
Granular Matter manuscript No.
(will be inserted by the editor)

A local constitutive model with anisotropy for ratcheting
under 2D axial-symmetric isobaric deformation

V. Magnanimo · S. Luding

Accepted: 23.02.2011, Revised: 28.03.2011

Abstract A local constitutive model for anisotropic
granular materials is introduced and applied to isobaric
(homogeneous) axial-symmetric deformation. The sim-
plified model (in the coordinate system of the bi-axial
box) involves only scalar values for hydrostatic and
shear stresses, for the volumetric and shear strains as
well as for the new ingredient, the anisotropy modulus.

The non-linear constitutive evolution equations that
relate stress and anisotropy to strain are inspired by ob-
servations from Discrete Element Method (DEM) sim-
ulations. For the sake of simplicity, parameters like the
bulk and shear modulus are set to constants, while the
shear stress ratio and the anisotropy evolve with differ-
ent rates to their critical state limit values when shear
deformations become large.

When applied to isobaric deformation in the bi-axial
geometry, the model shows ratcheting under cyclic load-
ing. Fast and slow evolution of anisotropy with strain
(relative to the evolution of anisotropy in stress) lead
to dilatancy and contractancy, respectively. Further-
more, anisotropy acts such that it works “against” the
strain/stress, e.g., a compressive strain builds up anisotropy
that creates additional stress acting against further com-
pression.

1 Introduction

Dense granular materials show interesting behavior and
special properties, different from classical fluids or solids
[5, 9]. This involves dilatancy, yield stress, history de-
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pendence, as well as ratcheting [1, 2] and anisotropy
[6, 13,22–24] – among many others.

If an isotropic granular packing is subject to isotropic
compression the shear stress remains close to zero and
the isotropic stress can be related to the volume fraction
[8]. Under shear deformation, the shear stress builds
up until it reaches a yield-limit, as described by clas-
sical and more recent models, e.g. [11, 13, 23, 24]. Also
the anisotropy of the contact network varies, as related
to the opening and closing of contacts, restructuring,
and the creation and destruction of force-chains, as con-
firmed by DEM simulations [15, 25]. This is at the ori-
gin of the interesting behavior of granular media, but
is neglected in many continuum models of particulate
matter. Only few theories, see e.g. [2, 7, 15, 18–20, 22]
and references therein, involve an anisotropy state vari-
able. The influence of the micromechanics on the non-
coaxiality of stress, strain and anisotropy of soils is de-
scribed e.g. in [24]. This is an essential part of a con-
stitutive model for granular matter because it contains
the information how the different modes of deformation
have affected the mechanical state of the system. In this
sense, anisotropy is a history variable.

In the following, a recently proposed constitutive
model [17] is briefly presented and then applied to iso-
baric axial-symmetric deformation. The (classical) bulk
and shear moduli are constants here, in order to be able
to focus on the effect of anisotropy and the anisotropy
material parameters exclusively.

2 Model System

In order to keep the model as simple as possible, we re-
strict ourselves to bi-axial deformations and the bi-axial
orientation of the coordinate system. The bi-axial box



2

is shown schematically in Fig. 1, where the strain in the
2−direction is prescribed. Due to the bi-axial geometry
(assuming perfectly smooth walls), in the global coordi-
nate system one has the strain and the stress with only
diagonal components that, naturally, are the eigenval-
ues of the two coaxial tensors:

[ε] =
[
ε11 0
0 ε22

]
, [σ] =

[
σ11 0
0 σ22

]
. (1)

The system is subjected to a constant (isotropic) hy-
drostatic stress σ0, to confine the particles. The initial
strain and stress are:

[ε0] =
[
0 0
0 0

]
, [σ0] =

[
σ0 0
0 σ0

]
. (2)

Fig. 1 Illustration of the bi-axial model system with prescribed

vertical displacement ε22(t) < 0 and constant isotropic confining
stress σh = (σ11 + σ22)/2 = const. = σ0 < 0.

The sign convention for strain and stress of Ref.
[17] is adopted: positive (+) for dilatation/extension
and negative (–) for compression/contraction. There-
fore, compressive stresses like σ0 are negative. When
the top boundary is moved downwards, ε22 (the pre-
scribed strain) will have a negative value whereas ε11,
as moving outwards, will be positive.

In general, the strain can be decomposed into an
(isotropic) volumetric and a (pure shear) deviatoric part,
ε = εV + εD. The isotropic strain is

εV =
ε11 + ε22

2

[
1 0
0 1

]
=

1
D

tr(ε) I = εv I , (3)

with dimensionD = 2, unit tensor I, and volume change
tr(ε) = 2εv, invariant with respect to the coordinate
system chosen. Positive and negative εv correspond to
volume increase and decrease, respectively. Accordingly,
the deviatoric strain is:

εD = ε− εV =
ε11 − ε22

2

[
1 0
0 −1

]
= γ ID , (4)

where γ = ε11−ε22
2 is the scalar that describes the pure

shear deformation and ID is the traceless unit-deviator
in 2D: The unit-deviator has the eigenvalues, +1 and

–1, with the eigen-directions n̂(+1) = x̂1 and n̂(−1) =
x̂2, where the hats denote unit vectors.

The same decomposition can be applied to the stress
tensor σ = σH +σD, and leads to the hydrostatic stress

σH =
σ11 + σ22

2

[
1 0
0 1

]
=

1
D

tr(σ)I = σh I , (5)

and the (pure shear) deviatoric stress

σD = σ − σH =
σ11 − σ22

2

[
1 0
0 −1

]
= τID , (6)

with the scalar (pure) shear stress τ . According to their
definition, both γ and τ can be positive or negative.

Finally, one additional tensor that describes the dif-
ference of the material stiffnesses in 1− and 2−directions,
can be introduced: the structural anisotropy aD (second
order), related to the deviatoric fabric or stiffness/acoustic
tensor. Since in the bi-axial system the anisotropy ori-
entation is known, the tensor is fully described by the
scalar anisotropy modulus A:

aD = A ID . (7)

This leads to three elastic moduli, i.e., bulk-, shear-,
and anisotropy-modulus, respectively,

B =
1
2

[
C1111 + C2222 + 2λ

2

]
,

G = B − λ , and

A =
C1111 − C2222

2
,

where C1111, C2222 and λ = C1122 are elements of the
(rank four) stiffness/acoustic tensor of the system, which
in a general constitutive relation of anisotropic elastic-
ity, relates stress and strain increments [17]:

δσ = C : δε+ δσs . (8)

The first term in Eq. (8) is reversible (elastic), while
the second contains the stress response due to possibly
irreversible changes of structure. Using B, G, and A,
one can directly relate isotropic and deviatoric stress
and strain [17]:

δσh = 2Bδεv +Aδγ and δτ = Aδεv + 2Gδγ . (9)

In summary, for the bi-axial system, the tensors εD,
σD, and aD can be represented by the scalars γ, τ ,
and A, respectively, while the orientation is fixed to ID.
Change of sign corresponds to reversal of deformation-,
stress-, or anisotropy-direction.

As special case the model can describe isotropy, for
which the equality C1111 = C2222 holds, so that A = 0.
Then the second term in the isotropic stress and the
first term in the deviatoric stress Eqs. (9) vanish.
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In realistic systems, B will increase (decrease) due
to isotropic compression (extension) [8] and alsoG could
change due to both isotropic or shear deformation [3].
The constitutive models describing this dependence of
bulk and shear moduli on strain are in progress, but are
neglected here for the sake of simplicity: Only constant
B and G are considered, which is a reasonable assump-
tion for isobaric deformations that do not much change
the volume, as will be shown below.

2.1 Model with evolution of anisotropy

When there is anisotropy in the system, a positive A in
Eqs. (9), in our convention, means that the horizontal
stiffness is larger than the vertical (A < 0 implies the
opposite).

Discrete Element Method simulations [14, 15] of an
initially isotropic system, with A0 = 0, show that dur-
ing deformation anisotropy builds up to a limit Amax.
It is also observed that the anisotropy varies only due
to shear strain and practically not due to volumetric
strain. Therefore, the evolution of A is described as:

∂A

∂γ
= −βA sign(Amax) (Amax −A) ,

∂A

∂εv
= 0 , (10)

with Amax = −Am γ/|γ| = −Am sign(γ), see Ref. [17],
with positive maximal anisotropy, Am, i.e., the sign of
Amax is determined by the direction of shear.1 The
rate of anisotropy evolution βA determines how fast
the anisotropy changes with strain and thus also it
approaches (exponentially) its maximum for large γ.
Starting from an isotropic initial configuration, A0 = 0,
the growth is linear for small deformations γ.

2.2 Non-linear stress evolution

It is observed from DEM simulations of (horizontal stress
controlled) bi-axial deformations [14, 15], that the re-
sponse of the system stress is not always linear. For
increasing strain the stress increments decrease until
the stress saturates in the critical state regime. In Refs.
[14,15], the evolution equation that leads to saturation
under vertical compression, is similar to Eq. (10):

∂sd

∂γ
= βs sign(γ) (smax

d − sd) , (11)

1 Assume horizontal compression, which corresponds to

γ/|γ| < 0, that leads to an increase of horizontal stiffness and

thus a positive Amax. Compression in vertical direction leads to
a negative Amax – while tension in horizontal or vertical direction

lead to negative and positive Amax, respectively.

where sd is the stress deviator ratio:

sd =
σ11 − σ22

(σ11 + σ22)
=

τ

σh
, (12)

and smax
d = −sm

d γ/|γ| = −sm
d sign(γ), with positive

maximum deviatoric stress ratio sm
d .

Starting from here, a phenomenological extension of
the linear model, as described in Eqs. (9), was proposed
in Ref. [17], leading to the non-linear, incremental con-
stitutive relations:

δσh = 2Bδεv +ASδγ , (13)

δτ = Aδεv + 2GSδγ , and (14)

δA = βA sign(γ) (Amax −A) δγ , (15)

where the stress isotropy S = (1−sd/s
max
d ) has been in-

troduced. This quantity characterizes the stress-aniso-
tropy in the material, varying between 0 (maximally
anisotropic in strain direction), 1 (fully isotropic) up to
2 (maximally anisotropic, perpendicular to the momen-
tary strain increment).

Note that, the use of an evolution (or rate-type)
equation for the stress, allows for irreversibility in the
constitutive model due to the terms with S only. Such
an approach is similar to hypoplasticity [13] or GSH [11]
and differs from elasto-plastic models. In the former
both elastic and plastic strains always coexist [2].

In summary, besides the five local field variables,
σh, τ , εv, γ, and A, the model has only five material
parameters: the bulk and shear moduliB,G, the macro-
scopic coefficient of friction, sm

d , the evolution rate of
anisotropy, βA, and the maximal anisotropy Am. With
initial conditions σ0, S0 = 1−τ0/(σ0s

max
d ), and A0, the

model can be integrated from εv
0 = 0 and γ0 = 0.

3 Results

In this section the proposed constitutive model will be
used to describe the behavior of a granular material
when an isobaric axially symmetric compression (ex-
tension) is applied (Sec. 3.1). Vertical compression and
extension are then combined in Sec. 3.2 to analyze the
response of the material to cyclic loading.

Due to the isobaric stress control, the first equation
of the constitutive model, Eq. (13), simplifies to:

0 = 2Bδεv +ASδγ . (16)

Different parameters are varied with the goal to under-
stand their meaning in the model. We chose the range
of parameter values roughly referring to soil mechanics
and granular materials experiments [3,12]. In all exam-
ples the confining pressure is set to σ0 = −100kPa, the
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bulk modulus B = 200MPa is set constant, whereas for
the shear modulus four values are used, G = 25, 50, 75,
and 100 MPa, corresponding to the dimensionless ratios
G/B = 1/8, 2/8, 3/8, and 4/8, respectively.

The samples are initially isotropic (in stress, S0 = 0,
and structure, A0 = 0) and the maximal anisotropy de-
pends on the bulk modulus such that Am = B/2. The
dependence of the model on the anisotropy evolution
rate parameter βA is tested. For βA = 0 one recovers
the special case of isotropy (A = A0 = 0). Anisotropic
materials with different rate of evolution of anisotropy,
display several important features of granular matter
behavior. The parameter, sm

d = 0.4 is also chosen from
numerical simulations with a reasonable contact coeffi-
cient of friction µ ≈ 0.5 [14,15].

3.1 Axially symmetric isobaric compression

We study the evolution of anisotropyA, deviatoric stress
ratio and volume, for vertical compression, (i.e., for pos-
itive γ) with constant anisotropy evolution rate βA and
different shear moduli G. Since the evolution of A, see
Eq. (15), is not affected by G, we do not show it here,
but refer to Fig. 3(a) below. For the chosen set of pa-
rameters, the anisotropy reaches its (negative) extreme
value within about 0.1% of strain, where the sign indi-
cates the fact that the stiffness in vertical (compression)
direction is larger than in horizontal (extension) direc-
tion.

The deviatoric stress (positive, normalized by the
constant, negative confining pressure), in order to keep
its sign, is plotted in Fig. 2(a) as the stress ratio −sd =
−τ/σ0. It increases linearly, with slope 2G/σ0, to posi-
tive values and saturates at sm

d . Positive −τ/σ0 means
that the vertical (compressive) stress magnitude is larger
than the horizontal (compressive) stress – both nega-
tive in sign, due to our convention. In Fig. 2(b), the
volumetric strain, εv, increases and saturates at val-
ues between γ = 7x10−4 and 0.5x10−4, for different G.
Since both B and A in Eq. (16) do not depend on G,
this dilatancy is only due to the different evolution of
the stress isotropy S with strain, as explained below.

In Fig. 3, the dependence of the model on different
anisotropy evolution rates, βA, is displayed. The predic-
tions for A, −τ/σ0, and εv are plotted for fixed shear
modulus G = 25 MPa and different βA. From A(βA, γ)
as displayed in Fig. 3(a), see Eq. (10), one observes
that for the extremely large βA = 106, one practically
has instantaneously the maximum A = Amax. For de-
creasing βA, the initial slope −βAA

m/2B = −βA/4,
decreases, while all curves saturate at Amax = −B/2.
The isotropic case of minimal βA = 0, is clearly distinct
from the other cases, since one has constant A = 0.
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Fig. 2 (a) Deviatoric stress ratio and (b) volumetric strain, dur-

ing isobaric axially symmetric compression, as function of the
deviatoric strain, γ, for the parameters σ0 = −100 kPa, B = 200

MPa, sm
d = 0.4, for evolving A, with βA = 6000, Am = B/2,

and for different shear moduli, G = 25, 50, 75, and 100 MPa,
increasing right-to-left (a) or top-to-bottom (b).

The stress curves in Fig. 3(b) initially increase with
slope 2G/σ0 but, for very small strain – due to the
evolution of A – become “softer”: the larger βA, the
stronger the deviation from the initial slope. They fi-
nally saturate at −τ/σ0 = sm

d = 0.4, as prescribed, but
within similar strains γ ≈ 0.7%. With other words, the
behavior always starts isotropic, since A0 = 0, that is
the curve for βA = 0 is the same for γ → 0, for all βA.
The stress increase is then slower for more anisotropic
materials, since negative A, together with positive δεv

in Eq. (14), works against the stress saturation. Finally,
when A has approached its maximum – faster than the
stress – the stress saturation becomes independent of
βA again.

The volumetric strain, see Fig. 3(c), increases with
deviatoric strain according to Eq. (16) and saturates at
increasing εv, for increasing βA. Again βA = 0 repre-
sents the volume conserving (in contrast to experimen-
tal evidence [10]) limit case and all the curves are tan-
gent in the origin to the corresponding line εv = 0. This
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Fig. 3 (a) Anisotropy, (b) deviatoric stress ratio, and (c) volu-

metric strain during isobaric axially symmetric deformation, as
function of deviatoric strain, γ, with σ0 = −100 kPa, B = 200
MPa and G = 25 MPa, for evolving A, with Am = B/2 and
varying βA, increasing from 0 to 6000 in steps of 1000, from top
to bottom in panels (a) and (b), and from bottom to top in panel

(c). The inset in (b) is a zoom into the small strain response. The

green-dashed and red-solid lines represent the extreme cases of
isotropy βA = 0, (A = 0) and constant, instantaneous maximal

anisotropy, βA = 106, (A = Amax), respectively.

is due to Eq. (16), where A = 0, for isobaric axially sym-
metric compression, leads to δεv = −ASδγ/2B = 0.
With purely deviatoric strain, volumetric strain can
not exist without anisotropy. Nevertheless, the isotropic

case A0 = 0 can be a proper description of the incre-
mental response of an initially isotropic granular ma-
terial, when very small strains are applied (consistent
with experimental observations).

Similar results (besides different signs) are obtained
when an axially symmetric vertical extension with con-
stant pressure is applied.

3.2 Strain reversal

Now vertical compression and extension are combined,
resembling cyclic loading. The path is strain-controlled,
that is the strain increment is reversed after a certain
shear strain is accumulated. We start with compression,
until about 1% of vertical integrated strain, ε22 ' 0.01,
is reached, ensuring the system to be in the well es-
tablished critical state flow regime (for large βA). Af-
ter reversal vertical extension is carried on until it also
reaches 1%, relative to the original configuration. At
this point the increment is reversed again and a new
compression-extension cycle starts.

In particular, we want to understand how the rate of
anisotropy evolution influences the cyclic loading path.
For fixed shear (and bulk) modulus, we compare the be-
havior for two different values of βA. Figs. 4(a,c,e,g) and
4(b,d,f,h) show the system properties as functions of
the deviatoric strain, γ, for anisotropy rates βA = 2000
and 400, respectively. For both anisotropy (a,b) and
stress-ratio (c,d), except for the first loading, this re-
lation consists of hysteresis loops of constant width as
consecutive load-unload cycles are applied. This hys-
teresis produces an accumulation of both isotropic and
deviatoric strain, positive for large βA and negative for
small βA, see Figs. 4(e,f). Figures 4(c) and 4(d) show
that the deviatoric stress increases due to compression,
until load reversal (extension) and decreases to nega-
tive values until the next reversal. Under load rever-
sal, the corresponding stress response is realized with
identical loading and un-loading stiffnesses. In agree-
ment with Fig. 3(b), anisotropy decreases (increases)
faster for larger βA, whereas the stress ratio τ/σ0 ap-
proaches its maximum somewhat slower, due to the op-
posite signs of the two terms on the r.h.s. in Eq. (14).

In Figs. 4(e) and 4(f), the accumulation of small per-
manent deformations, after each cycle, both isotropic
and deviatoric, are displayed. Overall, the ratcheting
leads to an increase (decrease) of volume in each cy-
cle for large (small) βA, respectively. The sign-reversal
of the anisotropy modulus A during each half-cycle is
responsible for the sign of the volumetric strain. This
comes directly from the analysis of Eq. (16): the stress
isotropy S can only be positive and A changes sign
with increasing deviatoric strain γ, after each reversal.
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Fig. 4 Anisotropy, A/2B (a, b), deviatoric stress, −τ/σ0 (c, d), volumetric strain, 2εv (e, f), and the contractancy/dilatancy ratio
AS/2B (g, h), during isobaric axially symmetric deformation and cyclic loading, with σ0 = −100 kPa, G = 25MPa and B = 200MPa,

for evolving A, Am = B/2, βA = 2000 (Left) and βA = 400 (Right).
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The volumetric strain accumulates monotonically fol-
lowing the behavior of A. Interestingly, βA, the rate of
change of A, controls the net volume change. The orig-
inal reason for this behavior becomes clear looking at
Figs. 4(g) and 4(h), where the variation of the contrac-
tancy/dilatancy ratio AS/2B (during initial loading (0)
and the odd reversal points (1, 3, 5, 7, 9)) is shown for
the two different βA. At the beginning (0), the quantity
becomes always negative due to the initial decrease of
A: that is, the system always shows initial dilatancy,
see path 0 − 1 in 4(e) and 4(f). Only after the first
reversal the influence of βA on dilatancy/compactancy
shows up. This initial part of the cyclic loading corre-
sponds to what is discussed in Fig. 2. The integration
of AS/2B over γ leads to increasing εv in the first case
(g) and decreasing εv in the second (h). Rapid changes
of the anisotropy modulus A, corresponding to large
βA, lead to dilation, whereas slow changes of A lead to
compaction.

Besides the trivial case of anisotropy rate βA = 0,
the analysis leads to the existence of a second value of
βc

A such that there is no volume change in the material,
as shown in Fig. 5(a). The second material parameter
in Eq. (10), the maximal anisotropy Am, also influences
ratcheting. For all Am studied, the volume change per
cycle rapidly drops and then increases with βA, reaching
larger values for larger Am. The critical βc

A, correspond-
ing to no volume change, decreases with Am increasing.
The amount of strain accumulation per cycle, ∆εv, and
βc

A also depend on the shear modulus G, see Fig. 5(b).
In fact, larger G leads to a faster increase of the stress
deviator ratio sd, that is a faster decrease of the stress
isotropy S in Eq. (16). Moreover, the critical value βc

A

increases when the shear modulus increases.

The behavior reported in Figs. 4(e) and 4(f) is quali-
tatively in agreement with physical experiments. Strain
accumulation appears, when a granular sample is sub-
jected to simple-shear stress reversals in a triaxial cell
with constant radial stress [21] or in a torsional resonant
column with constant mean-stress [4]. Interestingly, the
behavior of the material is shown to be amplitude de-
pendent [21]. The model is able to reproduce such a de-
pendence and the strain accumulation vanishes for very
small amplitude (data not shown). The un-physical con-
stant accumulation per cycle, see Fig. 4(e) and (f), in
our opinion, will disappear when evolution laws for B
and G are considered. An accurate comparison with
experimental and numerical data is subject of a future
study.
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Fig. 5 Strain accumulation per cycle ∆(2εv) with σ0 =
−100 kPa and B = 200MPa for evolving A. In panel (a) ∆(2εv)

is plotted against log(βA) with Am = 2B/3 (red dashed line),

Am = B/2 (black solid line), Am = 2B/5 (green dotted line)
and fixed G = 25MPa. In panel (b) ∆(2εv) is plotted against

G/B, with fixed βA = 6000; in the inset the same quantities are

plotted in logarithmic scale.

4 Summary and Conclusion

In the bi-axial system – where the eigen-vectors of all
tensors are either horizontal or vertical – a new consti-
tutive model, as inspired by DEM simulations in Ref.
[14, 15], is presented in Eqs. (13), (14), and (15). It
involves incremental evolution equations for the hydro-
static and deviatoric stresses and for the single (struc-
tural) anisotropy modulus that varies differently from
the stress-anisotropy during deviatoric deformations of
the system and thus represents a history/memory pa-
rameter [17]. The five local field variables are σh, τ , εv,
γ, and A.

The model involves only three moduli: the classi-
cal bulk modulus, B, the shear modulus, G, and the
anisotropy modulus, A, whose sign indicates the direc-
tion of anisotropy in the present formulation. Due to the
anisotropy, A, the model involves a cross coupling of the
two types of strains and stresses, namely isotropic and
shear (deviatoric). As opposed to isotropic materials,
shear strain can cause e.g. dilation and hence compres-
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sive stresses. Similarly, a purely volumetric strain can
cause shear stresses and thus shear deformation in the
system. As main hypothesis, the anisotropy evolution is
controlled by the anisotropy rate βA and by deviatoric
strain, γ, but not (directly) by stress.

The model also leads to a critical state regime, where
the volume, the stresses, and the anisotropy modulus do
not change anymore. The critical state is described by
the maximal anisotropy Am and the maximal deviatoric
stress ratio sm

d , equivalent to a macroscopic friction co-
efficient [16].

To better understand the model, a series of simu-
lations has been performed for special cases. For very
small strains, linear relations between stresses and strains
are observed, while for larger strains the non-linear be-
havior sets in with a particular cross-coupling between
isotropic and deviatoric components through both stress-
ratio, sd, and structure-anisotropy, A – leading to non-
linear response at load-reversal. Dilation or compaction
after large amplitude cyclic load reversal are related to
fast or slow evolution of the anisotropy, A, respectively.

Comparison with DEM simulations is in progress.
The next step is the formulation of the model for arbi-
trary orientations of the stress-, strain- and anisotropy-
tensors, but keeping the number of parameters fixed.
This will eventually allow, e.g., a Finite Element Method
implementation, in order to study arbitrary boundary
conditions other than homogeneous bi-axial systems.
Furthermore, the model will be generalized to three di-
mensions in the spirit of Ref. [17], where (at least) one
more additional anisotropy parameter (tensor) is ex-
pected to be present in arbitrary deformation histories.
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