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ABSTRACT  

In this paper, a finite element (FE) based model for the viscous and incompressible fluid flow 
through a regular porous media composed of rigid (immobile) particles/fibers is considered, and 
an analytical-numerical approach is employed to calculate the associated transverse 
permeability. The effects of an isotropy, i.e., the particle shape or orientation, as well as porosity, 
i.e., the volume fraction, on the overall permeability are discussed in detail. The results from this 
study can be used for verification and validation of advanced models for particle-fluid interaction 
and for the coupling of the discrete element method (DEM) with FEM or CFD. 
 

1. INTRODUCTION 

The problem of creeping flow between solid bodies arranged in a regular array is fundamental in 
the prediction of seepage through porous media and has many applications, including: composite 
materials, rheology, geophysics, colloid science, etc. A compelling motivation for such studies 
concerns the understanding, and eventually the prediction, of the single and multiphase transport 
properties of the porous structure. Prediction of the permeability of fibrous media dates back to 
experimental work of Sullivan [1] and theoretical works of Hasimoto [2] and Happel [3]. More 
recently, Sobera and Kleijn [4] studied the permeability of random 1D and 2D fibrous media both 
analytically and numerically. Their analytical model was based on scale analysis and the 
proposed relationship was a function of fiber distance and a non-dimensional randomness 
number. Tomadakis and Sotirchos [5] proposed a model that enables the prediction of anisotropic 
permeability through 1-D, 2-D, and 3-D random fibrous beds. The Darcy law for permeability of a 
dense network of fibers with general orientation was examined experimentally and analytically by 
Håkanson et al. [6]. Bechtold et al. [7] examined the influence of the fibre distribution 
characteristics on the transverse permeability using 2-D finite element simulations. Ogata [8] 
approximated the solutions of steady three-dimensional Stokes flow past obstacles in a planar 
periodic array by linear combinations of the periodic fundamental solutions presented by Ishii [9]. 
Tamayol et al. [10] determined analytically the permeability of touching and non-touching ordered 
fibrous media towards normal and parallel flow.  
In this study, periodic arrays of parallel cylinders perpendicular to the flow direction are 
considered and the effects of shape and orientation of cylinders as well as their porosity on the 
macroscopic permeability of the porous media are discussed in detail. For verification of our 
model, the results are compared with previous theoretical and numerical data for square and 
hexagonal packing configurations. 
 

2. MODEL DEVELOPMENT AND NUMERICAL RESULTS 

Both hexagonal and square arrays of parallel cylinders perpendicular to the flow direction are 
considered in this section. The basis of such model systems lies on the assumption that the 
porous media can be divided into representative elements or unit cells. The permeability is then 
determined by modeling the flow through these, more or less, idealized cells. At the left and right 
pressure- and at the top and bottom periodic-boundary conditions are applied. No-slip boundary 
conditions, i.e., zero velocity are applied on the surface of the particles/fibers.  



Under laminar, steady state condition, flow through porous media is governed by Darcy’s law, 
which for one dimensional flow, is expressed as:  

 
dx

dpK
u

µ
−=                                                                                                                               (1) 

where <u>, K, µ and p are volume averaged (superficial) flow velocity, permeability in the x 
direction, viscosity and pressure, respectively. The horizontal velocity field for both hexagonal and 
square packing configurations is shown in Figure 1.  
 

                                   

                                                   (a)                                                   (b) 

Fig. 1: The horizontal velocity field for (a) square and (b) hexagonal packing at ε = 0.71 (pressure 
boundary at right and left and periodic boundary at top and bottom) 

 
By calculating the average velocity from our FE simulation, knowing the pressure drop ∆p over 
the length of the unit cell ∆Lx, and using Eq. (1), the normalized permeability K/r2 is obtained. The 
variations of normalized permeability (with respect to the radius cylinder) versus porosity, for 
square and hexagonal packing, are shown in Figure 2. The lubrication theory presented by 
Gebart [11] and Bruschke [12] agrees well with our numerical results at low porosities whereas, 
for high porosities, the results of Drummond [13] fits best our data.  
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Fig. 2: Variation of normalized permeability versus porosity for (a) square and (b) hexagonal 
packing for circular shape particles/cylinders with radius r 

 
In order to be able to compare different shapes and orientations, the permeability can also be 
normalized with respect to the pore length, which is defined as: 
 
Lp = 4 area / circumference  

Lp = 2r = d (for circle), Lp = c (for square), Lp = 4πab / AL (for ellipse)                                           (2) 

 
where r, c, a and b are the radius of the circle, length of the square, major and minor radius of 
ellipse respectively. By applying the same procedure, the normalized permeability is calculated 
for different shapes on a square configuration. The comparison of normalized permeability for 
different shapes is shown in Figure 3. At high porosities the shape of particles does not affect the 
permeability too much, but at low porosities the effect is much more pronounced. Circles have the 
lowest and ellipses the highest normalized permeability. 
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Fig. 3: Effect of shape on the normalized permeability from a square packing configuration of 
circles, squares and ellipses (a/b=2, major axis in flow direction) 

 

By changing the orientation (θ), the angle between the major axis of the obstacle and the 
horizontal axis, the permeability tensor becomes anisotropic.  The effect of orientation on the 
normalized permeability for squares and ellipses (a/b=2) is shown in Figure 4. For ellipses, at 
high porosity, the orientation does not affect the permeability; however, at low porosities the effect 
is strong: by increasing the rotation angle the permeability is reduced. For squares, again, at high 
porosities the orientation does not much affect the permeability, but at low porosities it affects the 
permeability a lot. At θ = 45O we observe a drop in permeability, because we are close to the 
blocking situation, i.e. zero permeability, at ε ≈ 0.5.  
 

0.2 0.4 0.6 0.8 1
10

-6

10
-4

10
-2

10
0

10
2

ε

K
/L

p2

 

 

θ = 0o

θ = 10o

θ = 20o

θ = 30o

θ = 45o

(a)

0.65 0.7 0.75 0.8 0.85 0.9 0.95
10

-3

10
-2

10
-1

10
0

10
1

ε

 K
/L

p2

 

 

θ = 0o

θ = 30o

θ = 45o

θ = 60o

θ = 90o

(b)

 

Fig.4: Effect of orientation (θ) on the normalized permeability for (a) square and (b) ellipse (a/b=2) 
from a square packing configuration 

 

 

3. CONCLUSIONS 

Permeability is an important property that characterizes porous media; however, its determination 
is challenging due to its complex dependence on the microstructure of the media. In this study, 
transverse flow in aligned fibrous porous media has been investigated by detailed FE simulations. 
The effects of porosity, shape and orientation of the particles have been studied. Our numerical 
results show that the circles and ellipses have the lowest and highest normalized permeability, 
respectively, when the major axis of ellipses are aligned with flow direction, i.e. horizontal 
ellipses. For a vertical ellipse, it has lower normalized permeability than the circle. By changing 
the orientation of the particles, the permeability tensor becomes anisotropic and it decreases 
when increasing the density or the orientation angle until the channel is blocked. Our results are 
in good agreement with previous numerical and theoretical data. 
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