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Abstract

We study granular materials using both event driven (ED) and molecular dynamics (MD)
methods. In the MD simulations we implement linear as well as nonlinear forces and also
hysteretic interactions. For multiple collisions the two methods show differences: MD
calculations lead to weak, whereas ED methods result in rather strong dissipation, as
determined through an effective restitution coefficient.

Introduction and Background

Recent years have seen much effort in understanding granulates, which are assemblies of
solid, possibly nonuniform, particles, interacting via contact forces. Summaries of the present
knowledge on granular media are given in Refs.[1-2]. These materials display size-segregation,
heap formation under vibration and bulk dilatation, as well as density wave formation and
'decompaction' [3]; their fluid-like properties include convection rolls, surface fluidization, and
surface waves.

Probing the dynamics of granular particles on scales comparable to their dimensions is
difficult. Advances have been made by investigating model systems, such as assemblies of
relatively large spheres. Here the binary interactions are quite well understood, both
experimentally [4] and theoretically [4,5]; however, multiparticle interactions have been often
neglected. Using binary interactions, numerical simulations [6] allow to study the dynamics of
many particle systems and by this complement the experimental findings and the analytical
approaches [7]; numerically one uses molecular dynamics (MD) [8-10] as well as event-driven
(ED) algorithms [11-13].

The MD techniques often involve ad-hoc microscopic assumptions, such as linear [9] or non-
linear [10] interactions between the spheres. Evidently the specific contact laws which depict
the microscopic situation are fundamental [14,15]; here a major advance are the recently
proposed hysteretic interaction laws [14] which lead directly to dissipation. Event-driven (ED)
procedures are another means to simulate granulates see e.g. Lubachevsky [11]. Using ED
simulations the "cooling" of one-dimensional (1D) granular media was investigated [12] and the
ED method was extended to handle the occurrence of connected clusters in 1D [13]. Moreover
arrays of spheres under vibration were described using both MD and ED methods
[12,13,15,16].

We have shown that MD calculations may display anomalously low energy losses [15], due
to the interactions used; the effect may subsist even in the limit of very 'hard' interactions. Then
the spheres may separate completely, so that we called the effect "detachment" [15].
Detachment is different from the decompaction evidenced in 2D dissipative granular systems
[3]: Decompaction is due to the friction with the walls, whereas detachment follows from the



elastic forces assumed. In fact detachment dissappears in ED simulations.
In this note we report MD simulations using different interactions (linear, non-linear and

hysteretic) and compare the results with corresponding ED simulations. The basic difference
between ED and MD methods is the contact time tc. In ED the time tc in which colliding
particles are in contact is ideally zero. This is quite different from MD, for which tc does not
vanish and in fact turns out to be quite significant.

Simulations

We follow the 1D dynamics of a column of N spheres; these are numbered from below
starting with i = 1. For the immobile bottom plate we set i = 0. Due to the 1D aspect, the order
of the spheres never changes and we can even dispense with accounting for their diameter d.
This fact permits to use diameter-independent coordinates zi(t); these are related to the diameter
dependent coordinates h ti ( ) through z t h t i d di i( ) ( ) ( )= − − −1 2.

We start with a short description of the ED procedures, which follow a sequence of events.
Between events Newton's equation of motion for each object is solved analytically. An object is
a sphere or the bottom plate; an event is defined for a sphere by a sudden change in momentum,
i.e. a collision. Each object i follows its own undisturbed trajectory between events, because
dissipation occurs only upon collisions. The times between collisions are determined through a
sequential procedure, see Refs.[12,13]. We note that ED simulations take care of the energy
loss in collisions through restitution coefficients ε; furthermore, this is the only way energy
losses are accounted for. In the center of mass reference frame of two identical colliding
particles, the incoming velocities are +V and -V and the outgoing velocities are -εV and +εV. A
similar form also holds for collisions with the bottom plate, which is assumed to have infinite
mass. Sphere 1 in the reference frame of the plate has a velocity V just before the collision and
the velocity -εpV after the collision. A detailed description of the procedure may be found in
Refs.[12,13].

Distinct from ED simulations, where one defines a collision matrix in the system's frame of
reference, MD calculations are based on elastic and dissipative forces. In our MD procedure we
use a fifth order predictor-corrector algorithm [6] for the integration of the equations of
motion.

In MD two particles (or a particle and a wall) interact when their relative distance rij, is

smaller than the sum of their radii (the radius of the particle). Here rij ij= r  and rij  points

from the center of i to the center of j. In a 1D model only forces in the normal direction,
n rij ij ijr=  matter. Thus two forces are active in the regime d rij> ; first, an elastic restoration

force:

f Kxi
el
( ) = − +1 β (1)

where K is the spring constant and x is the (positive) penetration depth x d rij= − . Second, a

frictional force in the normal direction:

f D m xn
i

n n ij ij
( ) = − ⋅v n γ (2)

where vij  is the relative velocity of particles i and j, Dn is the normal dissipation parameter and

the normalized mass is m m m m m mn i j i j= = +2 2red d i. The parameters β and γ fix the non-



linearity of the forces; thus β = γ = 0 leads to a linear spring-dashpot (LSD) interaction. From

Eqs.(1) and (2) and for LSD the contact time t K m Dc red n
2= −π  and the restitution

coefficient ε = −exp D tn cb g  follow, see Ref.[15]. Note that for LSD interactions tc and ε are

velocity independent.
Non-linear forces offer a more general way to mimic collisions. Thus Hertz' model for the

interaction of two spheres [5] corresponds to β = 1/2. For non-linear forces the contact time
and the restitution coefficient become velocity dependent, see Ref.[15] for details.

An alternative way to introduce dissipation is to use different forces for loading and
unloading [14]. In detail, we use a spring constant K1 for loading and a larger spring constant
K2 for unloading:

f
K x

K x x
i

el

for loading

for unloading
( ) =

−
− −

RST
1

2 0b g
(3)

This behavior models energy loss due to plastic deformation, with the penetration depth x and a
finite penetration x0 = (1-ε2)xmax at which the contact force vanishes during unloading.
ε = K K1 2  is the momentum restitution coefficient and x0 is defined through the continuity of
the forces at maximum penetration, i.e. K1xmax = K2(xmax-x0). In Fig.1 we give a schematic
plot of the elastic force during the contact of two spheres. During loading the force increases
linearly with slope K1 as a function of x until xmax is reached. Unloading follows the larger
slope, i.e. K2, until the force equals zero at a finite penetration x0. We define the contact time tc
to be the time when the force vanishes, i.e. the time at which again x = x0. When no additional
force is active, the penetration decreases and the spheres separate after a time x0/v(tc), where
v(tc) is the velocity at time tc. If for example another sphere hits one of the two original spheres,
reloading for 0 < x' < x0 may take place with a force K2(x-x') until the original loading curve is
reached; further reloading follows then the original loading curve. However, this is not the only
way to model plastic deformation, see Ref. [14] for extensive details. For the simple hysteretic
force, Eq.(3), tc and ε can be computed [14]; in implicit form one has

K m t1
2 21 4= +red c

2π εa f e j  and K K2 1
2= ε .

Fig.1:
The elastic force, Eq.(3), plotted as a function of the

penetration x. On contact two spheres load from 0 to
xmax and then unload to x0. Reloading may take place
from x' to the original loading curve.x
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Multiparticle collisions

We are now interested in the behavior of a column of spheres in 1D. We neglect
gravitational effects and analyze the collision of the column with a static boundary. This
situation is interesting, since it allows us to compare the MD results, obtained using different
interactions, with those obtained by ED methods [12,13].

We introduce the effective restitution coefficient for many particle collisions through
εeff f= E E0 , where E0 and Ef denote the kinetic energies of the particles relative to the



bottom plate before and after the collision, respectively, i.e. E vm
ii

N= =∑2
2

1
.

In Fig.2 we display εeff obtained from MD and ED simulations. The results depend on the
initial separation s0 between the spheres, the initial velocity v0 and the contact time tc. We
rescale the axes so that the ratio of the mean time beween events s0/v0 to the contact time tc
shows up, i.e. we plot εeff vs. σ = s v t0 0( )c . In Fig.2 we have N = 10, ε = 0.9, tc = 8.4×10-6s,

and as the initial velocity v0 = 0.5 m/s; furthermore, s0 varies between 10-9 and 3.2×10-3m. In
Fig.2 we find that the results of the linear spring-dashpot interaction (LSD) and of the hysteretic
interaction model (HYS) agree qualitatively. Two features are proeminent: first, when σ << 1
the energy loss is small, i.e. ε < εeff ≅ 1 for LSD and εeff ≅ ε for HYS. This fact leads to large
interparticle distances after the collision with the bottom plate, a phenomenon which we call
detachment. Second, for σ >> 1 the ε values are lower and the energy loss turns out to be
independent of σ [right side of Fig.2]. We note that the ED procedure [the dashed line in Fig.2]
leads to εeff ≅ ±0 341 0 002. . , a result practically independent of s0 and v0. While for σ >> 1,

the ED and MD results agree with each other, there are large differences for σ << 1.

Fig.2:
Linear-logarithmic plot of
the effective restitution
coefficient εeff as a function
of σ = s v t0 0 c  for different
interaction models, see text
for details. The calculations
involve N = 10 particles
with ε = 0.9, colliding with a
fixed boundary.
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Now we study the dependence of εeff on the number of particles which hit the wall. In Fig.3
we plot εeff as a function of N for s0 = 0, v0 = 0.5 ms-1, d = 1 mm and for different interaction
laws.

Fig.3:
The effective restitution
coefficient εeff, plotted as a
function of N for s0 = 0 and
v0 = 0.5 m/s. We use the
Hooke interaction (β = γ = 0,
LSD), the Hertz-Kuwabara-
Kono interaction (β = γ = 1/2,
HKK), the hysteretic
interaction Eq.(3) (HYS) and
the ED method, see text for
details.
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Using the linear interaction law with β = γ = 0, K/mred = 8×1010 s-2, and Dn = 9.48×103 s-1

we find that εeff increases with N. Using the Hertz-Kuwabara-Kono (HKK) interaction, i.e.
β = γ = 1/2, with K/mred = 2×1012 s-2 m-1/2, and Dn = 3.5×104 s-1 m-1/2 we find that εeff varies
little as a function of N. A hysteretic interaction with K1/mred = 1.78×1011 s-2, and
K2/mred = 2.2×1011 s-2, agrees rather well with εeff found using the HKK (β = γ = 1/2) law.
The detachment effect is weaker for non-linear interactions or for hysteretic interactions when
compared to the simple LSD model; nonetheless all εeff MD results differ from the ED ones, for
which εeff is close to zero for N( )1− ε  large [13].

The difference between ED and MD results is also apparent from the relative kinetic energy

Erel, also called 'granular temperature' [7]; Erel is defined through E v vm
ii

N
rel cm= −=∑2

2
1
( )

where vcm is the velocity of the center of mass of the assembly of spheres.
In Fig.4 we plot 1-Erel/Ef where Erel is the relative energy and Ef is the kinetic energy after

collision. The parameters of the simulations are the same as the ones used in Fig.3.

1-Erel/Ef

Fig.4:
1-E Erel f  plotted as a
function of N. The
parameters are as in Fig.3.
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Discussion and Conclusions

For MD simulations we introduced various microscopic interaction laws and compared the
results with the outcome of ED simulations. The basic difference between ED and MD methods
is the time tc, during which particles are in contact. In ED tc is implicitly zero, whereas for MD
tc depends on the interaction laws and parameters used. Thus a large spring constant leads, in
general, to a small tc. We found that MD calculations underestimate the energy dissipation
when the number of spheres in contact is large. The effect is most obvious for linear interactions
but also holds for non-linear interactions and for hysteretic models. Even in the case of very
high dissipation, i.e. N = 10 and ε = 0.6, detachment occurs in MD calculations, whereas ED
simulations lead to an εeff which virtually vanishes, i.e. to a clustered column after collision.

The occurence of an anomalously low energy dissipation in MD depends on the ratio σ
between the time of free flight and tc. MD simulations underestimate the energy dissipation and
lead to large fluctuations for σ<<1. On the other hand, we find that for σ>>1 the results of MD
and ED simulations agree with each other.

We close this work on a cautionary note about computer simulations: a careful comparison



of the numerical outcome with experimental benchmarks, as well as a critical evaluation of the
parameters used in simulations is required. From our side we view the question of the validity
of the simulation methods and of the relevance of the interactions used as being still open in the
case of multiparticle contacts.
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