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Abstract

An analytical-numerical approach is presented fampguting the macroscopic
permeability of fibrous porous media taking int@aant their micro-structure. A finite
element (FE) based model for viscous, incompresdiblw through a regular array of
cylinders/fibers is employed for predicting the rpeability associated with this type of
media. High resolution data, obtained from our samons, are utilized for validating the
commonly used semi-analytical models of drag refstifrom which the permeability is
often derived. The effect of porosity, i.e., volunfieaction, on the macroscopic
permeability is studied. Also micro-structure paesens like particle shape, orientation
and unit cell staggered angle are varied. The tesuk compared with the Carman-
Kozeny (CK) equation and the Kozeny factor (ofteawamed to be constant) dependence
on the micro-structural parameters is reportedused as an attempt to predict a closed
form relation for the permeability in a variety structures, shapes and wide range of
porosities.

Keywords. Permeability; Fibrous porous media; FEM; Dragtiefes; Carman-Kozeny
equation; Incompressible fluids.



1. Introduction

The problem of creeping flow between solid bodiesareged in a regular array is
fundamental in the prediction of seepage throughmoym media and has many
applications, including: composite materials (Darli1992, Laakkonen 2003), rheology
(Muller et al. 1999, Moss et al. 2010), geophygiBsrryman et al. 2000), polymer flow
through rocks (Sorbie et al. 1987), statistical gty (Hilfer 2000, Chen et al. 2008),
colloid science (Shani et al. 2008), soil scienRetll 2008, Crawford et al. 1995) and
biotechnology (Wanner et al. 1995). A compellingtivettion for such studies concerns
the understanding, and eventually the predictidnsingle and multiphase transport
properties of the pore structure.

A specific category of porous media is formed by RiDg cylinders or fiber-like
particles. Restricted flow through fibrous porousatemnials has applications in several
engineering/industrial areas including: filtratiamd separation of particles, composite
fabrication, heat exchangers, thermal insulatioets. Prediction of the hydraulic
permeability of such materials has been vastlyistlith the past decades. It is known
that, for fiber reinforced composites, the microsture of the reinforcement strongly
influences the permeability. This study presentsirderesting step towards a unified
understanding of the effect of microstructure (payticle/fiber shape and orientation) on
the macroscopic permeability by combining numerisaghulations with analytical
prediction in a wide range of porosity.

Usually, when treating the medium as a continuuatisfctory predictions can be
obtained by Darcy's law, which lumps all complexemctions between the fluid and
fibers/particles intd, the permeability (tensor). Accurate permeabilifga, therefore, is
a critical requirement for macroscopic simulatiopgsed on Darcy’s law — to be
successfully used for design and optimization duistrial processes.

The Ergun equation is a semi-empirical drag retafimm which the permeability of
porous media can be deduced. It is obtained bylitieet superposition of two asymptotic
solutions, one for very low Reynolds number, then@a-Kozeny (CK) equation (Bird et
al. 2001), and the other for very high Reynolds bers, the Forchheimer correction

(Bird et al. 2001). However, these approximationsnat take into account the micro-



structural effects, namely the shapes and ori@mstof the particles, such that not only
local field properties but also some global prapsri(such as anisotropy) cannot be
addressed.

In this respect, two distinct approaches seemve banerged. The first approach is based
on lubrication theory and considers the pores pdramus medium as a bunch of capillary
tubes which are tortuous or interconnected in avowdt (Bird et al. 2001). Even though
this model has been used successfully for isotrpprous media, it does not work well
for either axial or transverse permeability of aBd fibrous media (Bruschke et al.
1993).

The second approach (cell method) considers thd swtrix as a cluster of immobile
solid obstacles, which collectively contribute Stelkkesistance to the flow. For a review
of these theories see Dullien 1992 and Bird e2@0D1. When the solids are dilute, i.e., at
high porosities, basically the particles do notl 'egch other, so that cell approach is
appropriate. Bruschke and Advani (1993) used latioa theory in the high fiber
volume fraction range but adopted an analytical oeddel for lower fiber volume
fractions. A closed form solution, over the fulbér volume fraction range, is obtained by
matching both solutions asymptotically.

Prediction of the permeability of fiborous media efatback to experimental work of
Sullivan (1942) and theoretical works of Kuwaba@59), Hasimoto (1959), and Happel
(1959). The parallel flow solutions are idealizedusions for the flow through cigarette
filters, plant stems and around pipes in heat exghdanks. The transverse solutions are
applicable to transverse fibrous filters used feaning liquids and gases and regulating
their flow. Both types of solutions can also belmgble to the settling of suspensions of
long thin particles. A comprehensive review of axpental works of permeability
calculation of these systems is available in Jatktal. (1986) and Astrom et al. (1992).
Later, Sangani and Acrivos (1982), performed aradtand numerical studies of the
viscous permeability of square and staggered aohaygglinders. Their analytical models
were accurate in the limits of low and high ponpskor high densities they obtained the
lubrication type approximations for narrow gapsummond and Tahir (1984) modeled
the flow around a fiber using a unit cell approélay assuming that all fibers in a fibrous

medium experience the same flow field) and obtaiegdations that are applicable at



lower volume fractions. Gebart (1992) presente@xpression for the longitudinal flow,
valid at high volume fractions, that has the saorenfas the well-known KC equation.
For transverse flow, he also used the lubricatjgor@ximation, assuming that the narrow
gaps between adjacent cylinders dominate the fesistance. Using the Eigen-function
expansions and point match methods, Wang (2002)estuthe creeping flow past a
hexagonal array of parallel cylinders.

Our literature survey indicates that relativelytldit attention has been paid to the
macroscopic permeability of ordered periodic filmaunaterials. More importantly, the
majority of the existing correlations for permedpilare based on curve-fitting of
experimental or numerical data and most of theydical models found in the literature
are not general and fail to predict permeabilitgrothe wide range of porosity, since they
contain some serious assumptions that limit ttagige of applicability.

In this study, periodic arrays of parallel cyling€with circular, ellipse and square cross-
section) perpendicular to the flow direction ar@sidered and studied with a FE based
model in section 2. The effects of shape and atent as well as porosity and structure
on the macroscopic permeability of the porous medéadiscussed in detail. In order to
relate our results to available work, the datacamapared with previous theoretical and
numerical data for square and hexagonal packindigroations and a closed form
relation is proposed in section 3 in the attemptdmbine our various simulations. The

paper is concluded in section 4 with a summaryaritbok for future work.

2. Results from FE simulations

This section is dedicated to the FE based modellatlbons and the results on

permeability as function of porosity, structureagé and anisotropy.

2.0. Introduction and Terminology

The superficial velocitylJ, within the porous media in the unit cell is definas

U :\%\iudv:du) , 1)



whereu, (u), V, Vi and ¢ are the local microscopic velocity of the fluid n@sponding

averaged velocity, total volume, volume of thedl@nd porosity, respectively. For the
case where the fluid velocity is sufficiently smétreeping flow), the well-known
Darcy’s law relates the superficial fluid velocity through the pores with the pressure

gradient,CJp, measured across the system lengtlso that

U= K Op , (2)

U
where u and K are the viscosity of the fluid and the permeapilitf the sample,
respectively. At low Reynolds numbers, which arkevant for most of the composite
manufacturing methods, the permeability dependy onl the geometry of the pore
structure. By increasing the pressure gradient,obyeerved a typical departure from
Darcy’s law (creeping flow) at sufficiently high Reolds number, Re>0.1 (data not
shown here). In order to correctly capture theumfice of the inertial term, Yazdchi et al.
(2010) showed that the original Darcy’'s Law can ddended with a power law
correction with powers between 2 and 3 for squateesagonal configurations. Hill et al.
(2001) examined the effect of fluid inertia in octibface-centered cubic and random
arrays of spheres by means of lattice-Boltzmanmlsitions. They found good agreement
between the simulations and Ergun correlation bd solume fractions approaching the
closely-packed limit at moderate Reynolds numbe<(®O0).
Recently, models based on Lagrangian tracking gighes combined with computational
fluid dynamics for the continuous phase, i.e., @igx particle methods (DPM), have
become state-of-the-art for simulating gas-solavl, especially in fluidization processes
(see e.g. Kuipers et al. 1993). In this method,-iweay coupling is achieved via the
momentum sink/source teri®, which models the fluid-particle drag force

S, =B((u)-v,). (3)
where the interphase momentum-transfer coefficntdescribes the drag of the

gas/fluid phase acting on the particles apds the velocity of particles. (Additional

effects like the added mass contributions are gésaed here for the sake of simplicity.)
In steady state, without acceleration, wall frinti@r body forces like gravity, the fluid

momentum balance reduces to
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By comparing Egs. (2) and (4), using the definitmfnEqg. (1), and assuming immobile

particles, i.e.v, =0, the relation betweeg and permeabilitK is

_ L’
B= T (5)

Accurate permeability data, therefore, is a criti@muirement in simulations based on
DPM to be successfully used in the design and opdition of industrial processes.

In the following, results on the permeability ofawlimensional (2D) regular periodic
arrays of cylinders with different cross sectior abtained by incorporating detailed FE
simulations. This is part of a multiscale modelaygproach and will be very useful to

generate closure or coupling models required inencoarse-grained, large-scale models.

2.1. Mathematical formulation and boundary conditions

Both hexagonal and square arrays of parallel cglisigperpendicular to the flow direction
are considered, as shown in Fig. 1. The basis oh suodel systems lies on the
assumption that the porous media can be divideal representative volume elements
(RVE) or unit cells. The permeability is then detered by modeling the flow through
one of these, more or less, idealized cells. FEfMvsoe (ANSYS) is used to calculate
the superficial velocity and, using Eq. (2), therpeability of the fiborous material. A
segregated, sequential solution algorithm is usesbtve the steady state Navier-Stokes
(NS) equations combined with the continuity equatilm this approach, the momentum
equations (i.e. NS equations) are used to genaragxpression for the velocity in terms
of the pressure gradient. This is used in the paityi equation after it has been
integrated by parts. This nonlinear solution praredbelongs to a general class of the
Semi-Implicit Methods for Pressure Linked Equatio(8IMPLE). The developed
matrices from assembly of linear triangular eleraeste solved based on a Gaussian
elimination algorithm. It is robust and can be uded symmetric as well as non-
symmetric equation systems but requires extensiwgatational memory already in 2D.
At the left and right pressure- and at the top laotiom periodic-boundary conditions are
applied. The no-slip boundary condition is appleedthe surface of the particles/fibers.

A typical unstructured, fine and triangular FE meshlso shown in Fig. 1(c). The mesh



size effect is examined by comparing the simulatesults for different resolutions (data
are not shown here). The range of number of elemintvarying from 19 to 1¢
depending on the porosity regime. It should be ahdteat in Darcy’s linear regime
(creeping flow) — although we have applied presbatendary conditions at left and right
— identical velocity profile at inlet and outleteaobserved, due to the symmetry of this
geometry and linearity. However, by increasing pinessure gradient (data not shown),
the flow regime changes to non-linear and becomas-symmetric. Furthermore,
because of the symmetry in the geometry and boyraarditions, the periodic boundary
condition and symmetry boundary condition, i.erpzeelocity in vertical direction at top
and bottom of the unit cells, will lead to identicasults (as confirmed by simulations —

data not shown).
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Figure 1: The geometry of the unit cells used &rgguare and (b) hexagonal

configurations, with angles 4&and 68 between the diagonal of the unit-cell and the



horizontal flow direction (red arrow), respectivelfc) shows a typical quarter of an

unstructured, fine and triangular FE mesh.

2.2. Permeability of the square and hexagonal arrays
Under laminar, steady state condition, with givescesity, the flow through porous
media is approximated by Darcy’'s law. By calculgtthe superficial velocityJ, from

our FE simulations and knowing the pressure gradigp, over the length of the unit

cell, L, we can calculate the dimensionless permeabiflitynfalized by the cylinder
diameterd), K/d?. In Table 1, various correlations from the literatare listed. The first
relation by Gebart (1992) has a peculiar analyticah and is valid in the limit of high
density, i.e., low porosity — close to the closeklpag limit & (the same as Bruschke et al.
(1993) in the low porosity limit, with maximum digpancy less than 1%). Note that the
relations by Happel (1959), Drummond et al. (1984uwabara (1959), Hasimoto
(1959), and Sangani et al. (1982) are all identicéheir first term — that is not dependent
on the structure — in the limit of small solid vola fractiong i.e., large porosity. In
contrast, their second term is weakly dependentherstructure (square or hexagonal).
Bruschke et al. (1993) proposed relations thablaeady different in their first term. The
last two relations in the table are only valid imermediate porosity regimes and do not
agree with any of the above relations in eithetheflimit cases.

In Fig. 2, the variation of the (normalized) periiéity, K/d?, with porosity, for square
and hexagonal packings is shown. The lubricatiaomy presented by Gebart (1992)
agrees well with our numerical results at low p@res (¢ < 0.6), whereas, at high
porosities ¢ > 0.6), the prediction by Drummond et al. (1984) befiies our data.
Drummond et al. (1984) have found the solutionthar Stokes equations of motion for a
viscous fluid flowing in parallel or perpendiculr the array of cylinders by matching a
solution outside one cylinder to a sum of solutionth equal singularities inside every
cylinder of an infinite array. This was in good egment with other available
approximate solutions, like the results of Kuwab@d@59) and Sangani et al. (1982) at

high porosities, as also confirmed by our numeneallts (data not shown). Note that



our proposed merging function in section 3.4, titsour FE results within 2% error for

the whole range of porosity.
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Figure 2: Normalized permeability plotted againstgsity for (a) square and (b)
hexagonal packing for circular shaped particlegidgrs with diameter d, for
perpendicular flow. The lines give the theoretjmaddictions, see inset. For high
porosities, the difference between Gebart (1998)rummond et al. (1984), in the



hexagonal configuration, is less than 5%, whiletlifi@r square configuration it is less than

30%.

Table 1: Summary of correlations between normaljzeuneability K/d? and porosity,
with ¢=1-¢, the solid volume fraction.

Author

K/d* Comments
si2( 4 ~
C 1-¢ -1 o2 & =l-ml4 Square configurationK$ /d?
Gebart (1992) 1-¢ 7
__4_ £ :1—71/(2\/_3) Hexagonal config. K /d
m/6
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L 1+
12)? tan"| ) Lubrication theory, square
Bruschke (1_ ) 3 1-1 | 1 4
et al. (1993) 123 1-12 _2 config.: | 2 :—(1—8)
- 7l

_1.476+ 2p— 0.79¢

>

1

w(ln @j ~1.476+ 2p+0((02)]

3

Drummond et| 32¢ 1+ 0.48®— 1_60&} Square configuratiOnKS/d2
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i[ln(—lj—l.497+ 2p—£— 0.739' + 2.5345 J Hexagonal config.K[ /d
320\ \@ 2 1+ 1.2758
Bruschk 1 1) 3 _
et ;?_88_9;3) @('n (&j ——2"‘ 2(0‘%} Cell method, square config.
Kuwabara 1 In 1 -1.5+ er—ﬁ Based on Stokes approximatig
(1959) 32p @ 2
1 (In (Ej —1.476}
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asglr;;)to Using elliptic functions:

Sanganietal| 1 1) ~
(1982) 3240[“'1[;0) 1.476+ 2p 1.774f+ 4.07@) ___________
Happel i n _1 _ﬁ ___________
(1959) 320 "\ o) T g

Lee and Yang
(1997)

£*(£-0.2149

13 Valid for 0.435< £ < 0.93°
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i 5.1
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2.3. Effect of shape on the permeability of regular arrays

In this subsection, we investigate the anisotrdyelcavior of permeability due to particle
shape in square configuration. Using elementargtalgc functions, Zhao et al. (2006a)
derived the analytical solutions for pore-fluidvlaaround an inhomogeneous elliptical
fault in an elliptical coordinate system. Obdam &faling (1987) employed the complex
variable function approach to derive the analytsmutions for the pore-fluid flow within
an elliptical inhomogeneity in a two-dimensional falane. Zimmerman (1996) extended
their solutions to a more complicated situationgreha randomly oriented distribution of
such inhomogeneous ellipses was taken into accalMatlstrom et al. (2002) later
applied the two-dimensional potential solution fram electrostatic problem to solve a
steady-state pore-fluid flow problem around an mbgeneous ellipse using a special
elliptical coordinate system. More recently, Zhaalke (2008) used inverse mapping to
transform those solutions into a conventional Géatecoordinate system.

Here, in order to be able to compare different skagnd orientations, the permeability

will be normalized with respect to the obstaclegténL,, which is defined as

L, = 4 area / circumference
L, = 2r =d (for circle), L, = c (for square), L, = 4rab / A_ (for ellipse) (6)

wherer, ¢, a andb are the radius of the circle, the side-lengthhaf square, the major
(horizontal) and minor (vertical) length of the igdle, respectively.A. is the
circumference of the ellipse.

By applying the same procedure as in the previesi®, the normalized permeability
(with respect to obstacle lengthy) is calculated for different shapes on a square
configuration.

In Fig. 3 the normalized permeability is shown asaction of porosity for different
shapes. At high porosities the shape of particlesschot affect much the normalized
permeability, but at low porosities the effect ismpronounced. We observe that circles

have the lowest and horizontal ellipses the higheshalized permeability.
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Figure 3: Effect of shape on the normalized perntigafrom a square packing
configuration of circles, squares and ellips@b£2, major axis in flow direction). The

lines are only connecting the data-points as aegtddhe eye.

2.4. Effect of aspect ratio on the permeability of regular arrays of ellipses
In this subsection the effect of aspect ratib,on the normalized permeability of square-
arrays of ellipses is investigated. In fact, theecaf high aspect ratio at high porosity

represents the flow between parallel plates (slaw)f The relation between average
velocity, (u), and pressure drop for slab flow is
2
A
(u)= _h ap @)
12u L
wherehs is the distance between parallel plates (in ouasg configuration, in the limit

a/b>1, one has=L=1). Note that, since there are no particles,1, the average and
superficial velocities are identical, i.e(.u)zu. By comparing Egs. (7) and (2) the
permeability, i.e.,K =h?/12 is obtained, which indeed shows the resistancetalu®

slip boundaries at the walls. The variation of peability for a wide range of aspect

ratios at different porosities is shown in Fig. lt.is observed (especially at high

12



porosities) that by increasing the aspect ratiopdeneability increases until it reaches
the limit case of slab flow for which the permedpiis K =h?/12=0.083: [m?]. The

aspect ratid/a <1 means that the ellipse stands vertically aedeflore the permeability

reduces drastically.

10
107} ]
N 10'47 q - i
v B =07
10—6 =028
-+ =09
£ =095
107 & ---Shab flow (h2 /12 [m?])
107 10" 10° 10" 10°
b/a

Figure 4. Effect of aspect ratio on the permeabditsquare configurations of ellipses
with different porosities as given in the inseteTimes are only connecting the data-
points as a guide to the eye.

2.5. Effect of orientation on the permeability of regular arrays

By changing the orientatiod); i.e., the angle between the major axis of thetastle and
the horizontal axis, not only the values of thenpeability tensor will change, but also its
anisotropy will show up (so that the pressure grnaidiand the flow velocity are not
parallel anymore). Therefore, the geometry of tbeepstructure has great effect on the
permeability in irregular fibrous media. This effdéor squares and ellipsea/ly = 2) is

shown in Fig. 5.
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For square shapes, at high porosities, the orientaloes not much affect the
permeability, whereas at low porosities the pernigaldepends a lot on the orientation.
At 6 = 45 we observe a drop in permeability, because weckrge to the blocking

situation, i.e., zero permeability, at a criticak@sity (at which the permeability drops to

1
zero) ofe. =1-——————=0.5.
) ofe. 2sir? (45+6)

For ellipses, at high porosity, the orientation sloet affect the permeability, whereas at
low porosities the effect is strong. By increastihg orientation angle, i.e., by turning the
major axis from horizontal to vertical, the permiégbis reduced. The critical porosity

¢~0.6073 is purely determined by the major axis efehipse ford = 9.
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Figure 5: Effect of orientatior¢) on the normalized permeability for (a) square @nd
ellipse @b=2) in square packing configurations at different pdyod he lines are only

connecting the data-points as a guide to the eye.
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The general form of Darcy’'s law for anisotropic n@eth 2D in matrix form can be

written as

9p
<U><> =_l|:K11 K12i| aX (8)
<Uy> M| Ky Ky]|OP ,

oy

where<U,> and<U,> are superficial velocities imandy direction, respectively. Then
the permeability tensor for any value &fcan be calculated as
K, K K, O
K9:|: 11 12:|:RT|: 0 :|R (9)
K21 K22 0 KQO
where K, and K, are the principal values of permeability that de¢ermined from the

values of8 = 0° and 8 = 90°, respectively. In Eq. (9R' is the transposed of the rotation

matrix R, defined as (counterclockwise rotation 8y
_[cod8) -sin(6)

R‘Lm(e) cos(e)}

Eqg. (9) shows that fod# @, 90°, one ha¥,, # 0, which means that by applying a

{10

pressure gradient ix direction, one gets a superficial velocity yndirection (i.e.
anisotropic behavior because of oriented shape). fmerical results are in good
agreement with theoretical predictions (Eq. (9peesally at high porosities (see the solid
lines in Fig. 6). We have more deviation at lowqsities (maximum discrepaney5%)
because of channel blockage and changes in floavi@h(the comparison is not shown
here).

In Fig. 6, the variation of normalized permeabilisy shown as a function of the
orientation angled. The normalized permeability is symmetric t @dd decreases by
increasing the orientation angle froth The eigenvalues of the permeability tensor are

the extrema of the curves and the other data arell wWited by
K/L% = (K, +Kgp)/2+(K,—Kg) co F)/ = By decreasing the aspect rath, we
approach the value for the circular (cylinder) ebkt, i.e.,a/b =1. The normalized

permeability is symmetric to 4%or square shapes.
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Figure 6: Normalized permeability plotted againsémtation angle for different shapes
at porositye = 085, for different obstacle shapes in square configuma. The dashed

line represents circles. The solid lines show ke®tetical predictions according to Eq.
(9), where the eigenvalues are taken from the@@ and @, 45’ degrees for ellipses and

squares simulations, respectively.

2.6. Effects of staggered cell angle

In this subsection, the effect of another micraxctural parameter, the staggered cell
angle, a, on the normalized permeability for circlds,%d) is discussed. The staggered
angle is defined between the diagonal of the uslitand flow-direction (horizontal), see
Fig. 7. In addition to the special cases= 45° and a =60°, i.e., square and hexagonal
packings, respectively, several other angles ardiest. The contour of the horizontal
velocity field component, for differentr , at constant porosity = 0.7, is shown in Fig.

7. By changinga , the flow path and also the channel length wiiregee. Ata = 70° and
higher, the flow mainly follows a straight line dicated by arrows in Fig. 7(a), with large
superficial velocity and consequently large valuafs permeability. However, by

decreasinga down to 38, the flow pattern completely changes and the dijmr

17



velocity reduces, which should lead to lower andido permeability. In brief, with

increasing angle, both the superficial velocity ahd permeability increase, with a

plateau aroundr = 45°.

(b)
— I
0 0.03 0.06 0.09 0.12 015 018  0.21 0.24[m/s]

Figure 7: Horizontal velocity field components fa) a = 60°, (b) a =50°, (c)

a =40°and (d)a = 35° at fixed porosity: = 0.7. The arrows indicate the main flow

channel in (a) and (b). The staggered angle imééfbetween the diagonal of the unit-
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i : . L[ 2(1-¢)
cell and flow-direction (horizontal). The minimaigle @, =tan e =10.81
is realized when the vertical opening is closed]emine maximal angle

Q.= tan™ [2(1—7:5)J =79.18 corresponds to the closed horizontal pore.

In Fig. 8 the normalized permeability is shown asction of the staggered angle,, at
different porosities. As it is seen the arrangemehtparticles relative to the flow
direction is important in determining the permedilBy increasinga , the normalized
permeability increases (the vertical distance betwgarticles increases and therefore the
resistance to the flow decreases) until it reachelcal maximum atg 035° —
consistently for different porosities. At largergses, it slightly decreases and attains a
local minimum ata 055°, beyond which it increases rapidly again. Thisawbr can be
explained by the variation of the area-fractiontribsition with a on the planes
perpendicular to the flow direction, as discussg@loocer et al. (1999).

The normalized permeability as a functionafcan be expressed as a cubic polynomial

K _ (a-48) _(a-48) _(a-48
?_A( 45° J+B( 45 j+C( 45 j+D -

where A, B, C and D are dimensionless constanssedi in Table 2 for different

porosities.
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Figure 8: The variation of normalized permeabiligrsus staggered unit cell angteat
different porosities, as given in the inset. Thikdsines show the fit (Eq. (11))

Table 2: Fitted parameters for the permeabilitggéaed angle relation

=08 =07 =06
A 0.38401 0.18813 0.09913
B 0.02682 0.01738 0.01171
C -0.03693 -0.01914 -0.01027
D 0.07698 0.02584 0.009319

The leading term with A is dominating, the termiwi is a rather small correction, the
term with C sets the (negative) slope in the cerded the term with D determines the
offset. All fit-parameters depend on porosity ahdhould be noted that the range of
available angles is limited and also depends omgiyr Additional scaling- and fit-

attempts (data not shown) did not lead to muchebe#ésults, thus we only present this
empirical fit here.

The decreasing region, i.685° < a < 55 corresponds to the case in which the flow goes
in a preferred channel orthogonal/perpendiculath® line (diagonal) connecting two
particles, see Figs. 7(b) and (c). While in cas#h larger a, the flow goes at straight

20



lines/channels, see Fig. 7(a), the configuratiarsfoaller @ is dominated by the narrow
vertical opening between two obstacles. In essemtethe plateau region, the
permeability is not much affected by the staggeregle o . This observation might be
useful during design and manufacturing of fibroamposites.

In summary, the results of this section show thatrmacroscopic permeability not only
depends on the porosity but also on the microstractnamely shape, aspect ratio and

orientation of particles.

3. Theoretical prediction of the permeability fdrgorosities

In this section, based on the observations in teeipus section, and using the velocity
profiles from FE unit cell simulations, a generatiziorm of the Carman Kozeny (CK)
equation for the permeability of fibrous porous me@D regular arrays of particles) is

proposed.

3.1 From special casesto a more general CK equation
The earliest and most widely applied approach i@ porous media literature, for
predicting the permeability, involves capillary netsl (Carman 1937) such as the one
that leads to the CK equation. The approach toimltiiés equation is based on Poiseuille
flow through pipes. Assuming pipe flow through diregrical channel of diametédr,, the
average velocity through the channel is

2
<up>:—;‘T"ﬂ% , (12)
and for slab flow through an infinite channel ot he
<u5>=—%% , (13)
given the pressure drofyp per lengthL, and a fluid with viscosity .

Defining the hydraulic diameter

D, =4volume available for flow | (14)
total wetted surface
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allows to unify the relations above, by combining. £14) with either Eq. (12), with

D, =h,, or Eq. (13), with D, =2h,, and with Darcy's law, Eqg. (2), so that the

pl
permeability is described by the CK relation (Cani@37)
gu(u) _ €D}

Up Y

Where, ¢, =32 (or 48) is the dimensionless Kozeny factor rabristic of the pipe (or

K = (15)

slab) pore structure. When one has obstacles iliezsf (or particles) instead of straight

pores, the hydraulic diameter can be re-written as

_4eV . 4 _ , _ particle surface S, .
D, = = = ., with a, = : = -
S (1-&a (1-¢) particle volume ( &)V d

, (16)

with the total volume of the unit ceN, the total wetted surfac§,, the specific surface
area,a,, and the porosityg, for a fiborous medium of fiber diameter Note that the
hydraulic diameter, in this way, is expressed dsnation of the measurable quantities
porosity and specific surface area. The above vafug is for circles (cylinders) — for
spheres one has~=6/d. In this formulation, we just consider the resis@ due to
presence of particles (no slip boundaries at thifasa of the particles) and neglect the
outer walls.

Inserting Eq. (16) into Eq. (15), yields the norinadl permeability for fibers
K_1 ¢&

F Pex (1_ 5)2

(17)

which depends non-linearly on the porosity and shape/structure factog,, .

One of the main drawbacks of the CK equation i tiva Kozeny factowy,, is a-priori

unknown in realistic systems and has to be detextnéxperimentally. An ample amount
of literature exists on the experimental and thiecak determination of the Kozeny
factor, but we are not aware of a theory that eslgt,, with the microstructure, i.e., the
porosity, the random configuration, tortuosity, aother microscopic quantities. An
overview of experimental and theoretical approactes be found in Astroem et al.
(21992), which mainly deals with fibrous media, aratquato (1991), which is based on

variational principles. One of the most widely guteel approaches to generalize the CK
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relation was proposed by Carman (1937), who nottbadl the streamlines in a porous
medium are far from being completely straight aadaplel to each other. This effect can
be described by a dimensionless paramdigt, (tortuosity), with the length of the

streamlineslL,, relative to the length of the sample,Hence the Kozeny factor can be

split into
Yoo = ¢(5j (18)

where @ is the effect of particle shape, which can be se=ea fitting parameter. In fact,
the tortuosity and the shape factor reflect thea#f of microstructure on the macroscopic
properties (like permeability) of the porous media.

In the original form of the CK equation for rand@D sphere structures, it is assumed
that the tortuosity is a constant for all rangegofosities and is equal tg2 and the
fitting parameter®, then becomes 90 for the case of pipe flow anfb66lab flow.
Knowing the values of the normalized permeabilityni our FE simulations, we can
compare the values of the Kozeny factor based amuomerical results and available

theoretical data and with the origingl, =120 for slab flow, see Egs. (17) and (18). The

comparison is shown in Fig. 9. At a certain ranf@arosities, 05< £ < 0.7, the CK

factor ¢, is indeed not varying much. However, at higherlawer porosities, it

strongly depends on porosity and structure. At kagd low porosities, our numerical
results are in good agreement with the predict@@3rummond et al. (1984) and Gebart
(1992), respectively (see Table 1). These resnttsate that the Carman-Kozeny factor,
Y. , is indeed not constant and depends on the miagste.

In the following subsections, we will study the dadency ofy. on the micro-

structural parameters.
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Figure 9: Kozeny factor plotted as a function ofgsaty for different models (lines) and

data sets (symbols) as given in the inset.

3.2. Measurement of the tortuosity (L¢/L)

As discussed before, the tortuosity is the aveedtgrtive streamline length scaled by
system lengthL¢L, and one possible key parameters in the Kozenyprfas the CK
equation (Carman 1937). From our numerical simoiati we extract the average length
of several streamlines (using 8 streamlines thatldithe total mass in-flux into 9 zones,
thus avoiding the center and the edges). By tatiegaverage length of these lines, the
tortuosity can be obtained, while by taking thendtd deviation of the set of
streamlines, the homogeneity of the flow can b@éad The tortuosity is plotted in Fig.
10 as function of porosity for different shapes amgntations and as function of the

staggered angle for different porosities.
Unlike the traditional form of the CK equation, whi assumes thaLe/L=\/§ (for

random 3D structures) is constant (Carman 1937%),namerical results show that the
tortuosity (i) is smaller and (ii) depends on thergsity and the pore structure. In

Fig.10(a), as intuition suggests, the vertical Andzontal ellipses have the highest and
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lowest average tortuosity, respectively. This gaksad with very large and very small
standard deviation, i.e., the vertical ellipse ogunfation involves the widest spread of
streamline lengths. In the case of a circular shapstacle, the (average) tortuosity is
between the horizontal and vertical ellipse casek #or intermediate porosity, becomes
almost independent of porosity, with constant séaticdieviation that is wider than the
average tortuosity deviation from unity. The squsin@pe obstacles are intermediate in
tortuosity, i.e., the ®square (4%square) shapes take tortuosity values between the
horizontal (vertical) ellipse and the circular alxdes.

In Fig. 10(b), the tortuosity is plotted againse thtaggered unit cell angle . By
increasinga the value of tortuosity increases until abeuf145’, where it reaches its
maximum. Note that the standard deviation remamallsfor all angles smaller than
a 045, At higher angles, tortuosity decreases, whilst@mdard deviation considerably
increases. At large values a@f, most of the fluid flow goes along a straight |ine
however, near the boundary, we have a few longeastines that cause the large

standard deviation. At the limit case aof= a

max ?

when the upper particles touch, see Fig.

7, the tortuosity approaches unity (data not shoamg the flow goes mostly along a
straight channels.

3.3. Measurement of the shape/fitting factor (®)
Knowing the values of tortuosity,/L, and normalized permeabilitit/d®, from our FE

simulations, we can obtain the values ®f for different shapes and orientations as
2
) :z//CK/(LL‘-‘j . In Fig. 11 the variation ofp as a function of porosity for different

shapes and orientations is shown. Unlike the iadit CK factor, the shape/fitting factor
is not only a function of porosity but also depends the orientation of
particles/cylinders. This dependency is more prowed at high (low) porosities and

close to the blocking conditions, i.e., ellipsesv@d and squares with 45
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Figure 10: Tortuosit)(Le/ L) (a) plotted as a function of porosity for diffetetstacle

shapes and orientations on square configurations45°’, (b) plotted as a function of the
staggered cell angley, as given in the inset, for circles at differeatgsities on

hexagonal configurations. Error bars give the stashdeviation of the 8 streamline
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lengths, where bottom-values below unity indicateghly non-symmetric distribution

around the average.

2000

—6— Ellipse-90°
—&— square-45°
1500 Circle

Sq uare-0°

& 1000/ —* Elipse-0°

500¢

Figure 11: Shape/fitting facto, plotted as a function of porosity for differertstacle
shapes and orientations on square configuratiors45°. The straight dashed line

shows the value oo =60 as in the original CK factor.

3.4. Corrections to the limit theories

Being unable to explain the variation of perme&pilith tortuosity and a constant shape
factor, now we attempt to optimize/correct the tirtheories by Gebart (1992) and
Drummond et al. (1984), see Table 1, in order twppse an analytical relation for the
permeability that is valid for all porosities andr fsquare and hexagonal arrays of

cylinders.

3.4.1 Square configuration

Assuming one particle at the center, pressure baryrat the left and right and periodic

top and bottom, we correct the original Gebartti@afrom Table 1,K:, by a linear

s 1

correction termK;:, = K5 ——M—
G2 Gl+gz(€_£c)

, with g,=0.336. After observation of a linear
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correction term in the denominator, the linear tespuare method is used to get the

coefficient g,. In contrast toK;, which asymptotically approaches the limit case,
& - &, but for £=0.6 deviates already by about 10%, the correcti§g;, has a

maximum discrepancy in the range< £ <0.85 of less than 10%, and fa, <£<0.7
of less than 2%, see the squares in Fig. 12.

Since the Drummond relation from Table ks, is valid at high porosities with
maximum discrepancy d.7< £ <1 of less than 10% and f@.8< £ < 1 of less than 2%,
we propose the following merged function

1+tanh(e-¢,) /g,)
2
that is valid for the whole range of porosity, wileviations of less than 2% that also

K® =K, +(K5 =K, )m(e), with m(g) = , & =0.75, & = 0.03,,

includes the analytical relations for the limit easWhile the choice af(e) is arbitary,

the non-linear least square fitting procedure &dus obtain the empirical coefficients

and g, . The error of these coefficients is defined byrte&andard deviation.

1.1
1r '—.—.-—-—-\'/"“"‘FV .
°
°, u .
= 09r ® | ]
Ay L n
; : Y
o ogl ©® KG [11] v ° m
S
. Kcsz .o
0.7+ v KsD [9] L
Tanh °
0.6- ! ‘ ‘ :
0.2 0.4 0.6 0.8 1

£
Figurel2: Relative error between FEM results ammgh@sed corrections for square
configuration with the critical porosity =1-77/4.
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3.4.2 Saggered hexagonal configuration a =60°:
In this situation, the correction to the Drummondlation from Table 1 is

K, =dKg (1+d,g),  K"=Ki+(Kp,-K)m(g), with  d=0.942, 0,=0.153,
&, =0.55, ¢ = 0.03], leads to a corrected permeability for all potfesit with a

maximum error of less than 2%, see Fig. 13.

11 v
A A
° v 3 o,
1 W—-‘-H.—H B
" °
) 09’
= h
% ° KG [11]
L 08/ v K9]
h
0.7t " Koz
w Tanh
06 L | | | i
0.2 0.4 0.6 0.8 1

&

Figure 13: Relative error between FEM results ag@sed fits for hexagonal
configuration with the critical porosity =1- 77/ (2\/_3) .

4. Summary and Conclusions

The permeability of porous structures is an impurtaroperty that characterizes the
transport properties of porous media; howeveratermination is challenging due to its
complex dependence on the microstructure of theianedsing an appropriate

representative volume element, transverse flowigmed, periodic fibrous porous media

has been investigated based on high resolutiore (find) FE simulations. This is
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complementary to previous studies by Hill et abQ2) and Van der Hoef et al. (2005)

who obtained the drag/permeability relation fordam arrays of mono- and bi-disperse

spheres at low and moderate Reynolds numbers.|Iofaur simulations, the total

pressure drop has been chosen small, such thatrevealaays in Darcy’'s regime

(creeping flow). In particular, the effects of @ifént parameters including fiber (particle)

shape, aspect ratio, orientation, and staggeretl egli angle on the normalized

permeability are measured and discussed in detaithe full range of porosities. The

conclusions are:

The present results for the permeability are védiddoy comparing with available
theoretical and numerical data for square and henalgarrays over a wide range
of porosities. Especially in the limits of high ataw porosity, agreement with
previous theoretical results is established.

By increasing the staggered unit cell angte (where 60 degrees corresponds to
the hexagonal array), from the blocked configuratiath minimal angleay,n, the
normalized permeability increases until it reache$ocal maximum atr 035°.
Then it decreases a bit (almost plateau) untilkedches its local minimum at
a 055°. From there it increases again until a maximunogity is reached at
amax The best-fit (3 order) polynomials at different porosities aresereted as
reference for later use.

By increasing the orientation angle of the ellip@exe the longer axis of ellipses
was used to define the orientation relative toftbe direction), the permeability
decreases and shows its anisotropy. The permgabdiues for the extreme
cases, i.e., eigenvalues at and 96, are used to predict the permeability for
arbitrary orientation angles, see Eq. (9).

By increasing the aspect ratio of horizontal eigsthe permeability increases
and approaches the permeability of slab flow, iesh?/12= 0.083: [m? at
high porosities

Using the hydraulic diameter concept the permeagbdan be expressed in the
general form of the (Carman-Kozeny) CK equationr Gumerical results show
that the CK factor not only depends on the pordsityalso on the pore structure,
namely particle shape, orientation and staggergt&an.

The numerical results show that immobile circled alipses have the lowest and
highest permeability, respectively. The relevantéhs observation for flows of
gas/fluid-solid with moving non-spherical particissan open question.
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Since analytical forms with the power as a fregéitameter are neither consistent with
the highest porosity asymptote, nor with the lowEsbsity limit case, those fits are only
an attempt to describe the intermediate regimerattigal importance with a closed
functional form. In order to improve the analytigalation for the permeability, to be
applied, e.g., for DEM-FEM coupling, we proposegh@rged function that includes both
limit cases of low and high porosity and is smomttbetween with maximal deviation
from our numerical results of less than 2%.

Future work will investigate the creep and inerfialw regime through periodic and
disordered arrays, the relation between microsirecand (macro) permeability, and the
effect of the size of the system, especially ford@n/disordered structures. Since already
the packing generation algorithm affects the pebiliéain random arrays of parallel
cylinders, different procedures have to be companad evaluated with respect to the
microstructure. These results can then be utilimmdvalidation of advanced, more
coarse-grained models for particle-fluid interactand their coupling-terms between the
discrete element method (DEM) for the particles &mel FEM or CFD solver for the

fluid, in a multi-scale coarse grained approach.
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