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Abstract 
 
An analytical-numerical approach is presented for computing the macroscopic 

permeability of fibrous porous media taking into account their micro-structure. A finite 

element (FE) based model for viscous, incompressible flow through a regular array of 

cylinders/fibers is employed for predicting the permeability associated with this type of 

media. High resolution data, obtained from our simulations, are utilized for validating the 

commonly used semi-analytical models of drag relations from which the permeability is 

often derived. The effect of porosity, i.e., volume fraction, on the macroscopic 

permeability is studied. Also micro-structure parameters like particle shape, orientation 

and unit cell staggered angle are varied. The results are compared with the Carman-

Kozeny (CK) equation and the Kozeny factor (often assumed to be constant) dependence 

on the micro-structural parameters is reported and used as an attempt to predict a closed 

form relation for the permeability in a variety of structures, shapes and wide range of 

porosities.  

 

Keywords: Permeability; Fibrous porous media; FEM; Drag relations; Carman-Kozeny 
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1. Introduction  

 

The problem of creeping flow between solid bodies arranged in a regular array is 

fundamental in the prediction of seepage through porous media and has many 

applications, including: composite materials (Dullien 1992, Laakkonen 2003), rheology 

(Muller et al. 1999, Moss et al. 2010), geophysics (Berryman et al. 2000), polymer flow 

through rocks (Sorbie et al. 1987), statistical physics (Hilfer 2000, Chen et al. 2008), 

colloid science (Shani et al. 2008), soil science (Roth 2008, Crawford et al. 1995) and 

biotechnology (Wanner et al. 1995). A compelling motivation for such studies concerns 

the understanding, and eventually the prediction, of single and multiphase transport 

properties of the pore structure.  

A specific category of porous media is formed by 2D long cylinders or fiber-like 

particles. Restricted flow through fibrous porous materials has applications in several 

engineering/industrial areas including: filtration and separation of particles, composite 

fabrication, heat exchangers, thermal insulations, etc. Prediction of the hydraulic 

permeability of such materials has been vastly studied in the past decades. It is known 

that, for fiber reinforced composites, the microstructure of the reinforcement strongly 

influences the permeability. This study presents an interesting step towards a unified 

understanding of the effect of microstructure (e.g. particle/fiber shape and orientation) on 

the macroscopic permeability by combining numerical simulations with analytical 

prediction in a wide range of porosity.   

Usually, when treating the medium as a continuum, satisfactory predictions can be 

obtained by Darcy's law, which lumps all complex interactions between the fluid and 

fibers/particles into K, the permeability (tensor). Accurate permeability data, therefore, is 

a critical requirement for macroscopic simulations based on Darcy’s law – to be 

successfully used for design and optimization of industrial processes.  

The Ergun equation is a semi-empirical drag relation from which the permeability of 

porous media can be deduced. It is obtained by the direct superposition of two asymptotic 

solutions, one for very low Reynolds number, the Carman-Kozeny (CK) equation (Bird et 

al. 2001), and the other for very high Reynolds numbers, the Forchheimer correction 

(Bird et al. 2001). However, these approximations do not take into account the micro-
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structural effects, namely the shapes and orientations of the particles, such that not only 

local field properties but also some global properties (such as anisotropy) cannot be 

addressed.  

In this respect, two distinct approaches seem to have emerged. The first approach is based 

on lubrication theory and considers the pores of a porous medium as a bunch of capillary 

tubes which are tortuous or interconnected in a network (Bird et al. 2001). Even though 

this model has been used successfully for isotropic porous media, it does not work well 

for either axial or transverse permeability of aligned fibrous media (Bruschke et al. 

1993). 

The second approach (cell method) considers the solid matrix as a cluster of immobile 

solid obstacles, which collectively contribute Stokes resistance to the flow. For a review 

of these theories see Dullien 1992 and Bird et al. 2001. When the solids are dilute, i.e., at 

high porosities, basically the particles do not feel each other, so that cell approach is 

appropriate. Bruschke and Advani (1993) used lubrication theory in the high fiber 

volume fraction range but adopted an analytical cell model for lower fiber volume 

fractions. A closed form solution, over the full fiber volume fraction range, is obtained by 

matching both solutions asymptotically. 

Prediction of the permeability of fibrous media dates back to experimental work of 

Sullivan (1942) and theoretical works of Kuwabara (1959), Hasimoto (1959), and Happel 

(1959). The parallel flow solutions are idealized solutions for the flow through cigarette 

filters, plant stems and around pipes in heat exchange tanks. The transverse solutions are 

applicable to transverse fibrous filters used for cleaning liquids and gases and regulating 

their flow. Both types of solutions can also be applicable to the settling of suspensions of 

long thin particles. A comprehensive review of experimental works of permeability 

calculation of these systems is available in Jackson et al. (1986) and Astrom et al. (1992).  

Later, Sangani and Acrivos (1982), performed analytical and numerical studies of the 

viscous permeability of square and staggered arrays of cylinders. Their analytical models 

were accurate in the limits of low and high porosity. For high densities they obtained the 

lubrication type approximations for narrow gaps. Drummond and Tahir (1984) modeled 

the flow around a fiber using a unit cell approach (by assuming that all fibers in a fibrous 

medium experience the same flow field) and obtained equations that are applicable at 
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lower volume fractions. Gebart (1992) presented an expression for the longitudinal flow, 

valid at high volume fractions, that has the same form as the well-known KC equation. 

For transverse flow, he also used the lubrication approximation, assuming that the narrow 

gaps between adjacent cylinders dominate the flow resistance. Using the Eigen-function 

expansions and point match methods, Wang (2002) studied the creeping flow past a 

hexagonal array of parallel cylinders.  

Our literature survey indicates that relatively little attention has been paid to the 

macroscopic permeability of ordered periodic fibrous materials. More importantly, the 

majority of the existing correlations for permeability are based on curve-fitting of 

experimental or numerical data and most of the analytical models found in the literature 

are not general and fail to predict permeability over the wide range of porosity, since they 

contain some serious assumptions that limit their range of applicability.  

In this study, periodic arrays of parallel cylinders (with circular, ellipse and square cross-

section) perpendicular to the flow direction are considered and studied with a FE based 

model in section 2. The effects of shape and orientation as well as porosity and structure 

on the macroscopic permeability of the porous media are discussed in detail. In order to 

relate our results to available work, the data are compared with previous theoretical and 

numerical data for square and hexagonal packing configurations and a closed form 

relation is proposed in section 3 in the attempt to combine our various simulations. The 

paper is concluded in section 4 with a summary and outlook for future work. 

 

 
2. Results from FE simulations 

 

This section is dedicated to the FE based model simulations and the results on 

permeability as function of porosity, structure, shape and anisotropy. 

 

2.0. Introduction and Terminology  

The superficial velocity, U, within the porous media in the unit cell is defined as 

uudv
V

U
fV

ε== ∫
1

  ,                                                                                                        (1) 
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where u, u , V, Vf  and ε  are the local microscopic velocity of the fluid, corresponding 

averaged velocity, total volume, volume of the fluid and porosity, respectively. For the 

case where the fluid velocity is sufficiently small (creeping flow), the well-known 

Darcy’s law relates the superficial fluid velocity U through the pores with the pressure 

gradient, p∇ , measured across the system length, L, so that 

p
K

U ∇−=
µ

  ,                                                                                                                   (2) 

where µ and K are the viscosity of the fluid and the permeability of the sample, 

respectively. At low Reynolds numbers, which are relevant for most of the composite 

manufacturing methods, the permeability depends only on the geometry of the pore 

structure. By increasing the pressure gradient, we observed a typical departure from 

Darcy’s law (creeping flow) at sufficiently high Reynolds number, Re>0.1 (data not 

shown here). In order to correctly capture the influence of the inertial term, Yazdchi et al. 

(2010) showed that the original Darcy’s Law can be extended with a power law 

correction with powers between 2 and 3 for square or hexagonal configurations. Hill et al. 

(2001) examined the effect of fluid inertia in cubic, face-centered cubic and random 

arrays of spheres by means of lattice-Boltzmann simulations. They found good agreement 

between the simulations and Ergun correlation at solid volume fractions approaching the 

closely-packed limit at moderate Reynolds number (Re<100). 

Recently, models based on Lagrangian tracking of particles combined with computational 

fluid dynamics for the continuous phase, i.e., discrete particle methods (DPM), have 

become state-of-the-art for simulating gas-solid flows, especially in fluidization processes 

(see e.g. Kuipers et al. 1993). In this method, two-way coupling is achieved via the 

momentum sink/source term, Sp which models the fluid-particle drag force 

( )p pS u vβ= − ,                                                                                                              (3) 

where the interphase momentum-transfer coefficient,β , describes the drag of the 

gas/fluid phase acting on the particles and vp is the velocity of particles. (Additional 

effects like the added mass contributions are disregarded here for the sake of simplicity.) 

In steady state, without acceleration, wall friction, or body forces like gravity, the fluid 

momentum balance reduces to 



 6 

( ) 0pp u vε β− ∇ − − = .                                                                                                    (4) 

By comparing Eqs. (2) and (4), using the definition of Eq. (1), and assuming immobile 

particles, i.e., 0=pv , the relation between β  and permeability K is 

K

2µεβ =   .                                                                                                                        (5) 

Accurate permeability data, therefore, is a critical requirement in simulations based on 

DPM to be successfully used in the design and optimization of industrial processes.  

In the following, results on the permeability of two-dimensional (2D) regular periodic 

arrays of cylinders with different cross section are obtained by incorporating detailed FE 

simulations. This is part of a multiscale modeling approach and will be very useful to 

generate closure or coupling models required in more coarse-grained, large-scale models. 

 

2.1. Mathematical formulation and boundary conditions 

Both hexagonal and square arrays of parallel cylinders perpendicular to the flow direction 

are considered, as shown in Fig. 1. The basis of such model systems lies on the 

assumption that the porous media can be divided into representative volume elements 

(RVE) or unit cells. The permeability is then determined by modeling the flow through 

one of these, more or less, idealized cells. FEM software (ANSYS) is used to calculate 

the superficial velocity and, using Eq. (2), the permeability of the fibrous material. A 

segregated, sequential solution algorithm is used to solve the steady state Navier-Stokes 

(NS) equations combined with the continuity equation. In this approach, the momentum 

equations (i.e. NS equations) are used to generate an expression for the velocity in terms 

of the pressure gradient. This is used in the continuity equation after it has been 

integrated by parts. This nonlinear solution procedure belongs to a general class of the 

Semi-Implicit Methods for Pressure Linked Equations (SIMPLE). The developed 

matrices from assembly of linear triangular elements are solved based on a Gaussian 

elimination algorithm. It is robust and can be used for symmetric as well as non-

symmetric equation systems but requires extensive computational memory already in 2D. 

At the left and right pressure- and at the top and bottom periodic-boundary conditions are 

applied. The no-slip boundary condition is applied on the surface of the particles/fibers. 

A typical unstructured, fine and triangular FE mesh is also shown in Fig. 1(c). The mesh 
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size effect is examined by comparing the simulation results for different resolutions (data 

are not shown here). The range of number of elements is varying from 103 to 104 

depending on the porosity regime. It should be noted that in Darcy’s linear regime 

(creeping flow) – although we have applied pressure boundary conditions at left and right 

– identical velocity profile at inlet and outlet are observed, due to the symmetry of this 

geometry and linearity. However, by increasing the pressure gradient (data not shown), 

the flow regime changes to non-linear and becomes non-symmetric. Furthermore, 

because of the symmetry in the geometry and boundary conditions, the periodic boundary 

condition and symmetry boundary condition, i.e., zero velocity in vertical direction at top 

and bottom of the unit cells, will lead to identical results (as confirmed by simulations – 

data not shown). 

 

 

 

 

 

 

                                    (a)                                                           (b) 

 

 

 

 

 

 

 

 

 

                                                               (c) 

Figure 1: The geometry of the unit cells used for (a) square and (b) hexagonal 

configurations, with angles 450 and 600 between the diagonal of the unit-cell and the 

Flow direction 
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horizontal flow direction (red arrow), respectively.  (c) shows a typical quarter of an 

unstructured, fine and triangular FE mesh.   

 

 

2.2. Permeability of the square and hexagonal arrays 

Under laminar, steady state condition, with given viscosity, the flow through porous 

media is approximated by Darcy’s law. By calculating the superficial velocity, U, from 

our FE simulations and knowing the pressure gradient, p∇ , over the length of the unit 

cell, L, we can calculate the dimensionless permeability (normalized by the cylinder 

diameter, d), K/d2. In Table 1, various correlations from the literature are listed. The first 

relation by Gebart (1992) has a peculiar analytical form and is valid in the limit of high 

density, i.e., low porosity – close to the close packing limit εc (the same as Bruschke et al. 

(1993) in the low porosity limit, with maximum discrepancy less than 1%). Note that the 

relations by Happel (1959), Drummond et al. (1984), Kuwabara (1959), Hasimoto 

(1959), and Sangani et al. (1982) are all identical in their first term – that is not dependent 

on the structure – in the limit of small solid volume fraction φ, i.e., large porosity. In 

contrast, their second term is weakly dependent on the structure (square or hexagonal). 

Bruschke et al. (1993) proposed relations that are already different in their first term. The 

last two relations in the table are only valid in intermediate porosity regimes and do not 

agree with any of the above relations in either of the limit cases.   

In Fig. 2, the variation of the (normalized) permeability, K/d2, with porosity, for square 

and hexagonal packings is shown. The lubrication theory presented by Gebart (1992) 

agrees well with our numerical results at low porosities ( 0.6ε ≪ ), whereas, at high 

porosities ( 0.6ε ≫ ), the prediction by Drummond et al. (1984) better fits our data. 

Drummond et al. (1984) have found the solution for the Stokes equations of motion for a 

viscous fluid flowing in parallel or perpendicular to the array of cylinders by matching a 

solution outside one cylinder to a sum of solutions with equal singularities inside every 

cylinder of an infinite array. This was in good agreement with other available 

approximate solutions, like the results of Kuwabara (1959) and Sangani et al. (1982) at 

high porosities, as also confirmed by our numerical results (data not shown).  Note that 
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our proposed merging function in section 3.4, fits to our FE results within 2% error for 

the whole range of porosity. 
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Figure 2: Normalized permeability plotted against porosity for (a) square and (b) 
hexagonal packing for circular shaped particles/cylinders with diameter d, for 

perpendicular flow. The lines give the theoretical predictions, see inset. For high 
porosities, the difference between Gebart (1992) and Drummond et al. (1984), in the 

(a)        Square configuration 

(b)       Hexagonal configuration 
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hexagonal configuration, is less than 5%, while for the square configuration it is less than 
30%. 

   

 

Table 1: Summary of correlations between normalized permeability, K/d2 and porosity, 
with 1φ ε= − , the solid volume fraction.   

Author K/d2 Comments 

Gebart (1992) 

5/ 2

1
1

1
cC

ε
ε

 − −  −  ( )

4
, 1 / 4

9 2
4

, 1 / 2 3
9 6

c

c

C

C

ε π
π

ε π
π

 = = −  
 
 = = −
  

 Square configuration: 2s
GK d   

Hexagonal config.: 2h
GK d  

Bruschke  
et al. (1993) 

( )
1

1
22 2

3 2

1
tan

1 1
3 1

12 21

l
l l l

l
l l

−

−
  +
  − −   + + − 
 
 

 

Lubrication theory, square 

config.: ( )ε
π

−= 1
42l  

Drummond et 
al. (1984) 

2

2

1 1 2 0.796
ln 1.476

32 1 0.489 1.605

φ φ
φ φ φ φ
   −− +   + −  

 

2 5
41 1 2.534

ln 1.497 2 0.739
32 2 1 1.2758

φ φφ φ
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Square configuration: 2s
DK d   

Hexagonal config.: 2h
DK d  

Bruschke  
et al. (1993) 

2

2
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ln 2

32 2 2

φφ
φ φ
  − + −  
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Kuwabara 
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φφ
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  −  
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2.3. Effect of shape on the permeability of regular arrays 

In this subsection, we investigate the anisotropic behavior of permeability due to particle 

shape in square configuration. Using elementary algebraic functions, Zhao et al. (2006a) 

derived the analytical solutions for pore-fluid flow around an inhomogeneous elliptical 

fault in an elliptical coordinate system. Obdam and Veling (1987) employed the complex 

variable function approach to derive the analytical solutions for the pore-fluid flow within 

an elliptical inhomogeneity in a two-dimensional full plane. Zimmerman (1996) extended 

their solutions to a more complicated situation, where a randomly oriented distribution of 

such inhomogeneous ellipses was taken into account. Wallstrom et al. (2002) later 

applied the two-dimensional potential solution from an electrostatic problem to solve a 

steady-state pore-fluid flow problem around an inhomogeneous ellipse using a special 

elliptical coordinate system. More recently, Zhao et al. (2008) used inverse mapping to 

transform those solutions into a conventional Cartesian coordinate system.  

Here, in order to be able to compare different shapes and orientations, the permeability 

will be normalized with respect to the obstacle length, Lp, which is defined as 

 

Lp = 4 area / circumference 

Lp = 2r = d (for circle),   Lp = c (for square),   Lp = 4πab / AL (for ellipse)                       (6) 

 

where r, c, a and b are the radius of the circle, the side-length of the square, the major 

(horizontal) and minor (vertical) length of the ellipse, respectively. AL is the 

circumference of the ellipse.  

By applying the same procedure as in the previous section, the normalized permeability 

(with respect to obstacle length, Lp) is calculated for different shapes on a square 

configuration.  

In Fig. 3 the normalized permeability is shown as function of porosity for different 

shapes. At high porosities the shape of particles does not affect much the normalized 

permeability, but at low porosities the effect is more pronounced. We observe that circles 

have the lowest and horizontal ellipses the highest normalized permeability. 
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Figure 3: Effect of shape on the normalized permeability from a square packing 

configuration of circles, squares and ellipses (a/b=2, major axis in flow direction). The 

lines are only connecting the data-points as a guide to the eye. 

 

2.4. Effect of aspect ratio on the permeability of regular arrays of ellipses 

In this subsection the effect of aspect ratio, a/b on the normalized permeability of square-

arrays of ellipses is investigated. In fact, the case of high aspect ratio at high porosity 

represents the flow between parallel plates (slab flow). The relation between average 

velocity, u , and pressure drop for slab flow is 

2

12
sh p

u
Lµ

∆= −                                                                                                                  (7) 

where hs is the distance between parallel plates (in our square configuration, in the limit 

/ 1a b≫ , one has hs=L=1). Note that, since there are no particles, 1ε = , the average and 

superficial velocities are identical, i.e., u U= . By comparing Eqs. (7) and (2) the 

permeability, i.e., 2 /12sK h=  is obtained, which indeed shows the resistance due to no 

slip boundaries at the walls. The variation of permeability for a wide range of aspect 

ratios at different porosities is shown in Fig. 4. It is observed (especially at high 
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porosities) that by increasing the aspect ratio the permeability increases until it reaches 

the limit case of slab flow for which the permeability is 2 /12 0.0833sK h= =  [m2]. The 

aspect ratio b/a <1 means that the ellipse stands vertically and therefore the permeability 

reduces drastically.  
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Figure 4: Effect of aspect ratio on the permeability of square configurations of ellipses 

with different porosities as given in the inset. The lines are only connecting the data-

points as a guide to the eye. 

 

2.5. Effect of orientation on the permeability of regular arrays 

By changing the orientation (θ), i.e., the angle between the major axis of the obstacle and 

the horizontal axis, not only the values of the permeability tensor will change, but also its 

anisotropy will show up (so that the pressure gradient and the flow velocity are not 

parallel anymore). Therefore, the geometry of the pore structure has great effect on the 

permeability in irregular fibrous media. This effect for squares and ellipses (a/b = 2) is 

shown in Fig. 5.  
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For square shapes, at high porosities, the orientation does not much affect the 

permeability, whereas at low porosities the permeability depends a lot on the orientation. 

At θ = 450 we observe a drop in permeability, because we are close to the blocking 

situation, i.e., zero permeability, at a critical porosity (at which the permeability drops to 

zero) of ( )2

1
1 0.5

2sin 45cε
θ

= − =
+

.  

For ellipses, at high porosity, the orientation does not affect the permeability, whereas at 

low porosities the effect is strong. By increasing the orientation angle, i.e., by turning the 

major axis from horizontal to vertical, the permeability is reduced. The critical porosity 

εc≈0.6073 is purely determined by the major axis of the ellipse for θ = 900.  
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Figure 5: Effect of orientation (θ) on the normalized permeability for (a) square and (b) 

ellipse (a/b=2) in square packing configurations at different porosity. The lines are only 
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The general form of Darcy’s law for anisotropic media in 2D in matrix form can be 

written as 

11 12

21 22

1x

y

p
U K K x

pK KU
y

µ

∂ 
     ∂   = −     ∂     

∂  

  ,                                                                                    (8) 

where <Ux> and <Uy> are superficial velocities in x and y direction, respectively. Then 

the permeability tensor for any value of θ  can be calculated as 

011 12

9021 22

0

0
T KK K

K R R
KK Kθ

  
= =   
   

                                                                                (9) 

where 0K  and 90K  are the principal values of permeability that are determined from the 

values of 00=θ  and 090=θ , respectively. In Eq. (9), RT is the transposed of the rotation 

matrix R, defined as (counterclockwise rotation by θ ) 

( ) ( )
( ) ( ) 





 −
=

θθ
θθ

cossin

sincos
R                                                                                                    (10) 

Eq. (9) shows that for 00 90,0≠θ , one has 012 ≠K , which means that by applying a 

pressure gradient in x direction, one gets a superficial velocity in y direction (i.e. 

anisotropic behavior because of oriented shape). Our numerical results are in good 

agreement with theoretical predictions (Eq. (9)) especially at high porosities (see the solid 

lines in Fig. 6). We have more deviation at low porosities (maximum discrepancy ≈ 5%) 

because of channel blockage and changes in flow behavior (the comparison is not shown 

here). 

In Fig. 6, the variation of normalized permeability is shown as a function of the 

orientation angle θ . The normalized permeability is symmetric to 900 and decreases by 

increasing the orientation angle from 00. The eigenvalues of the permeability tensor are 

the extrema of the curves and the other data are well fitted by 

( ) ( ) ( )2
0 90 0 902 cos 2 2pK L K K K K θ= + + − . By decreasing the aspect ratio a/b, we 

approach the value for the circular (cylinder) obstacle, i.e., a/b =1. The normalized 

permeability is symmetric to 450 for square shapes. 
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Figure 6: Normalized permeability plotted against orientation angle for different shapes 

at porosity 85.0=ε , for different obstacle shapes in square configurations. The dashed 

line represents circles. The solid lines show the theoretical predictions according to Eq. 

(9), where the eigenvalues are taken from the 00, 900 and 00, 450 degrees for ellipses and 

squares simulations, respectively.  

 

2.6. Effects of staggered cell angle 

In this subsection, the effect of another micro-structural parameter, the staggered cell 

angle, α , on the normalized permeability for circles (Lp=d) is discussed. The staggered 

angle is defined between the diagonal of the unit-cell and flow-direction (horizontal), see 

Fig. 7. In addition to the special cases o45=α  and o60=α , i.e., square and hexagonal 

packings, respectively, several other angles are studied. The contour of the horizontal 

velocity field component, for different α , at constant porosity 0.7ε = , is shown in Fig. 

7. By changing α , the flow path and also the channel length will change. At 070=α  and 

higher, the flow mainly follows a straight line, indicated by arrows in Fig. 7(a), with large 

superficial velocity and consequently large values of permeability. However, by 

decreasing α  down to 350, the flow pattern completely changes and the superficial 
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velocity reduces, which should lead to lower and lower permeability. In brief, with 

increasing angle, both the superficial velocity and the permeability increase, with a 

plateau around o45=α .  

                    
(a)    (b) 

                   
(b)   (d)      
 

 

 

Figure 7: Horizontal velocity field components for (a) 060=α , (b) 050=α , (c) 

040=α and (d) 035=α  at fixed porosity ε = 0.7. The arrows indicate the main flow 

channel in (a) and (b). The staggered angle is defined between the diagonal of the unit-

α  

0           0.03          0.06          0.09         0.12          0.15         0.18         0.21         0.24 [m/s]     
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cell and flow-direction (horizontal). The minimal angle 
( )1 0

min

2 1
tan 10.81

ε
α

π
−  −

= = 
 

 

is realized when the vertical opening is closed, while the maximal angle 

( )
1 0

max tan 79.18
2 1

πα
ε

−  
= =  − 

 corresponds to the closed horizontal pore. 

 

In Fig. 8 the normalized permeability is shown as function of the staggered angle, α , at 

different porosities. As it is seen the arrangement of particles relative to the flow 

direction is important in determining the permeability. By increasing α , the normalized 

permeability increases (the vertical distance between particles increases and therefore the 

resistance to the flow decreases) until it reaches a local maximum at 035≅α  – 

consistently for different porosities. At larger angles, it slightly decreases and attains a 

local minimum at 055≅α , beyond which it increases rapidly again. This behavior can be 

explained by the variation of the area-fraction distribution with α  on the planes 

perpendicular to the flow direction, as discussed by Alcocer et al. (1999). 

The normalized permeability as a function of α  can be expressed as a cubic polynomial 

3 20 0 0

2 0 0 0

45 45 45
A B C D

45 45 45

K

d

α α α     − − −= + + +     
     

                                          (11) 

where A, B, C and D are dimensionless constants, listed in Table 2 for different 

porosities. 
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Figure 8: The variation of normalized permeability versus staggered unit cell angle α at 

different porosities, as given in the inset. The solid lines show the fit (Eq. (11)) 

  

Table 2: Fitted parameters for the permeability-staggered angle relation 

 8.0=ε  7.0=ε  6.0=ε  
A 0.38401 0.18813 0.09913 
B 0.02682 0.01738 0.01171 
C -0.03693 -0.01914 -0.01027 
D 0.07698 0.02584 0.009319 

 

The leading term with A is dominating, the term with B is a rather small correction, the 

term with C sets the (negative) slope in the center, and the term with D determines the 

offset. All fit-parameters depend on porosity and it should be noted that the range of 

available angles is limited and also depends on porosity. Additional scaling- and fit-

attempts (data not shown) did not lead to much better results, thus we only present this 

empirical fit here. 

The decreasing region, i.e., 0 035 55α≤ ≤  corresponds to the case in which the flow goes 

in a preferred channel orthogonal/perpendicular to the line (diagonal) connecting two 

particles, see Figs. 7(b) and (c). While in cases with larger α , the flow goes at straight 
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lines/channels, see Fig. 7(a), the configuration for smaller α  is dominated by the narrow 

vertical opening between two obstacles. In essence, in the plateau region, the 

permeability is not much affected by the staggered angle α . This observation might be 

useful during design and manufacturing of fibrous composites.  

In summary, the results of this section show that the macroscopic permeability not only 

depends on the porosity but also on the microstructure, namely shape, aspect ratio and 

orientation of particles.  

 

 

3. Theoretical prediction of the permeability for all porosities 

 

In this section, based on the observations in the previous section, and using the velocity 

profiles from FE unit cell simulations, a generalized form of the Carman Kozeny (CK) 

equation for the permeability of fibrous porous media (2D regular arrays of particles) is 

proposed. 

 

3.1 From special cases to a more general CK equation 

The earliest and most widely applied approach in the porous media literature, for 

predicting the permeability, involves capillary models (Carman 1937) such as the one 

that leads to the CK equation. The approach to obtain this equation is based on Poiseuille 

flow through pipes. Assuming pipe flow through a cylindrical channel of diameter hp, the 

average velocity through the channel is 

2

32
p

p

h p
u

Lµ
∆= −   ,                                                                                                          (12) 

and for slab flow through an infinite channel of width hs 

2

12
s

s

h p
u

Lµ
∆= −   ,                                                                                                           (13) 

given the pressure drop p∆  per length L, and a fluid with viscosity µ . 

Defining the hydraulic diameter  

volume available for flow
4

total wetted surfacehD =   ,                                                                               (14) 
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allows to unify the relations above, by combining Eq. (14) with either Eq. (12), with 

h pD h= , or Eq. (13), with 2h sD h= , and with Darcy’s law, Eq. (2), so that the 

permeability is described by the CK relation (Carman 1937) 

2
h

CK

u D
K

p

εµ ε
ψ

= =
∇

                                                                                                           (15) 

Where, CKψ =32 (or 48) is the dimensionless Kozeny factor, characteristic of the pipe (or 

slab) pore structure. When one has obstacles like fibers (or particles) instead of straight 

pores, the hydraulic diameter can be re-written as 

( ) ( ) ( )
4 4 particle surface 4

, with
1 1 particle volume 1

v
h v

v v

SV d
D a

S a V d

ε ε ε
ε ε ε

= = = = = =
− − −

  ,            (16) 

with the total volume of the unit cell, V, the total wetted surface, Sv, the specific surface 

area, av, and the porosity, ε, for a fibrous medium of fiber diameter d. Note that the 

hydraulic diameter, in this way, is expressed as a function of the measurable quantities 

porosity and specific surface area. The above value of av is for circles (cylinders) – for 

spheres one has av=6/d. In this formulation, we just consider the resistance due to 

presence of particles (no slip boundaries at the surface of the particles) and neglect the 

outer walls. 

Inserting Eq. (16) into Eq. (15), yields the normalized permeability for fibers 

( )
3

22

1

1CK

K

d

ε
ψ ε

=
−

  ,                                                                                                        (17) 

which depends non-linearly on the porosity and on a shape/structure factor, CKψ .  

 
One of the main drawbacks of the CK equation is that the Kozeny factor CKψ  is a-priori 

unknown in realistic systems and has to be determined experimentally. An ample amount 

of literature exists on the experimental and theoretical determination of the Kozeny 

factor, but we are not aware of a theory that relates CKψ  with the microstructure, i.e., the 

porosity, the random configuration, tortuosity, and other microscopic quantities. An 

overview of experimental and theoretical approaches can be found in Astroem et al. 

(1992), which mainly deals with fibrous media, and Torquato (1991), which is based on 

variational principles. One of the most widely accepted approaches to generalize the CK 
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relation was proposed by Carman (1937), who noticed that the streamlines in a porous 

medium are far from being completely straight and parallel to each other. This effect can 

be described by a dimensionless parameter, Le/L (tortuosity), with the length of the 

streamlines, Le, relative to the length of the sample, L. Hence the Kozeny factor can be 

split into 

2

e
CK

L

L
ψ  = Φ  

 
                                                                                                                (18) 

where Φ  is the effect of particle shape, which can be seen as a fitting parameter. In fact, 

the tortuosity and the shape factor reflect the effects of microstructure on the macroscopic 

properties (like permeability) of the porous media.  

In the original form of the CK equation for random 3D sphere structures, it is assumed 

that the tortuosity is a constant for all ranges of porosities and is equal to 2  and the 

fitting parameter, Φ , then becomes 90 for the case of pipe flow and 60 for slab flow.  

Knowing the values of the normalized permeability from our FE simulations, we can 

compare the values of the Kozeny factor based on our numerical results and available 

theoretical data and with the original CKψ =120 for slab flow, see Eqs. (17) and (18). The 

comparison is shown in Fig. 9. At a certain range of porosities, 7.05.0 << ε , the CK 

factor CKψ  is indeed not varying much. However, at higher or lower porosities, it 

strongly depends on porosity and structure. At high and low porosities, our numerical 

results are in good agreement with the predictions of Drummond et al. (1984) and Gebart 

(1992), respectively (see Table 1). These results indicate that the Carman-Kozeny factor, 

CKψ , is indeed not constant and depends on the microstructure. 

In the following subsections, we will study the dependency of CKψ  on the micro-

structural parameters. 
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Figure 9: Kozeny factor plotted as a function of porosity for different models (lines) and 

data sets (symbols) as given in the inset. 

 

3.2. Measurement of the tortuosity (Le/L) 

As discussed before, the tortuosity is the average effective streamline length scaled by 

system length, Le/L, and one possible key parameters in the Kozeny factor in the CK 

equation (Carman 1937). From our numerical simulations, we extract the average length 

of several streamlines (using 8 streamlines that divide the total mass in-flux into 9 zones, 

thus avoiding the center and the edges). By taking the average length of these lines, the 

tortuosity can be obtained, while by taking the standard deviation of the set of 

streamlines, the homogeneity of the flow can be judged. The tortuosity is plotted in Fig. 

10 as function of porosity for different shapes and orientations and as function of the 

staggered angle α  for different porosities.  

Unlike the traditional form of the CK equation, which assumes that / 2eL L =  (for 

random 3D structures) is constant (Carman 1937), our numerical results show that the 

tortuosity (i) is smaller and (ii) depends on the porosity and the pore structure. In 

Fig.10(a), as intuition suggests, the vertical and horizontal ellipses have the highest and 



 25 

lowest average tortuosity, respectively. This goes ahead with very large and very small 

standard deviation, i.e., the vertical ellipse configuration involves the widest spread of 

streamline lengths. In the case of a circular shape obstacle, the (average) tortuosity is 

between the horizontal and vertical ellipse cases and, for intermediate porosity, becomes 

almost independent of porosity, with constant standard deviation that is wider than the 

average tortuosity deviation from unity. The square shape obstacles are intermediate in 

tortuosity, i.e., the 00-square (450-square) shapes take tortuosity values between the 

horizontal (vertical) ellipse and the circular obstacles. 

In Fig. 10(b), the tortuosity is plotted against the staggered unit cell angle α . By 

increasing α  the value of tortuosity increases until about 045≅α , where it reaches its 

maximum. Note that the standard deviation remains small for all angles smaller than 

045≅α . At higher angles, tortuosity decreases, while its standard deviation considerably 

increases. At large values of α , most of the fluid flow goes along a straight line, 

however, near the boundary, we have a few longer streamlines that cause the large 

standard deviation. At the limit case of maxα α≈ , when the upper particles touch, see Fig. 

7, the tortuosity approaches unity (data not shown) and the flow goes mostly along a 

straight channels.  

 

3.3. Measurement of the shape/fitting factor ( Φ ) 

Knowing the values of tortuosity, Le/L, and normalized permeability, K/d2, from our FE 

simulations, we can obtain the values of Φ  for different shapes and orientations as 

2

e
CK

L

L
ψ  Φ =  

 
. In Fig. 11 the variation of Φ  as a function of porosity for different 

shapes and orientations is shown. Unlike the traditional CK factor, the shape/fitting factor 

is not only a function of porosity but also depends on the orientation of 

particles/cylinders. This dependency is more pronounced at high (low) porosities and 

close to the blocking conditions, i.e., ellipses with 900 and squares with 450.  
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Figure 10: Tortuosity ( )LLe /  (a) plotted as a function of porosity for different obstacle 

shapes and orientations on square configurations, o45=α , (b) plotted as a function of the 

staggered cell angle, α , as given in the inset, for circles at different porosities on 

hexagonal configurations. Error bars give the standard deviation of the 8 streamline 
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lengths, where bottom-values below unity indicate a highly non-symmetric distribution 

around the average. 
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Figure 11: Shape/fitting factor, Φ , plotted as a function of porosity for different obstacle 

shapes and orientations on square configurations, o45=α . The straight dashed line 

shows the value of 60Φ =  as in the original CK factor. 

 

3.4. Corrections to the limit theories 

Being unable to explain the variation of permeability with tortuosity and a constant shape 

factor, now we attempt to optimize/correct the limit theories by Gebart (1992) and 

Drummond et al. (1984), see Table 1, in order to propose an analytical relation for the 

permeability that is valid for all porosities and for square and hexagonal arrays of 

cylinders. 

 

3.4.1 Square configuration 

Assuming one particle at the center, pressure boundary at the left and right and periodic 

top and bottom, we correct the original Gebart relation from Table 1, s
GK , by a linear 

correction term ( )2
2

1

1
s s
G G

c

K K
g ε ε

=
+ −

, with g2=0.336. After observation of a linear 
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correction term in the denominator, the linear least square method is used to get the 

coefficient 2g . In contrast to s
GK , which asymptotically approaches the limit case, 

cε ε→ , but for 0.6ε ≈  deviates already by about 10%, the correction, KG2, has a 

maximum discrepancy in the range 0.85cε ε< <  of less than 10%, and for 0.7cε ε< <  

of less than 2%, see the squares in Fig. 12.  

Since the Drummond relation from Table 1, s
DK , is valid at high porosities with 

maximum discrepancy at 0.7 1ε< <  of less than 10% and for 0.8 1ε< <  of less than 2%, 

we propose the following merged function  

( ) ( )2 2 ,s s s s
G D GK K K K m ε= + − with ( ) ( )( )1 tanh /

,
2

h t
m

ε ε ε
ε

+ −
=  0.75, 0.037h tε ε= = , 

that is valid for the whole range of porosity, with deviations of less than 2% that also 

includes the analytical relations for the limit cases. While the choice of m(ε) is arbitary, 

the non-linear least square fitting procedure is used to obtain the empirical coefficients hε   

and tε . The error of these coefficients is defined by their standard deviation. 
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Figure12: Relative error between FEM results and proposed corrections for square 

configuration with the critical porosity 1 / 4cε π= − . 

                            
 



 29 

3.4.2 Staggered hexagonal configuration 060α = : 

In this situation, the correction to the Drummond relation from Table 1 is 

( )2 1 21h h
D DK d K d ε= + , ( ) ( )2 ,h h h h

G D GK K K K m ε= + −  with d1=0.942, d2=0.153, 

0.55, 0.037h tε ε= = , leads to a corrected permeability for all porosities, with a 

maximum error of less than 2%, see Fig. 13. 
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Figure 13: Relative error between FEM results and proposed fits for hexagonal 

configuration with the critical porosity ( )1 / 2 3cε π= − . 

 

 

4. Summary and Conclusions 

 

The permeability of porous structures is an important property that characterizes the 

transport properties of porous media; however, its determination is challenging due to its 

complex dependence on the microstructure of the media. Using an appropriate 

representative volume element, transverse flow in aligned, periodic fibrous porous media 

has been investigated based on high resolution (fine grid) FE simulations. This is 
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complementary to previous studies by Hill et al. (2001) and Van der Hoef et al. (2005) 

who obtained the drag/permeability relation for random arrays of mono- and bi-disperse 

spheres at low and moderate Reynolds numbers. In all of our simulations, the total 

pressure drop has been chosen small, such that we are always in Darcy’s regime 

(creeping flow). In particular, the effects of different parameters including fiber (particle) 

shape, aspect ratio, orientation, and staggered unit cell angle on the normalized 

permeability are measured and discussed in detail for the full range of porosities. The 

conclusions are: 

• The present results for the permeability are validated by comparing with available 

theoretical and numerical data for square and hexagonal arrays over a wide range 

of porosities. Especially in the limits of high and low porosity, agreement with 

previous theoretical results is established. 

• By increasing the staggered unit cell angle, α  (where 60 degrees corresponds to 

the hexagonal array), from the blocked configuration with minimal angle αmin, the 

normalized permeability increases until it reaches its local maximum at 035≅α . 

Then it decreases a bit (almost plateau) until it reaches its local minimum at 
055α ≅ . From there it increases again until a maximum porosity is reached at 

αmax. The best-fit (3rd order) polynomials at different porosities are presented as 

reference for later use. 

• By increasing the orientation angle of the ellipses (here the longer axis of ellipses 

was used to define the orientation relative to the flow direction), the permeability 

decreases and shows its anisotropy. The permeability values for the extreme 

cases, i.e., eigenvalues at 00 and 900, are used to predict the permeability for 

arbitrary orientation angles, see Eq. (9).  

• By increasing the aspect ratio of horizontal ellipses, the permeability increases 

and approaches the permeability of slab flow, i.e., 2 /12 0.0833sK h= =  [m2] at 

high porosities. 

• Using the hydraulic diameter concept the permeability can be expressed in the 

general form of the (Carman-Kozeny) CK equation. Our numerical results show 

that the CK factor not only depends on the porosity but also on the pore structure, 

namely particle shape, orientation and staggered angle α .  

• The numerical results show that immobile circles and ellipses have the lowest and 

highest permeability, respectively. The relevance of this observation for flows of 

gas/fluid-solid with moving non-spherical particles is an open question. 
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Since analytical forms with the power as a free fit-parameter are neither consistent with 

the highest porosity asymptote, nor with the lowest porosity limit case, those fits are only 

an attempt to describe the intermediate regime of practical importance with a closed 

functional form. In order to improve the analytical relation for the permeability, to be 

applied, e.g., for DEM-FEM coupling, we proposed a merged function that includes both 

limit cases of low and high porosity and is smooth in between with maximal deviation 

from our numerical results of less than 2%. 

Future work will investigate the creep and inertial flow regime through periodic and 

disordered arrays, the relation between microstructure and (macro) permeability, and the 

effect of the size of the system, especially for random/disordered structures. Since already 

the packing generation algorithm affects the permeability in random arrays of parallel 

cylinders, different procedures have to be compared and evaluated with respect to the 

microstructure. These results can then be utilized for validation of advanced, more 

coarse-grained models for particle-fluid interaction and their coupling-terms between the 

discrete element method (DEM) for the particles and the FEM or CFD solver for the 

fluid, in a multi-scale coarse grained approach. 
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