact and potential spring energy is converted
into internal energy.
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B Orthogonality of the tangential spring

To show that the tangential spring is orthogonal tor i j , note that the
tangential spring is initially of zero length and thereforeorthogonal to
r i j ; further

d(δt
i j · r i j )

dt
=

dδt
i j

dt
· r i j +δt

i j ·vi j

=

(

vt
i j −

(δt
i j ·vi j )r i j

r2
i j

)

· r i j +δt
i j ·vi j

= vt
i j · r i j = 0 (81)

Thus, we can integrate equation (81) to obtain a continuously orthogo-
nal tangential spring withδt

i j · r i j = 0.

C Algorithms for time integration and the calculation of
the tangential force

The algorithm for the time integration and the calculation of the tan-
gential force is shown in Algorithms 1 and 2.

Algorithm 1: Time integration
Data: Initial positions and translational and angular velocities

r0
i ,v

0
i ,ω

0
i , massesmi , inertiasIi , time step∆t

r i ←− r0
i , vi ←− v0

i , ωi ←− ω0
i ∀i

(fi ,qi)←− forces-and-torques({r j ,v j ,ω j}Nj=1) ∀i
for i = 1,2, . . . ,N do

vi ←− vi +
∆ t
2

fi
mi
∀i

ωi ←− ωi +
∆ t
2

qi
Ii
∀i

r i ←− r i +∆tvi ∀i
foreach particle pair (i, j) in contactdo

if contact is newthen δt
i j ←− 0

at
i j ←− vt

i j −
(δt

i j ·vi j )r i j

r2
i j

δt
i j ←− δt

i j +∆tat
i j

(fi ,qi)←− forces-and-torques({r j ,v j ,ω j}Nj=1) ∀i
vi ←− vi +

∆ t
2

fi
mi
∀i

ωi ←− ωi +
∆ t
2

qi
Ii
∀i

Algorithm 2: Calculation of the tangential force, in-
cluding sliding

fti j ←−−ktδt
i j − γ tvt

i j

if (|fti j |> µc|fni j |) then

fti j ←− µc
|fni j |
|fti j |

fti j

δ t
i j ←−− 1

kt (fti j + γ tvt
i j )


