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Abstract

A local constitutive model for granular materials with anisotropy is proposed and applied to
different biaxial box deformation modes. The simplified version of the model (in the coordinate
system of the biaxial box) involves only scalar values for hydrostatic and shear stresses, for
the isotropic and shear strains as well as the new parameter, the (scalar) anisotropy modulus.

A non-linear constitutive evolution equation, for both shear stress and anisotropy, during
deviatoric (shear) deformation is based on observations gained from Discrete Element Method
(DEM) simulations. While parameters like the bulk modulus are set to constant, for the sake
of simplicity, the model involves a yield stress and a maximal anisotropy as well as the cor-
responding deviatoric shear-rate pre-factors for incremental stress and incremental anisotropy
modulus.

In this study, the self-consistency of the simple-most model is discussed before it is ap-
plied to various bi-axial deformation modes. Constant anisotropy is compared to evolving
anisotropy, where the sign accounts for the direction (tension or compression corresponds to
positive or negative strain, respectively). Generalization to arbitrary orientation and possible
non-coaxial strain, stress and fabric tensors is not yet attempted in this study.

1 Introduction

Dense granular materials show peculiar mechanical properties quite different from classical fluids
or solids [1, 2]. These phenomena involve dilatancy, yield stress and history dependence – among
many others. The reason is the inherent discrete structure of particulate packings that is far from
understood [3–11]. Particularly, if a granular packing is subject to isotropic compression the shear
stress remains close to zero and the major control parameters are the volume fraction and the
pressure. However, under shear deformation, not only shear stress builds up until it reaches a
yield-limit, but also the anisotropy of the contact network develops, as related to the creation and
destruction of contacts and force-chains, see e.g. [12–16] and also Ref. [9] and references therein.
These phenomena are at the origin of the interesting behavior of granular media, in particular
their “memory”, i.e., their history dependence The contact structure, its evolution and especially
its anisotropy are neglected in many continuum models of particulate matter.

In order to better understand and model the deformation behavior of particle systems, the Dis-
crete Element Method is a very useful tool [7, 11, 16–18]. From the analysis of such simulations,
when using consistent averaging procedures [18–24], useful relations can be derived between the
fabric, strain and stress tensors. The collective behavior of the particles can then be described
by a homogenized model, using macroscopic definitions and formulations of these tensors. The
homogenized model has advantages since it can be implemented in a FEM software to observe the
deformation mechanisms in arbitrary (inhomogeneous) loading conditions.
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Most of the existing models describe the constitutive behavior of granular materials but one impor-
tant ingredient missing is the anisotropy and possible non-coaxiality of the macroscopic tensors.
Only few theories, see e.g. [11, 16, 18, 25–27] and references therein, involve an anisotropy state
variable or non-coaxiality; even less deal with both anisotropy and rotations [24,28–32]. The DEM
simulations reveal that considerable anisotropy develops in the system during deformation. This
is an essential part of the constitutive model because it contains the information how the different
modes of deformation have affected the mechanical state of the system during the deformation. In
this sense, the anisotropy is a history parameter.

In the following, a constitutive model that is based on observations from DEM simulations will be
presented in its simplest form. Anisotropy is included in the model through the evolution of the
stiffness tensor components in a prescribed manner. The (classical) isotropic and shear moduli are
set constant, at first, in order to be able to focus on the effect of anisotropy exclusively.

2 Model System and Theory

The model system is shown schematically in Fig. 1 as used for the DEM simulations in Ref. [18]. In
this system, for small deformations, the strain ε22 in the y direction and the normal stress t = σ11

in the x direction are prescribed. (Below we refer to this bi-axial, side-stress controlled deformation
as mode 3). All bi-axial deformation modes, as specified below in Tab. 1, can be described by a
strain tensor (incremental) with only diagonal components in the global coordinate system:

[ε] =

[

ε11 0
0 ε22

]

, (1)

which, naturally, are the eigenvalues of the strain tensor. Throughout this paper, small strain
increments are implied, as denoted by δε, if not stated explicitly otherwise. Since the decomposition
of tensors into isotropic and deviatoric parts does not rely on “small”, the δ is not used in this
section.

The coordinate system of the box is the natural choice and identical to the tensor-eigensystem,
and thus identical to the bi-axial system walls, if there is no wall friction involved.

The stress that develops in the system also consists of the diagonal terms only (with components
given in the global coordinate system):

[σ] =

[

σ11 0
0 σ22

]

. (2)

Initially, an isotropic stress is applied to the system to confine the particles. The initial strain and
stress conditions therefore are given as:

[ε0] =

[

0 0
0 0

]

, [σ0] =

[

σ0 0
0 σ0

]

, (3)

where σ0 is the initial (isotropic) hydrostatic stress applied.

One very important point for the model is the selection of a sign convention for strain and stress.
In the present work, the general convention is positive (+) for dilatation, extension and negative
(–) for compression, contraction. According to this definition, when the top boundary is moved
inwards/downwards ε22 (the prescribed strain) will have a negative value whereas ε11, moving
outwards, will be positive.

The strain can be decomposed into an isotropic part and a deviatoric part:

ε = ε
V + ε

D , (4)

2



Figure 1: Illustration of the bi-axial model system used for the DEM simulations. The vertical
displacement ε22(t) and the horizontal stress (traction) σ11 = t = σ0 are prescribed.

where capital letter superscripts are used for tensors, with the isotropic part given as

ε
V =

ε11 + ε22

2

[

1 0
0 1

]

= εv I =
1

D tr(ε) I , (5)

with dimension D = 2, so that the volume change is tr(ε) = 2εv in the following 1. (Note that the
abbreviation tr(ε) = εvol is used in many other studies, however, we adopt the alternative definition
that involves the division by dimension – similar to the definition of the pressure (isotropic stress
σh) below). Accordingly the deviatoric part is:

ε
D = ε − ε

V =

[

ε11−ε22

2
0

0 ε22−ε11

2

]

=
ε11 − ε22

2

[

1 0
0 −1

]

= γ ID , (6)

where γ is the scalar that describes the pure shear deformation as γ = ε11−ε22

2
and ID is the traceless

unit-deviator in 2D. The unit-deviator has the eigenvalues, +1 and –1, with the eigendirections
n̂(+1) = x̂ and n̂(−1) = ŷ, where the hats denote unit vectors.

As seen in Eq. (5) the isotropic part can be expressed fully using only one scalar, independent of
the coordinate system chosen. This defines the isotropic strain and hence the amount of volume
change. Positive and negative 2εv correspond to volume increase and decrease, respectively.

The same type of interpretation is not possible for the deviatoric part in general. According to the
coordinate system that is chosen, the sign of the shear deformation changes, e.g., when the x and
y directions are exchanged. Equivalently, when the deviatoric (shear) strain γ changes sign, the
deformation is reversed. An additional point concerning the strain terms is therefore the selection
of the coordinate system and the type of deformation. If the coordinate system chosen is rotated
from the biaxial orientation or the prescribed deformation is different from Eq. (1), one has off-
diagonal terms, as discussed below. In order to keep the model as simple as possible, we restrict
ourselves to biaxial deformations and the biaxial orientation of the coordinate system.

2.1 Alternative formulation for arbitrary orientation

To further elaborate this issue, we compare the two possible representations of the deviatoric part
of a symmetric tensor. The first one is to define a positive scalar and let an orientation tensor
completely take care of the direction:

ε
D = εd D (φε) , with : εd = |ε11 − ε22

2
| = |γ| , (7)

and the oriented unit-deviator:

D(φε) = R(φε) · ID ·RT (φε). with (clockwise) rotation matrix : R(φ) =

[

cosφ − sin φ
sinφ cosφ

]

, (8)

1The extension of the model to three dimensions is in progress and will not change its spirit. It will be published
in future studies – for a rough sketch of what this involves, see the conclusion section.
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and the angle between the horizontal and the positive eigen-direction of the deviator: φε ∈ [0, π[
(due to symmetry, φε + π = φε).

In the second case, which is not generally applicable, one allows the sign of the scalar value γ to
be positive or negative and brackets the orientation angles:

ε
D = γ D (ϕε) , with : γ =

ε11 − ε22

2
, (9)

where
D(ϕε) = R(ϕε) · ID · RT (ϕε). (10)

and ϕε ∈ [0, π
2
[ , since ϕε + π

2
= ϕε but γ(ϕε + π

2
) = −γ(ϕε).

Thus, in the general case, the magnitude of shear is represented by the positive scalar εd > 0
and the orientation by D(φε). A reversal of strain direction then is indicated by a transition of
φε → φε ± π/2. However, in the biaxial system, it is possible to use γ and distinguish between
the two possible directions φε = 0 and φε = π

2
by the sign of γ. This latter convention is adopted

below, since the eigen-system does not rotate.

With the selection of the deformation and the coordinate system as described above, it is possible
to define a rotation, which makes it possible to represent the shear strain with one scalar only.
Since simple shear takes place at 45 degrees relative to the principal basis, one has:

ε
S = R

(π

4

)

· εD · RT
(π

4

)

, (11)

which gives:

ε
S =

[

0 ε11−ε22

2
ε11−ε22

2
0

]

= γ D
(π

4

)

. (12)

Eq. (12) shows that shear strain deformations (for the biaxial box geometry) can also be described
with one scalar γ, since the orientation is hidden in the directed unit-deviator.

The same definitions can be applied to the stress tensor as well. The decomposition in this case is
for the hydrostatic stress and the deviatoric stress:

σ = σ
H + σ

D. (13)

The hydrostatic part is given as

σ
H =

σ11 + σ22

2

[

1 0
0 1

]

= σh I =
1

D tr(σ)I . (14)

and, accordingly, the deviatoric part becomes:

σ
D = σ − σ

H =

[

σ11−σ22

2
0

0 σ22−σ11

2

]

= σdD(φσ) = τID , (15)

with τ = σ11−σ22

2
.

In this case when the same rotation as above is performed, one obtains the magnitude of the shear
stress:

σ
S = R

(π

4

)

· σD · RT
(π

4

)

=

[

0 σ11−σ22

2
σ11−σ22

2
0

]

= τ D
(π

4

)

, (16)

where, according to their definition, both γ and τ can be positive or negative.

2.2 The simplest anisotropy model in 2D

Finally, the simplest additional tensor (that will be used for the calculations in the next section) is
the anisotropy modulus tensor, aD (second order), which is trace-less and thus described completely
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by its magnitude A and its orientation φA. Since we assume in the following that the orientation of
anisotropy is co-axial with stress and strain in the bi-axial system, the only one new free parameter
that remains is A, so that:

aD = A ID , with : A =
C11 − C22

2
, (17)

where C11 and C22 are defined below.

In summary, for the biaxial system, the tensors ε
D, σ

D, and aD can be represented by the scalars
γ, τ , and A, respectively, while the orientation is fixed to ID. Change of sign corresponds to
reversal of deformation, stress, or anisotropy, respectively.

3 Governing equations

As in a general constitutive relation of anisotropic elasticity, the relation between stress and strain
increments is:

δσ = C : δε + δσstruct (18)

where C is the (rank four) stiffness tensor of the system and δσstruct is the stress change due to
structural changes (leading to a change of C) and sliding contacts, but will not be specified here
and set to δσstruct = 0 for the sake of simplicity. 2 Note that the two terms in Eq. (18), and
especially the non-linearity of the second, see subsection 4.2.6, can be seen as similar to the two
terms in hypoplastic type theories, see Eq. (9) in Ref. [30] and references therein, or Eq. (1) in
Ref. [33, 34], where Granular Solid Hydrodynamics (GSH) is concerned. Furthermore, the split
between elastic and plastic strain and stress [16, 33–35] is a related issue, but will not be detailed
in this study.

3.1 Nomenclature in the elastic limit

Since in the biaxial box we deal with two components of stress and strain only, the following
reduction can be performed:

[

δσ11

δσ22

]

=

[

C1111 C1122

C2211 C2222

]

·
[

δε11

δε22

]

= C ·
[

δε11

δε22

]

. (19)

For simplicity in notation, the components of the stiffness will be referred to with reduced indices
according to Eq. (19), i.e., C11 ≡ C1111, C22 ≡ C2222, and C12 ≡ C1122 = C21 ≡ C2211.

As shown in the previous section, the incremental evolution of the hydrostatic stress is then given
as a scalar equation using Eq. (19):

δσh =
δσ11 + δσ22

2
=

C11 + C22 + 2C12

2
δεv +

C11 − C22

2
δγ (20)

Similarly, the equation for incremental shear stress evolution is:

δτ =
δσ11 − δσ22

2
=

C11 − C22

2
δεv +

C11 + C22 − 2C12

2
δγ (21)

These equations serve as the basic governing equations of the model. As abbreviations, in order
to achieve the simplest version, the following scalars (with units of moduli) are defined [18, 22]:

B =
C11 + C22 + 2λ

4
, G = B − λ, with λ = C12, and A =

C11 − C22

2
, (22)

2This is at the origin of the different moduli for tension and compression strain as observed in real tests, which
will enter the model via A and S below. Structural changes involve opening and closing of contacts, but also
large-scale reorganizations of the particles, while the transition from sticking to sliding is due to finite coefficients
of friction at the contact level, which is not considered here and will be discussed elsewhere.
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where G that represents the bi-axial response to pure shear, corresponding to one of the Lamé
constants, while λ is the other Lamé constant. From the equations it is also apparent that B is the
bulk modulus that relates pressure and volume change, δp = δσh = Btr(δε) = 2Bδεv, due to Eq.
(5) and our sign convention, while G is the shear modulus that relates the (pure, bi-axial) shear
stress to shear strain, δτ = 2Gδγ. 3 Finally, A is the anisotropy modulus that couples bulk stress
to shear strain and shear stress to isotropic strain, so that:

δσh = 2Bδεv + Aδγ . (23)

Similarly, the equation for incremental shear stress evolution is:

δτ = Aδεv + 2Gδγ . (24)

They can be used in different ways utilizing the anisotropy or non-linearity in the formulations,
which will be discussed below. In all cases assumed here, however, one should note that C12 = C21

holds, so that a single anisotropy modulus A is the only new parameter when compared to isotropic
materials.

3.2 Model without anisotropy

For the system to be isotropic, the stiffness in all directions should be the same. Hence, in the
isotropic system C11 = C22 must hold, so that A = 0. When anisotropy starts developing, this
equivalence condition is lost, as discussed in the following subsection.

In the isotropic case, the second term in Eq. (23) and the first term in Eq. (24) vanish and one
arrives at the equations:

δσh = 2B δεv (25)

δτ = 2Gδγ . (26)

It is clear, in this case, that the hydrostatic stress only depends on the isotropic strain and similarly
the shear stress only depends on the shear strain. For constant B and G, this special case is thus
purely linear with isotropic and deviatoric components decoupled.

Note that both B and G will develop with respectively applied isotropic or deviatoric (shear)
deformations. But since this is not the focus of this study, we only use constant B and G in the
following.

3.3 Model with evolution of anisotropy

When there is anisotropy in the system, i.e., C11 6= C22, the complete version of Eqs. (23) and (24)
must be used. Even though A is defined as the scalar anisotropy modulus, in the general case, it
is actually a tensorial quantity with a certain orientation. However, in the biaxial system, similar
to the strain and stress, it can be reduced to a scalar quantity, which can have both positive and
negative values. Positive in our convention means that the horizontal stiffness is larger than the
vertical one, and negative implies the opposite.

From Discrete Element Method simulations [18] of an initially isotropic system, with A0 = 0, during
deformation, anisotropy builds up to a limit Amax. This a-posteriori rectifies the assumption of
constant B and G, to first order, since these two quantities change much less than A for mode
3 deformations, as discussed below. It is also observed that the anisotropy develops only due to
shear strain and not due to isotropic strain. Therefore, the evolution of A can be described as:

∂A

∂γ
= −βA sign(Amax) (Amax − A) ,

∂A

∂εv
= 0 , (27)

3Note that we define γ according to Eq. (6), i.e., the convention of defining γxy = 2εxy is not applied here.
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with Amax = −|Amax| γ/|γ| = −Am γ/|γ| = −Am sign(γ), with positive maximal anisotropy, Am,
i.e., the sign of Amax is determined by the direction of shear. 4 Note that Eq. (27) can also be
written as

∂A

∂|γ| = βA (Amax − A) ,

or
∂A

∂γ
= βA sign(γ) (Amax − A) = βA (−Am − sign(γ)A) = −βA (Am + sign(γ)A) ,

which actually are all equivalent to the form originally proposed in Refs. [18,22], where only verti-
cal compression and thus positive γ was considered. 5 The integrated form of Eq. (27) (using the
exponential technique for ODE’s) is calculated as:

A = Amax − (Amax − A0) exp (−βA |γ|) . (28)

This form of the evolution equation represents the fact that anisotropy starts at A0 and then
approaches exponentially fast to its maximum for large γ. For isotropic initial configuration,
A0 = 0, the growth is linear for small deformations γ, where the parameter βA determines how
fast the anisotropy changes and thus also how fast saturation is approached. Typical values for
these parameters – from DEM simulations – are βA ≈ 80, observed at small shear strain, and
Amax ≈ 0.4B, observed at large strain.

3.3.1 Interpretation of the model

When A0 = 0 the stress evolution equations (23) and (24) take the simple linear elastic form as
shown in Eqs. (25) and (26). The hydrostatic stress grows linearly with isotropic strain and the
shear stress is proportional to the shear strain. However, the underlying physics changes since
anisotropy can develop to A 6= 0.

The presence of the A term creates a cross-link between the two types of deformations, shear and
isotropic. This is best visualized considering a pure shear deformation, i.e., εv = 0. In this case,
for A 6= 0, the hydrostatic stress will start developing although the deformation is isochoric. This
can be viewed differently as well: The build-up of stresses during isochoric shear deformation is
due to the anisotropy modulus in Eq. (23). In a closed boundary system the material wants to
expand (compact), dependent on its initial overconsolidated (underconsolidated) state. But since
it is confined by the boundaries, the isochoric shear deformation will cause negative (positive)
stresses in the anisotropic system. For example, in an overconsolidated situation, the explanation
for this phenomenon is the interlocking of particles in the initial configuration. The system can
not deform easily unless it is relaxed. The relaxation means that the system wants to create more
voids and hence expand/dilate.

Similar considerations, in the isobaric situation, are discussed in more detail in Ref. [36] with
respect to ratcheting under cyclic loading.

The second equation (24) predicts that under purely isotropic compressive strain, the shear stress
will increase or decrease, dependent on the sign of the term involving εv. Correspondingly, com-
pression and extension will lead to positive or negative changes of τ , respectively. This result is
plausible as it ensures symmetry in the system. If the stiffness is not isotropic, under compression,
stress will develop differently in different directions. This will lead to principal stresses different
from each other, hence shear stresses.

4Assume horizontal compression, which corresponds to γ/|γ| < 0, that leads to an increase of horizontal stiffness
and thus a positive Amax. Correspondingly, compression in vertical direction leads to a negative Amax – while
tension in horizontal or vertical direction lead to negative and positive Amax, respectively.

5The incremental anisotropy, here, is only defined for bi-axial deformation modes, i.e., for φε = 0 (horizontal
extension and vertical compression deviatoric strain) or φε = π/2 (horizontal compression and vertical extension).
A more general representation will be specified elsewhere.
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3.3.2 Energy, work, stability

In the linear elastic regime, the model can be integrated and leads to the free energy increment:

δF = B(δεv)2 + G(δγ)2 + Aδεvδγ ,

which allows to recover Eqs. (23) and (24) by differentiation of F with respect to isotropic and
deviatoric strain, respectively. This shows how to introduce our model into the framework of (linear
elastic) GSH [33,34], i.e., by adding the additional anisotropy term to the elastic energy in Eq. (1)
in Ref. [33].

Another important issue is the instability of the particulate system. This can be analyzed numer-
ically using the system of equations introduced earlier. The sufficient but not necessary stability
condition for materials is [37]:

δ2W = δσ : δε ≥ 0 , (29)

which is equivalent in this case to:
δε : C : δε ≥ 0 . (30)

For Eq. (30) to have a solution, C must be positive-definite. This implies that at the onset of
instability, C will not be positive-definite anymore. In this case it can be checked by considering
the matrix form given in Equation (19). For the C matrix to be singular its determinant must
vanish, i.e., detC = 0. Evaluating this analytically gives:

C11 C22 − C2
12 = 0

⇒ (2B − A − λ)(2B + A − λ) − λ2 = 0

⇒ (B + G − A)(B + G + A) − (B − G)2 = 4BG − A2 = 0 . (31)

Using Eq. (31), the value of A that will cause the system to become unstable can be found. For
a typical case where G = B/2, the system will become unstable only when A reaches a value of√

2B. Note, that this is not (yet) consistent with typically observed values of Amax ≈ 0.4B.

3.4 Non-linear stress evolution

It is observed from DEM simulations, in bi-axial deformation mode 3, see table 1 below, that the
response of the system to deformation is not always linear. As the amount of strain gets larger,
the stress increments decrease until a level where the stress saturates, which is referred to as the
critical state [38]. In Refs. [18, 22], the evolution equation that leads to saturation under vertical
compression and horizontally prescribed stress, is expressed as:

∂sd

∂γ
= βs sign(γ) (smax

d − sd) (32)

where sd is the stress deviator ratio, given by:

sd =
σ11 − σ22

(σ11 + σ22)
=

τ

σh
, (33)

and smax
d = −|smax

d | γ/|γ| = −sm
d γ/|γ| = −sm

d sign(γ), with (positive) maximum deviatoric stress
ratio sm

d . There are two reasons to use sd (instead of τ). First, it is very similar to the Mohr-
Coulomb plastic yield criterion, µ ≡ sm

d , and second, as empirical observation, sm
d does not much

depend on the confining stress [18, 22, 38] – which suggests that it is a material parameter (or at
least a zero-order starting point).

The derivative of sd with respect to γ reads

∂sd

∂γ
=

∂

∂γ

( τ

σh

)

=
1

σh

(

∂τ

∂γ
− τ

σh

∂σh

∂γ

)

, (34)
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which, when inserting Eq. (32) and resolving with respect to ∂τ/∂γ, leads to

∂τ

∂γ
= σhβs sign(γ) (smax

d − sd) +
τ

σh

∂σh

∂γ
= 2G (1 − sd/smax

d ) + sdA . (35)

The second right hand side term is obtained when the second term of Eq. (23) is inserted. The
first right hand side term is based on the identification of Eq. (35) with Eq. (24), for very small
strain. For A0 = τ0 = 0 we identify 2G0 = −σ0β

0
ssm

d or β0
s = −2G0/(σ0s

m
d ), where the dependence

on the initial isotropic stress, σ0, is not fully consistent with observations from DEM simulations,
see the discussion around Eq. (22) in Ref. [18]. It requires further study to understand the hidden
explicit dependence of G0 or sm

d on the hydrostatic stress.

On the other hand, for very large strain, one has sd → smax
d , i.e., the first term in Eq. (35) vanishes

so that
∂τ

∂γ
= smax

d

∂σh

∂γ
= smax

d Amax

remains, while ∂sd/∂γ → 0.

Relying on the above observations, and requiring a “critical state flow” regime where all derivatives
with respect to δγ vanish after large enough deviatoric strain (with conserved volume δεv = 0),
a phenomenological extension of the linear model described in Eqs. (23) and (24) is proposed (in
two versions) below.

3.5 Improved non-linear Model

In order for the deviator stress to vanish at large strain, the simplest possibility is to disregard the
last term in Eq. (35), so that Eq. (24) is modified by a factor that vanishes when sd reaches its
maximum smax

d :

δτ = Aδεv + 2G

(

1 − sd

smax
d

)

δγ = Aδεv + 2GSδγ , (36)

using the abbreviation S = (1−sd/smax
d ), i.e., the stress-isotropy, which varies between zero (max-

imal anisotropy in strain direction) and unity (isotropic), up to values of two (maximal anisotropy
rotated by 90 degrees from the strain direction). With this variable S, another parameter is intro-
duced in the model, namely the macroscopic coefficient of friction, sm

d . The results of the DEM
simulations [18], for example, show values sm

d ≈ 0.4, dependent strongly in the contact coefficient
of friction of the material, but only weakly dependent on the confining stress [18, 22, 38].

3.5.1 Improved self-consistent non-linear Model

Inserting the new deviatoric modulus, ∂τ/∂γ = 2GS, from Eq. (36) into Eq. (34), shows the
inconsistency of the model in Eq. (36), i.e.,

∂sd

∂γ
=

1

σh

(

2G

(

1 − sd

smax
d

)

− τ

σh

∂σh

∂γ

)

=
1

σh
(2GS − sdA) , (37)

does not vanish for large deviatoric strain – in conflict with the critical state flow assumption. The
consistency of the model can be restored by also correcting the second term in Eq. (23), analogously
to the deviatoric modulus, by the factor S, so that the complete constitutive model reads:

δσh = 2Bδεv + ASδγ , (38)

δτ = Aδεv + 2GSδγ , (39)

and
δA = βA sign(γ) (Amax − A) δγ , (40)
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with three field quantities σh, τ , and A and five material model parameters: the bulk and shear
moduli B, G, the macroscopic coefficient of friction, sm

d , as well as the evolution rate of anisotropy
from an isotropic original state, βA, and the maximal anisotropy Am. Furthermore, the initial
conditions σ0, S0 and A0 are required, where the abbreviation S = (1 − sd/smax

d ) was used.

How to measure the material model parameters will be discussed below and in future studies.

3.5.2 Check of consistency

Inserting the deviatoric modulus, ∂τ/∂γ = 2GS, from Eq. (39), and the anisotropic modulus
∂σh/∂γ = AS, from Eq. (38), into Eq. (34), shows the consistency of the model, i.e.,

∂sd

∂γ
=

1

σh

(

2G

(

1 − sd

smax
d

)

− τ

σh

∂σh

∂γ

)

=
1

σh
(2G − sdA) S , (41)

does vanish for large deviatoric strain.

Combining Eq. (32) with (41) leads to

−βsσ
hsm

d = (2G − sdA) ,

which, starting from an isotropic sample, for very small strain, with A0 = τ0 = 0, again leads to
2G0 = −σh

0 βss
m
d or βs = −2G0/(σh

0 sm
d ), as before. For very large strain, one has sd → smax

d , i.e.,
S → 0, so that, according to Eq. (41), one has ∂sd/∂γ → 0. Furthermore, since A → Amax, and
isobaric pure shear, one also might require to have:

−βsσ
h
0 sm

d = 2G0 = (2Gmax − smax
d Amax) ,

which (unfortunately) is inconsistent again, unless 2G 6= 2G0, i.e., the modulus G requires an
evolution equation by itself, that must fulfill the consistency relation: Gmax = G0+(1/2)smax

d Amax.
Since typically (1/2)smax

d Amax < G0, we assume G ≈ G0 = const. in the following.

3.6 Alternative anisotropy evolution model

Whether Eq. (40) has to be modified in a way similar to the second terms in Eqs. (38) and (39),
which would lead to:

δA = βA sign(γ) (Amax − A)Sδγ , (42)

will be discussed elsewhere. Since it is not necessary to achieve ∂A/∂γ → 0 for large deviatoric
strains, we disregard this option and continue using Eq. (40) instead. Note that this keeps the
evolution of A most independent from the evolution of sd.

3.7 Energy, work, stability for the non-linear model

Again, examining the stability condition by considering the matrix form given in Eq. (19), which
actually is equivalent to the split hydrostatic/deviatoric form:

[

δσh

δτ

]

=

[

2B AS
A 2GS

]

·
[

δεh

δγ

]

, (43)

leads to the condition (4BG−A2)S = 0, which can be fulfilled by either having the term in brackets
vanish, or by S → 0, as it happens for large shear strain anyway.
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4 Results

In this section, a series of tests will be performed, using the proposed constitutive model in different
variants. The goal is to demonstrate the behavior of the model for different modes of deformation,
as shown in Table 1.

Mode 0 is purely isotropic, while mode 2 is purely deviatoric, i.e., volume conserving, which both
take especially simple forms. Modes 1 and 3 are mixed modes, which are often applied experi-
mentally. The uni-axial test is the superposition of an isotropic and a deviatoric test, whereas the
bi-axial test involves mixed stress- and strain-control instead of completely prescribed strains. In
our examples, the strain component ε22 is prescribed together with the horizontal stress compo-
nent, σ11, which makes, e.g., the horizontal strain component, ε11, and the vertical stress, σ22,
unknown variables. Many further possible deformation modes, like isobaric mode 4, where the
isotropic stress is prescribed constant [36], are not discussed here.

Mode 1-dir. 2-dir. εv γ Description

0 (isotropic) ε0 ε0 ε0 0 ε0 > 0 dilatation, ε0 < 0 compression

1 (uniaxial)
ε1 0 ε1

2

ε1

2
horizontal, ε1 > 0 tension, ε1 < 0 compression

0 ε1
ε1

2
− ε1

2
vertical, ε1 > 0 tension, ε1 < 0 compression

2 (deviatoric) ε2 −ε2 0 ε2 pure shear, ε2 > 0 positive, ε2 < 0 negative

3 (bi-axial) σ11 = σ0 ε22 ? ? horizontal stress- and vertical strain-control

Table 1: Summary of various deformation modes that can be imposed on the system. The term
1-dir. is the abbreviation for x- or 1-direction. The symbols εα with α = 0, 1, 2, 3 indicate the
magnitude of strain of the respective mode and should not be confused with eigen-values or a-like.
In the mode 3 bi-axial test one has σ11 = σ0 = const. and ε22 is a (smooth) prescribed function of
time.

In the following, different cases of the constitutive model will be discussed, starting from isotropy,
A = 0, and constant anisotropy A = A0, before different variants of the non-linear, anisotropic
model are studied.

4.1 Isotropy A = 0

The isotropic special case is realized by setting A = Amax = βA = 0, which de-couples the evolution
equations for the isotropic and deviatoric stresses and allows for a straightforward integration given
the constants B, G, and smax

d , with initial conditions σ0 = σh
0 and S0 = τ0/σ0.

4.2 Constant Anisotropy A = A0

In this subsection the cases where A is constant are discussed, which implies that the anisotropy
of the system is not changing with the deformation. Isotropy is a special case belonging to this
class. For the sake of simplicity, in the constitutive model Eqs. (38) and (39), we set the stress
isotropy to S = 1; variations in S will be discussed in the next subsection.

Note that this subsection is relevant for very small deformations of systems with initial values of
B0, G0, A0 and S0. With other words, this subsection describes the stress-strain response of the
model for infinitesimal deformations from an arbitrary initial configuration.
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4.2.1 Linear model, mode 0 (isotropic) and constant A = A0

The first example shows the effects of pure isotropic deformation (mode 0) on the shear stress.
The prescribed deformation consists of ε11 = ε22 = ε0 and volume change 2εv = 2ε0 < 0, i.e.,
compression. The stresses that develop during the deformation, with constant S = 1, are shown
in Figure 2.
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Figure 2: The development of shear and hydrostatic stresses under isotropic compression (mode
0) for fixed A = A0 = 2B/5, with parameters σ0 = −100Pa, B = 10000Pa, and G = B/2.

The compression test leads to increasing negative isotropic stress. Furthermore, even though there
is no shear deformation in the system, γ = 0, the shear stress τ changes for A 6= 0. For this
example system, recall that positive A corresponds to a larger horizontal than vertical stiffness.
Therefore, the (deviatoric) shear stress-response, τ , must be negative, i.e., the horizontal stress
(negative) increases stronger than the vertical stress (negative).

In the case of negative A < 0, the isotropic stress remains unchanged, but the shear stress,
τ , changes sign, i.e., the vertical stress (negative) increases stronger than the horizontal stress
(negative) and thus τ > 0.

When the system is expanded, i.e., ε0 > 0, the stresses will develop in the opposite (positive)
direction – the isotropic stress will increase, while (for A > 0) the deviatoric stress increases to
positive values too, i.e., the horizontal stress increases stronger than the vertical stress, leading to
positive shear stress τ .

Best Practice Tip 1: Applying a purely isotropic deformation (mode 0) to a sample allows to
measure the modulus 2B and the anisotropy of the sample, A, from the initial slopes of σh − σ0

and τ , respectively, plotted against εv. (In the linear model with constant A and S, the slopes do
not change with increasing strain, whereas in the general case below, they do.)

4.2.2 Linear model, mode 2 (deviatoric) and constant A = A0 with varying S

The next example shows a case where the prescribed deformation is pure shear (mode 2), with
ε11 = −ε22 = ε2 = γ > 0, i.e., for compression in vertical and expansion in horizontal direction.
In Figure 3 the development of the deviatoric stress (≡ τ) and the hydrostatic stress are shown.

Even though there is no isotropic strain involved, the model leads to an increase of the hydrostatic
stress, i.e., a reduction of the compression. This is due to A > 0, so that the horizontal stress
increases faster (tensile) than the vertical stress decreases (compressive). If the volume would
not be prescribed as constant, the constitutive model would lead to compaction, i.e., decrease of
volume of the anisotropic system due to shear deformation.

12



0 0.005 0.01 0.015 0.02
0

5

10

15

20

25

30

35

40

−ε

σ 
(P

a)

 

 

τ vs −ε
22

σh−σ
0
 vs −ε

22

Figure 3: The development of shear and hydrostatic stresses under pure shear deformation, mode
2, for fixed A = A0 = 2B/5, with σ0 = −100Pa, B = 10000Pa, G = B/2, smax

d = 0.4, and S0 = 1.
The dashed lines indicate the initial slopes 2G and A and correspond to constant S = S0 = 1.

Inversion of the sign of A does not affect the shear stress, but leads to a system with stiffer response
in vertical direction and, correspondingly, to a sign reversal of the hydrostatic stress change and
therefore dilatancy instead of compaction. Reversal of the shear direction, but keeping A > 0, just
inverts all signs for both strain and stress changes.

Best Practice Tip 2: Applying a purely deviatoric deformation (mode 2) to a sample allows to
measure the modulus 2GS and the anisotropy, AS from the initial slopes for small strain. Note
that, as shown below, the measured moduli depend also on the initial state of S – only for isotropic
initial stress, S = 1, the parameters 2G and A are directly available.

4.2.3 Comparison of mode 0 and mode 2 for constant A = A0

Comparison of the two cases, mode 0 and mode 2, reveals an important characteristics of the model.
There exists a coupling symmetry or, in other words, the cross-link between shear (deviatoric) and
isotropic strains works in both directions: shear strain causes a change in hydrostatic stress and
isotropic strain causes a change in shear (deviatoric) stress – if anisotropy is present.

4.2.4 Linear model, Mode 1 for constant A = A0 (and S = S0 = 1)

Applying uni-axial deformation (mode 1) with strain ε1, in horizontal or vertical direction, leads
to:

δσh = Bδε1 ± (A/2)δε1 = (2B ± A)δεv
1 = (±2B + A)δγ1 , (44)

and
δτ = (A/2)δε1 ± Gδε1 = (A ± 2G)δεv

1 = (±A + 2G)δγ1 , (45)

respectively, where the positive/negative, ±, corresponds to horizontal/vertical deformation with
corresponding shear strain δγ1 > 0 or δγ1 < 0. Inserting our choice of parameters, A = 2B/5 and
G = B/2, yields: δσh = (1 ± 1/5)B δε1 , and δτ = (1/5 ± 1/2)B δε1 .

Note that for the simplest uni-axial (mode 1) deformation experiments, typically only the stress
in one direction (deformation direction) can be measured. Therefore, by addition or subtraction
of Eqs. (44) and (45), the relations

δσ11 = (B + G + A)δε11 , (46)
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and
δσ22 = (B + G − A)δε22 , (47)

can be used – if the horizontal or vertical stresses are measured for the respective horizontal or
vertical deformation direction.

For these cases, when the deformation direction is reversed, δε1 → −δε1, one obtains the same
moduli (due to sign inversion of the stress response). The model with constant A thus does not
show non-linearity under reversal of deformation direction. On the other hand, when the anisotropy
direction is reversed, A → −A, the apparent moduli for horizontal or vertical deformation are
exchanged in Eqs. (46) and (47).

If the experiment also allows to measure the stress perpendicular to the uni-axial deformation
direction, one has the relations

δσ22 = (B − G)δε11 , (48)

and
δσ11 = (B − G)δε22 , (49)

i.e., three apparent moduli can be measured to determine the three unknowns B, G, and A. The
fourth unknown S0 will be introduced in the next sub-subsection. Note that in practice uni-axial
experiments are usually not flexible enough to provide all four measurement results. From DEM
simulations, however, one can easily obtain the three moduli, given the system is initially isotropic
in stress, S0 = 1.

Best Practice Tip 3.1: For isotropic stress S = S0 = 1, the uni-axial deformation mode does not
provide direct access to the constitutive model parameters – however, various combinations can be
obtained for different tests, dependent on the direction of deformation and initial anisotropy. In
particular, combinations like B ± G and A can be extracted.
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Figure 4: (Left) The horizontal and vertical stresses under vertical uni-axial deformation, mode
1, plotted as function of the negative vertical strain (such that compression appears positive).
(Right) shear and hydrostatic stresses from the same data, also plotted against (negative) vertical
strain. The data are for fixed A, with σ0 = −100Pa, B = 10000Pa, G = B/2, A = A0 = 2B/5 and
S = S0 = 1. The apparent moduli, i.e., the slopes of the curves in the left panel are −(B+G−A) =
−11000 Pa for the vertical stress, see Eq. (47), and −(B−G) = −5000Pa for the horizontal stress,
see Eq. (49). The slopes in the right panel are −8000Pa and +3000Pa, as can be read off from
Eqs. (44) and (45), for the hydrostatic and the deviatoric stress, respectively.

Examples of the linear model for uni-axial compression, mode 1, and how to obtain the apparent
moduli from the previous set of equations, are given in Figs. 4 and 5. In the following subsection,
the same system will be examined with initial anisotropy S < 1.
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Figure 5: The development of shear and hydrostatic stresses under horizontal (Left) and vertical
(Right) uni-axial deformation, mode 1, for fixed A, with σ0 = −100Pa, B = 10000Pa, G = B/2,
A = A0 = 2B/5 and S0 = 1. In the right panel, for vertical uni-axial compression, in contrast
to Fig. 4, the hydrostatic and deviatoric stresses are plotted against the isotropic and deviatoric
strains, respectively. In the right panel, the corresponding slopes 2B−A = 16000Pa and 2G−A =
6000Pa can also be read off from Eqs. (44) (2nd term) and (45) (third term). In the left panel,
for horizontal uni-axial compression, the slopes are 2B + A = 24000Pa and 2G + A = 14000Pa.

4.2.5 Linear model, Mode 1 for constant A = A0 (and S = S0 6= 1)

Applying uni-axial deformation (mode 1), with strain δε1 to the (deviatorically) pre-stressed system
(with S0 6= 1), in horizontal or vertical direction, leads to

δσh = Bδε1 ± (A/2)S0δε1 , (50)

and
δτ = (A/2)δε1 ± GS0δε1 , (51)

respectively. This leads to the modified relations for the simplest uni-axial test

δσ11 = (B + GS0 + A/2 + AS0/2)δε11 , (52)

and
δσ22 = (B + GS0 − A/2 − AS0/2)δε22 , (53)

which can be used if the horizontal and vertical stresses are measured for the respective hori-
zontal and vertical deformation directions. If the experiment also allows to measure the stress
perpendicular to the uni-axial deformation direction, one has the independent relations

δσ22 = (B − GS0 − A/2 + AS0/2)δε11 , (54)

and
δσ11 = (B − GS0 + A/2 − AS0/2)δε22 , (55)

i.e., four relations for the four unknowns B, G, A, and S0.

Best Practice Tip 3.2: The uni-axial deformation mode does not provide direct access to the consti-
tutive model parameters – however, various combinations can be obtained in different realizations,
dependent on the direction of deformation and initial anisotropy. In particular combinations like
B ± GS0 and A(1 ± S0)/2 can be extracted, from the initial slopes.
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4.2.6 Comment on direction reversal of uni-axial deformation

Now a final remark about the non-linearity under direction reversal. Like above for S = 1, for
constant A = A0 and constant S = S0 < 1, there is linearity for reversal of deformation-direction.
However, as will be discussed in the following subsection, for A and S variable, developping during
the applied strain history, the non-linearity in the model shows up.

More specific, assume the special case, where the sample was compressed (uni-axially) in horizontal
direction (long enough, γ ≫ 0) such that the final, critical state with A = Amax

c = Am > 0, and
smax

d,c = −sm
d < 0 was reached. Measuring from this state, uni-axially the horizontal stiffness under

further horizontal compression implies A0 = Am and S0 = 0 so that Eq. (52) leads to the apparent
modulus C1111 = (2B + Am)/2 (= 6B/5 for our parameters with Am = 2B/5).

On the other hand, after stop and measuring from the same state, uni-axially the horizontal stiffness
under the reversed (opposite) horizontal deformation (i.e., tension) implies sign reversal of strain
and (due to the definitions of Amax

t = −Am, see Eq. (27), and smax
d,t = sm

d , see Eq. (32)) implies
A = A0 = −Am and S0 = 2 (at the instant of direction reversal), which leads to the apparent
modulus Crev

1111 = B +2G− 3Am/2 (= 14B/10 for our parameters). In general, the modulus under
reversal, Crev

1111, is different from the apparent modulus C1111 under further uni-axial compression,
which allows to quantify the strength of non-linearity via Ψrev = Crev

1111/C1111 = 2B+4G−3Am

2B+Am (= 7/6
for our parameters). For Ψrev > 1 one has an increased stiffness under strain reversal whereas for
Ψrev < 1, the stiffness would decrease under strain reversal. Since the former is usually observed in
experiments and simulations, we can define an upper limit for |A| ≤ AΨ := G, for which Ψrev ≡ 1.

4.2.7 Mode 3 for A = A0 with varying S

The last example for constant A is the actual bi-axial model system, i.e., mode 3 with constant
horizontal stress. In this case only ε22 is prescribed as compressive (negative) and ε11 is calculated
using the constraint condition σ11 = σ0.
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Figure 6: The development of stresses during the biaxial deformation (mode 3) of the system,
plotted against the negative vertical strain. (Left) Horizontal and vertical stress, where the dashed
line indicates the initial slope, −C2222, and (Right) hydrostatic and deviatoric stress, where the
dashed lines indicate the slopes ±C2222/2, for a system with fixed A = A0 = 0.4B, σ11 = σ0 =
−100Pa, B = 10000Pa, and G = B/2.

Figure 6 shows the components of the stress tensor as well as the shear and hydrostatic stresses.
The horizontal stress remains constant, as prescribed, and, for our choice of parameters, the shear
stress increases with slope C3 while the isotropic stress decreases with slope −C3.

6 The vertical

6The anti-symmetry in isotropic and deviatoric stress for mode 3 is due to the prescribed constant horizontal
stress σ11 = σ0, which implies δσ11 = 0. The constant C3 = C2222/2 is derived below.
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stress σ22 evolves according to the constitutive relations, i.e., it decreases to higher compressive
stress magnitude (negative). Since A is constant, the model leads to a linear increase of stress
magnitude to values much larger than the confining stress.

Inserting the definitions into the constitutive model, at initial state with S0 = 1, leads to:

δσh = δσ22/2 = 2B(δε11 + δε22)/2 + A(δε11 − δε22)/2 = 2Bδεv + Aδγ , (56)

δτ = −δσ22/2 = A(δε11 + δε22)/2 + 2G(δε11 − δε22)/2 = Aδεv + 2Gδγ , (57)

and setting δA = 0, allows to solve for the unknowns

δε11 = − (B − G)

(B + G + A)
δε22 = −νP δε22 , (58)

and

δσ22 =

[

4BG − A2
]

2 (B + G + A)
δε22 = C2222δε22 , (59)

where the first equation defines the Poisson ratio νP and the second equation directly provides the
modulus C2222 for the bi-axial compression mode. The Poisson ratio allows to relate the isotropic
to the deviatoric strains via: εv = − 1−νP

1+νP

γ. Inserting our choice of parameters, A = 2B/5 and
G = B/2, yields νP = 5/19, and C2222 = 92B/95, which corresponds to the (negative) slope of σ22

in Fig. 6.

Best Practice Tip 4.1: The bi-axial deformation mode does not provide direct access to the consti-
tutive model parameters – however, other quantities like a Poisson ratio and one modulus can be
obtained.

In Figure 7 both the evolution of the strains and the scaled stresses is shown, where the latter are
defined as:

sv =
σ11 + σ22

2σ0

− 1, and sd =
σ11 − σ22

(σ11 + σ22)
. (60)

In the left panel, we observe a continuous decrease of volume, δεv < 0 (negative slope of the red
curve), with initial slope −(1 − νP )/2 = −7/19, due to the relation εv = (1 − νP )ε22/2. The
vertical strain is continuously decreasing while the horizontal strain increases – but more slowly –
which leads to a net decrease of volume (compaction). 7 For the same reasons, the shear strain
continuously increases according to γ = −(1 + νP )ε22/2, with initial slope 12/19.

From the right panel, we observe that the isotropic stress ratio is continuously increasing (consistent
with the isotropic compaction), according to sv = σ22/(2σ0) = C3ε22/σ0, and the deviatoric stress
ratio decreases as sd = −C3ε22/σ0. The deviatoric stress ratio, for large strains, approaches the
value smax

d = −0.4, as prescribed, while the isotropic stress ratio approaches smax
v = 2/3.

4.3 Model with evolution of anisotropy A

From discrete element simulations it is observed that A evolves during the deformation accord-
ing to the proposed function in Eq. (40) – before shear band formation, as long as the system is
homogeneous. The model proposed in this study in Eqs. (38), (39), and (40), is therefore imple-
mented for evolving A – to be compared with DEM simulations in a future study. Here, results
will be shown for the biaxial box deformation mode 3, i.e., for vertical compression and with fixed
horizontal stress.

7Note that our positive A = 2B/5 corresponds to a material that is stiffer in horizontal than in vertical direction.
Inserting A = −2B/5 corresponds to a material that is stiffer in vertical directions. This leads to νP = 5/11, i.e., a
considerably larger Poisson ratio than for positive A, while A = 0 leads to a value in between. The volume change
is given by εv = (1−νP )ε22/2, so that A = 2B/5, 0, and −2B/5 lead to (1−νP ) = 0.736842, 0.6666, and 0.545454,
respectively. The higher the stiffness in compression direction, the smaller the volume change for given compression.
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Figure 7: (Left) The development of isotropic and shear (deviatoric) strain during the biaxial
deformation of the system, mode 3, for fixed A, from the same data as in Fig. 6, where the dashed
lines indicate the initial slopes −7/19 and 12/19. (Right) The development of the scaled stresses,
sv and sd, from the same data, where the slopes of the dashed lines are ±C3/σ0.

4.3.1 Biaxial mode 3 with vertical compression

In the first example the maximal anisotropy is Am = 2B/5, like the constant A before, however,
the anisotropy A is now free to change, starting from A0 = 0, if not explicitly mentioned. The
other parameters in the simulation are: σ0 = −100Pa, B = 10000Pa, G = B/2, βA = 82, and
sm

d = 0.4.

The stresses and strains behave initially like for constant A = A0 = 0 (data not shown). The be-
havior starts, as expected, being linear, isotropic and evolves towards being saturated, anisotropic.
Note that this system, therefore, behaves differently than the system with constant A 6= 0, as
discussed before in subsection 4.2.7.

In Fig. 8 (Left), the isotropic strain indicates the initial compression and then saturates at around
2% of vertical strain, while the deviatoric strain increases continuously with increasing slope,
relative to the initial deformation, and constant slope later on. The continuously increasing shear
strain is due to the horizontal extension and vertical compression, which both enter γ positively.
Note however, that the initial isotropy A0 = 0 has as consequence that the volume change is
smaller while the shear strain is larger – the initial slopes are −1/3 and 2/3 for volumetric and
deviatoric strain, respectively – as compared to the respective data with constant A = A0 = 0.4B.
Also the saturation level of isotropic and deviatoric strain is different from the previous case.

In Fig. 8 (Right), the non-dimensional shear stress ratio, sd, decreases and saturates at smax
d = −0.4,

as prescribed. The isotropic stress ratio also saturates, at a positive value smax
v , which was not

prescribed, but is due to the constant horizontal stress σ11 = σ0, which together with the prescribed
smax

d does not allow the isotropic stress to change anymore beyond smax
v = −(1/smax

d + 1)−1 = 2

3
.

Thus, the saturation values are independent of the initial value of A. The early evolution of the
stress ratios, however, is influenced by the evolution of A, as can be seen by the difference between
the dashed and solid lines. The negative anisotropy, A < 0, starting from A0 = 0 speeds up the
evolution of the stress ratios, as compared to the positive A situation.

The evolution of anisotropy A is displayed in Fig. 9, and shows saturation at Amax = −2B/5 at
around 7% of strain for βA = 82. For larger βA, saturation is much faster, while for smaller βA,
the change of A is much slower. Negative A means that the horizontal stiffness is smaller than the
vertical stiffness, which is plausible due to the vertical compression and the horizontal extension.

The second-order mechanical work, as defined in Eq. (30), is shown in Fig. 9(right), and displays
a rapid decay from large values down to zero in the anisotropy saturation regime. Interestingly,
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Figure 8: The development of shear and isotropic strains (Left) and of the non-dimensional stress-
ratios, sd and sv (Right), during the biaxial deformation mode 3 of the system, with vertically
prescribed compression and constant horizontal stress, σ0 = −100Pa, for evolving A, using the
standard parameters as given in the main text, together with the new parameters βA = 82,
Am = 2B/5, and sm

d = 0.4. The solid lines are the data with variable A, whereas the dashed lines
are the data for constant A from Fig. 7.
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Figure 9: The evolution of anisotropy A (Left) during mode 3 vertical compression, with constant
horizontal confining stress σ0, for three different βA = 820, 82, and 8.2 (from bottom to top), and
the development of second-order mechanical work (Right) from the same simulations.

the second order work is not much affected by βA.

4.3.2 Biaxial mode 3 with vertical extension

The second example is identical to the first example, only reversing the vertical strain direction
to extension, starting from A0 = 0, with Am = 2B/5, σ0 = −100Pa, B = 10000Pa, G = B/2,
βA = 82, and sm

d = 0.4.

For vertical extension, keeping the horizontal stress constant, the system response is initially the
same as for compression – only with opposite signs for the strain, the anisotropy and the stress
changes. This is due to the fact that we start from an isotropic system, A0 = 0, i.e., like those
shown in Fig. 10, all the quantities develop with the same slope from the starting point at zero
strain. However, for larger strains the evolution of some of the quantities develops differently. The
anisotropy is an exception here, since its evolution is symmetric with respect to the sign of strain
– in the present simplified version of the model. The saturation values are equal in magnitude
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but opposite in sign, Amax = ±2B/5, for extension (positive) and compression (negative) and the
inital rate of change is only determined by βA.
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Figure 10: The development of shear and isotropic stresses (Left) and of the stress ratios (Right),
during the biaxial deformation of the system, mode 3, with vertically prescribed compression (solid
lines) or extension (dashed lines) and prescribed constant horizontal stress, σ0 = −100Pa, for
evolving A, starting from A0 = 0, and maximal stress-anisotropy, using the standard parameters
as given in the main text, together with βA = 82, Am = 2B/5, and sm

d = 0.4.

The isotropic strain, for example (data not shown), indicates the initial dilation and then saturates
at around 1-2% of vertical strain, faster than under vertical compression, while the deviatoric strain
decreases continuously with increasing slope (during the initial deformation) and constant slope
later on. The continuously decreasing shear strain is due to the horizontal compression and vertical
extension, which both enter γ negatively. Thus the strains reach their limit states faster under
vertical extension than under compression, and the limit states are different, dependent on the
direction of strain, since the limit anisotropy is different (in sign).

When plotting the isotropic stress against isotropic strain and the deviatoric stress against devi-
atoric strain in Fig. 10 (Left), for extension (positive ε), volume increase is accompanied by an
increase in isotropic stress, but the magnitude is smaller than for compression (negative ε). The
deviatoric stress becomes negative (for extension) and saturates at a smaller magnitude and at
smaller deviatoric strain than under compression.

In Fig. 10 (Right), the non-dimensional shear stress ratio, sd, under vertical extension, increases
and saturates at smax

d = 0.4, as prescribed. Note that the saturation regime is reached faster for
extension (after about 1% of strain) than for compression (after about 5% of strain). The isotropic
stress ratio also saturates, faster for extension, at a negative value smax

v = −(1/smax
d + 1)−1 = − 2

7
,

which was not prescribed, but follows from the critical limit state parameters.

Best Practice Tip 4.2: The compression mode 3 leads to saturated shear stress, like the extension
mode 3, where the former is considerably slower than the latter (with about 5% of strain vs. 1-2% to
reach saturation). Starting from an initial isotropic system (A0 = 0), the equivalent moduli (initial
slope of the stress strain curve) are identical (note the different range of isotropic stress under
compression and extension). The anisotropy develops with the same rate and reaches saturation at
about 7% of strain for the chosen model parameters.

These observations and predictions, based on the simplified version of the model, wait for exper-
imental validation. If the experimental results show different behavior, this will show where to
improve the model.
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5 Summary and Conclusion

In the biaxial system – where the eigen-vectors of all tensors are either horizontal or vertical – a
new constitutive model, as based on DEM simulations in Ref. [18, 22], is presented in Eqs. (38),
(39), and (40). It involves the hydrostatic and deviatoric stresses, together with one anisotropy
modulus that evolves during deviatoric deformations of the system (independently from the stress
evolution, due to the constant parameters used here – for the sake of simplicity) and thus represents
a history/memory parameter.

The five macroscopic field quantities are the hydrostatic stress, the shear stress, the anisotropy
modulus, the isotropic strain and the shear strain. The model involves only three moduli: the
classical bulk modulus B, a shear modulus, G, and the anisotropy modulus A, whose sign indicates
the direction of anisotropy in the present formulation. 8 Due to the anisotropy, A, the model
involves a cross coupling of the two types of strains and stresses, namely isotropic and shear
(deviatoric). As opposed to isotropic materials, shear strain can cause dilatation (compaction)
and hence larger (smaller) compressive stresses. Similarly, a pure isotropic strain can cause shear
stresses and thus shear deformation in the system. The shear stress evolution with shear strain is
proportional to 2G, while the anisotropy grows proportional to shear strain and the rate parameter
βA.

The model also leads to a critical state regime, where the stresses and the anisotropy modulus do
not change anymore, given constant B and G. 9 The critical state is described by the maximal
anisotropy Am and the maximal deviatoric stress ratio sm

d , where the latter is equivalent to a
macroscopic friction coefficient in Mohr-Coulomb type constitutive relations, and thus represents
a yield-stress limit.

5.1 Micro-Macro Mechanics and Constitutive Relations

The flow of granular materials is controlled by the micro-mechanics of the disordered structure of
the material. On the macroscopic level of description, one history parameter is introduced that
accounts for the micro-mechanical anisotropy evolution of the system. This single new parameter
is the only extension as compared to classical continuum theories. Furthermore, all tensors are
split into their scalar components, which is possible only in the bi-axial system. In more general
situations, the tensors can be split into their (scalar) moduli and a non-dimensional unit-deviator
(“director”) that involves the orientation of the tensor eigen-system. In two dimensions (2D) this
is particularly simple, since each tensor direction is uniquely defined by one angle.

In contrast to (some, piece-wise linear) elasto-plastic models, the present evolution of stress and
anisotropy is smooth: both sd and A approach their critical state regime exponentially fast, which
means a linear regime for small strain and a critical state regime for large strain, without any
discontinuities of the derivatives. Strain reversal, on the other hand, leads to a non-linear stress
evolution – again due to the presence of the anisotropy – with different loading and un-loading
stiffnesses, as in hypo-plasticity type models.

Note that the present model does not show softening – softening was not inserted, but shows up as
an artefact when, e.g., the inconsistent variant of the model is used (data not shown). Disregarding
softening is on purpose, since the model is only locally valid (or for homogeneous systems), whereas
softening and other effects are (to our knowledge) observed for inhomogeneous systems. Softening
– in our philosophy – should NOT be inserted into a (simple) local model, since it is expected to
be the result of the collective behavior of the material in a particular experiment with its boundary
conditions.

The condition when the system becomes instable has also been derived analytically and is fulfilled

8Future formulations will take into account arbitrary orientations of stress, anisotropy and strain.
9The latter is a simplification, where evolution equations for B and G will be introduced elsewhere [39]. Their

change is often smaller than the variation of the new modulus, A [18].
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automatically in the critical state regime: The existence of anisotropy in the model causes insta-
bility when it becomes larger than a certain value that is a function of the bulk and shear moduli.
However, interestingly, such large anisotropy was never observed in DEM simulations, which leaves
the question about the particulate origin of the instability open.

5.2 From Constant to Evolving Anisotropy

To better understand the model, a series of simulations has been performed for special cases:
Some analytical predictions can be made for constant anisotropy in the system. As expected,
linear relations between strains and stresses are observed, in line with the coupling via the (con-
stant) anisotropy mentioned above. The constant anisotropy also reflects the system behavior with
evolving anisotropy for very small strains. For larger strains the non-linear behavior sets in with a
particular interplay between isotropic and deviatoric components, which are cross-coupled by the
anisotropy. The evolving anisotropy of the structure, A, and of the stress ratio, sd, both with a
maximum, lead to non-linear effects as the critical state regime and the change of stiffness under
strain-reversal.

5.3 Future Work

The next step is the formulation of the model for arbitrary orientations of the stress-, strain-
and anisotropy-tensors, but keeping the number of parameters fixed. This is a requirement for a
possible Finite Element Method implementation of the model, in order to study arbitrary boundary
conditions other than bi-axial systems.

After this is achieved, the model can be generalized to three dimensions (3D), where (at least)
one additional anisotropy parameter (one new contribution to the anisotropy tensor with different
orientation) is expected to be present for arbitrary deformation histories. Otherwise, the spirit of
the model will not be different in 3D.
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