The role of anisotropy in the elastoplastic response of a polygonal packing
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We study the effect of the anisotropy induced by loading on the elastoplastic response of a two
dimensional discrete element model granular material. The anisotropy of the contact network leads
to a breakdown of the linear isotropic elasticity. We report on a linear dependence of the Young
moduli and Poisson ratios on the fabric coefficients, measuring the anisotropy of the contact network.
The resulting non-associated plastic flow rule and the linear relationship between dilatancy and
stress ratio are discussed in terms of several existing models. We propose a new paradigm for
understanding soil plasticity, based on the correlation between the plastic flow rule and the induced

anisotropy on the sub-network of sliding contacts.

Granular materials exhibit a range of behavior that has
attracted the attention of physicists, mathematicians,
and engineers from Coulomb, Faraday and Reynolds in
the late 18th century, to several interdisciplinary research
groups in the earlier 21st, trying to improve the handing
of agricultural an pharmaceutical products, and to un-
derstand the material behavior of construction materials
such as ballast, concrete, marble, etc. It is therefore sur-
prising that perhaps the simplest question of dilatancy re-
mains unanswered even now. In the simplest case of non-
cohesive granular materials, the conventional elastoplas-
tic models interprete the dilatancy using the hypothesis
of the existence of a finite domain in stress space where
only elastic deformations are possible [1]. Astonishingly,
a large amount of experimental evidence suggests that
the purely elastic regime in such materials is vanishingly
small [2]. This proves that the introduction of such an
elastic regime in the continuous description may be as
unnecessary as unsuitable. For this reason sand is some-
times mathematically described by using a rigid-plastic
limit which is called the psammic limit, where dilatancy
is seen as an internal constraint [3, 4].

Several recent investigations on granular materials at
grain scale have provided another context for understand-
ing the mechanical response of granular assemblies [5—
7). Even in the absence of strong spatial disorder of the
grains, static assemblies show that the stress is trans-

*Electronic address: fernando@ical.uni-stuttgart.de
tElectronic address: S.Luding@tnw.tudelft.nl
Electronic address: hans@ical.uni-stuttgart.de
§Electronic address: vardoulakis@mechan.ntua.gr

mitted through an heterogeneous contact network with
a peculiar force distribution [8] . Under small devia-
toric loads, an initially isotropic packing develops an
anisotropic contact network because new contacts are
created along the loading direction, while some are lost
perpendicular to it. This geometrical anisotropy leads in
turn to an anisotropic response of the granular assembly,
whose effect on the anisotropic elasticity and the plastic-
ity remains an open issue [9].

In this paper we combine the continuous and the dis-
crete approaches in the investigation of the effect of the
induced anisotropy on the elastoplastic response of a
two-dimensional model consisting of perfect packings of
polygons. The polygonal particles have exactly adjusted
shapes and leave null porosity, which resembles the tex-
ture of marble, See Fig. 1. The granular packing is
regarded as two complementary networks of sliding and
non-sliding contacts.

This bimodal character of the force network was sug-
gested by Gedankenezperimente by Dietrich [10]. Var-
doulakis [11] was next to use the idea of Dietrich by
looking carefully into the force chains resulting in the
numerical simulations of Cundall [12]. He produced a
constitutive model that considers sand as a mixture of
these two fractions [13]. This idea was later numerically
verified by the observation of the buckling force chains
supported by sliding lateral contacts during shear [14].

This paper is organized as follows: The details of the
particle model are presented in Sec. I. The interparticle
forces include elasticity and friction with the possibility
of sliding. The polygonal packing is driven by apply-
ing stress controlled loading at the boundary particles.
The calculation of the incremental stress-strain relation
is presented in Sec. II. The incremental strain is de-



composed into reversible elastic and irreversible plastic
parts. In Sec. III we characterize the anisotropy of the
contact network and the sub-network of sliding contacts.
In Sec. IV the anisotropy induced by shearing in the con-
tact network is correlated with the elastic tensor. In Sec.
V we discuss the plastic flow rule in the framework of
several existing elastoplastic models. We also interprete
the dilatancy as an effect of the induced anisotropy in
the sub-network of sliding contacts.

I. DISCRETE MODEL

Here we present a two-dimensional discrete element
model which has been used to investigate different as-
pects of the deformation of granular materials, such
as fragmentation [16], damage [17], strain localization
[18, 19] and cyclic loading [20]. This model consists of
randomly generated convex polygons, which interact via
contact forces. There are some limitations in the use of
such a two-dimensional code to model granular materials
that are three-dimensional in nature. These limitations
have to be kept in mind in the interpretation of the re-
sults and its comparison with the experimental data. In
order to give a three-dimensional picture of this model,
one can consider the polygons as a collection of bricks
with randomly-shaped polygonal basis filling completely
the space such as the case of dry masonry walls. Another
physical picture of the model are the aggregates of calcite
crystal granules such as in the case of marble [15]. The
typical texture of marble is illustrated in Fig. 1. The
deformation of individual grains, as well as the Poisson
effect in the grains, are not taken into account. In the
case of marble, this approximation is reasonable since de-
formation occurs principally in the interface between the
grains [21].
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FIG. 1: Left: Voronoi construction used to generate the con-
vex polygons. The dots indicate the point used in the tes-
sellation. Periodic boundary conditions were used. Right:
Typical texture of marble. (Courtesy of Royer [15])

A. Generation of polygons

The polygons representing the particles in this model
are generated by using the method of Voronoi tessellation
[17]. This method is schematically shown in the left part
of Fig. 1: First, a regular square lattice of side £ is cre-
ated. Then, we choose a random point in each cell of the
rectangular grid. Each polygon is constructed assigning
to each point that part of the plane that is closer to it
than to any other point. The details of the construction
of the Voronoi cells can be found in the literature [22, 23].

Using the Euler theorem, it has been shown analyt-
ically that the mean number of edges of this Voronoi
construction must be 6 [23]. The number of edges of the
polygons is distributed between 4 and 8 for 98.7% of the
polygons. Numerically, it is shown that the orientational
distribution of edges is isotropic; and the distribution of
areas of polygons is symmetric around its mean value £2.
The probabilistic distribution of areas follows approxi-
mately a Gaussian distribution with a variance of 0.36¢2.

B. Contact forces

When two elastic bodies come into contact, a slight
deformation in the contact region appears, and there is
an interaction which transmits not only force but also
torque between the bodies. In principle, this interaction
can be obtained using standard technics such as finite
elements methods. In our model this method would be
computationally very expensive, and it is necessary to
introduce some basic assumptions to simplify the calcu-
lation of this interaction. As it was presented before [18],
realistic contact forces and torques can be obtained by al-
lowing the polygon to overlap and calculating them from
this virtual overlap.

The first step for the calculation of the contact inter-
action is the definition of the line representing the flat-
tened contact line between the two polygons in contact.
This is defined from the contact points resulting from
the intersection of the edges of the overlapping polygons.
In most cases, we have two contact points, as shown in
the left of Fig. 2. In such a case, the contact line is

defined by the vector ¢ = C1C5 connecting these two
intersection points. In some pathological cases, the in-
tersection of the polygons leads to four or six contact
points as shown in the right of Fig. 2. In these cases, we
. B =
define the contact line by the vector ' = C1Cs + C3C:
or C = C1Cs + C3Cy + C5Cs, respectively. This choice
guarantees a continuous change of the contact line, and
therefore of the contact forces, during the evolution of
the contact.
The contact force is separated as

- - -

F=F 1)

where f€ and f? are the elastic and viscous contribution.



Ca

FIG. 2: Contact points C; before (left) and after the forma-
tion of a pathological contact (right). The vector denotes the
contact line. ¢ represents the number of time steps.

The elastic part of the contact force is decomposed as

fe = fene + fete. (2)

The unit tangential vector is defined as #¢ = ¢/|C|, and

the normal unit vector n¢ is taken perpendicular to C.
The normal elastic force is calculated as

fn= _knA/Lcy (3)

n

where k,, is the normal stiffness, A is the overlapping area
and L, is a characteristic length of the polygon pair. Our
choice is L. = |C|. This normalization is necessary to be
consistent in the units of force [17].

The frictional force is calculated using an extension of
the method proposed by Cundall-Strack [24]. An elastic
force proportional to the elastic displacement is included
at each contact

fi = —kAxg, (4)

where k; is the tangential stiffness. The elastic displace-
ment Az, is calculated as the time integral of the tan-
gential velocity of the contact during the time where the
elastic condition |ff| < wpfS is satisfied. The sliding
condition is imposed, keeping this force constant when
|f§| = ufe. The straightforward calculation of this elas-
tic displacement is given by the time integral starting at
the beginning of the contact:

t
Aﬁ=£ﬁ@ﬁ@ﬁﬂﬁ%ﬂ (5)

where © is the Heaviside step function and o§ denotes
the tangential component of the relative velocity ¢* at
the contact:

T =05 — Tj + @ x b — & x & (6)

Here ¥; is the velocity and &; is the angular velocity of
the particles in contact. The branch vector l_; connects
the center of mass of particle 7 to the point of application
of the contact force. Replacing Egs. (3) and (4) into (2)
one obtains:

. A A
Fo = —kaT0° = kAzgie. (7)

Damping forces are included in order to allow rapid
relaxation during the preparation of the sample, and to
reduce the acoustic waves produced during the loading.
These forces are calculated as

' = —m(ynvih + y0fte), (8)

being m = (1/m; + 1/m;)~" the effective mass of the
polygons in contact. n¢ and £¢ are the normal and tan-
gential unit vectors defined before, and 7, and ; are the
coefficients of viscosity. These forces introduce time de-
pendent effects during the loading. We will show that
these effects can be arbitrarily reduced by increasing the
loading time, as corresponds to the quasistatic approxi-
mation.

The transmitted torque between two polygons in con-
tact is calculated as 7 = £x f The so-called branch vector
is taken as the vector connecting the center of mass of the
particle to the center of mass of the overlapping polygon.
Since this point is not collinear with the centers of masses
of the interacting polygons, there is a contribution of the
torque from both components of the contact force. This
makes an important difference with respect to the inter-
action between disks or spheres: Polygons can transmit
torques even in absence of frictional forces.

C. Molecular dynamics simulation

The evolution of the position Z; and the orientation ¢;
of the polygon i is governed by the equations of motion:

mid; = Zf?+2f?,
c b
c b

Here m; and I; are the mass and moment of inertia of
the polygon. The first sum goes over all those particles
in contact with this polygon; the second one over all the
forces applied on the boundary. The interparticle con-
tact forces f¢ are given by replacing Eqs. (7) and (8)
in Eq. (1). In order to perform stress controlled test,
a time dependent external force is applied on each edge
belonging to the external contour of the assembly: The
external force f? acting of the edge T® = Az?#; + Azbis,
is given by



f_b = —UlAIEgi'l + 0'3A$Il)£3 — ,mei,l—)vi. (10)

Here #; and Z3 are the unit vectors of the Cartesian
coordinate system. ¢; and o3 are the components of the
stress we want to apply on the sample. Each loading

stage from the stress state o} to azf is applied as:

of —

9 2nt
o3 (t) =a§’+’TU’ [1—cos(ti)] i=1,3, (11)
0

where t¢ is the time of loading. This modulation is chosen
to avoid acoustic waves at the starting and at the end of
the loading.

We use a fifth-order Gear predictor-corrector method
for solving the equation of motion [25]. This algorithm
consists of three steps. The first step predicts position
and velocity of the particles by means of a Taylor expan-
sion. The second step calculates the forces as a function
of the predicted positions and velocities. The third step
corrects the positions and velocities in order to optimize
the stability of the algorithm. This method is much more
efficient than the simple Euler approach or the Runge-
Kutta method, especially for problems where very high
accuracy is a requirement.

There are many parameters in the molecular dynam-
ics algorithm. Before choosing them, it is convenient to
make a dimensional analysis. In this way, we can keep
the scale invariance of the model and reduce the param-
eters to a minimum of dimensionless constants. There
is one dimensionless parameter, the friction coefficient,
and there are 10 dimensional parameters. The latter
ones can be reduced by introducing the following charac-
teristic times: the loading time ty, the relaxation times
tn = 1/9n, te = 1/, ty = 1/ and the characteristic pe-
riod of oscillation t; = /p€?/ky, of the normal contact.

Using the Buckingham Pi theorem [26], one can show
that the strain response, or any other dimensionless vari-
able measuring the response of the assembly during load-
ing, depends only on the following dimensionless param-
eters: a; = tn/ts, Qg = tt/ts, ag = tb/ts, Oy = to/ts, the
ratio k;/k, between the stiffnesses, the friction coefficient
u and the ratio py/k, between the confining pressure and
the normal stiffness.

The variables a; act as control parameters. They are
chosen in order to satisfy the following criteria: (1) guar-
antee the stability of the numerical solution, (2) optimize
the time of the calculation, and (3) satisfy the quasistatic
approximation. a; = 0.1, az = 0.5 and a3 = 0.5 were
taken large enough to have a high dissipation, but not
too large to keep the numerical stability of the method.
The ratio oy = to/ts = 10000 was chosen large enough to
avoid rate-dependence in the mechanical response, corre-
sponding to the quasistatic approximation. Technically,
this is performed by looking for the value of a4 such that
a reduction of it by a factor two makes a change of the

stress-strain relation of less than 5%. The time step is
taken as At = 0.1¢,.

The parameters ky,, k:/k, and p can be considered as
material parameters. They determine the constitutive re-
sponse of the system, so they should be adjusted to the
experimental data. The initial slope of the stress-strain
curve of the material is linearly related to the value of
normal stiffness of the contact. The ratio po/ky deter-
mines the characteristic overlapping length § between the
polygons as follows: From the balance between external
forces and contact forces in a pressure confined granular
assembly one obtain that pof ~ k.6, so that the ratio
between the elastic deflection and the mean diameters of
the polygons satisfies 6 /¢ ~ po/kn- In order to guaranty
overlapping lengths lower that 1% of the diameter of the
polygons we choose pg/k, < 0.004. The plastic defor-
mations before failure as well as the Poisson ratio of the
assembly are monotonic decreasing function of the ratio
k:/ky,. For samples subjected to isotropic pressure, tak-
ing values of k; between 0 and k,, lead to Poisson ratios
between 0.35 and 0.0. Our choice k; = 0.33k,, gives a
Poisson ratio of v9 = 0.07. This is calculated from the
elastic response in Sec. IV. Smaller values of k; lead to
larger Poisson ratios, but also to larger plastic deforma-
tions which in turn induce time dependence effects and
hence very expensive quasistatic simulations.

The angles of friction and dilatancy are increasing
functions of the interparticle friction coefficient . Taking
values of y between 0 and 5.0 yields friction angles be-
tween 6° and 60° [27]. This range should be compared to
the friction angle of 48.2° measured in experiments with
marble [28], that is bigger than the value of 40° — 45°
measured in sand [29]. The reason of this is difference
is that the interlocking between the grains in marble is
bigger than in sand. A friction coefficient of y = 0.25
is chosen in the simulations. This lead to dilatancy an-
gles between 20° and 30° [19]. Triaxial tests on marble
lead dilatancy angles between 11° and 38° [28], whereas
in sand they yield angles between 7° and 14° [29]. Note
that the dilatancy angles in marble are bigger than in
sand. This is due to the peculiar texture of marble with
vanishing void ratio, which is well captured by our model.

II. INCREMENTAL RELATION

When a granular material is loaded, the dynamics of
the contact network involves creation and loss of contacts
as well as restructuring by means of sliding contacts [30].
These changes imply a continuous variation of the stress-
strain relation and a change of the void ratio during load
[31, 32]. This behavior becomes apparent if a polygo-
nal packing confined by isotropic pressure is submitted
to vertical load with constant velocity [33]. The depen-
dence of the deviatoric stress o1 — o3 and the volumetric
strain e = AV/V on the axial strain ¢, = AH/H are
shown in Fig. 3 for different confining pressures. We
observe a compaction regime where there are almost no



open contacts and the restructuring is given only by slid-
ing contacts. The stress response is characterized by a
continuous decrease of the slope of the stress-strain curve
from the very beginning of the load process. Even in this
extreme case of dense polygonal packings, any load rear-
ranges the contact network by means of sliding contacts,
which in turn reduces the strength of the material. Be-
fore failure the sample undergoes a transition from com-
pactancy to dilatancy. This transition is caused by loss
of contacts perpendicular to the load direction, allow-
ing the contact network to rearrange and inducing large
plastic deformations. Near to the failure, the amount
of plastic deformations is much larger than the elastic
ones. This reduces considerably the value of the stiffness
with respect to its initial value. After failure the sam-
ple reaches a stage where the deviatoric stress as well
as the density keeps approximately constant except for
some fluctuations remaining for large deformations. The
continuous variation of the stress-strain curve with the
loading makes it necessary to use an incremental formal-
ism in the description of the mechanical response.
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FIG. 3: Deviatoric stress and volumetric strain versus ax-
ial strain for different values of p/ky, where p is the lateral
pressure. e > 0 represents compression of the sample.

A. Theoretical framework

We introduce here some definitions required for the de-
termination of the incremental response of the polygonal
packing. The calculation of the average of the Cauchy
stress tensor over a granular assembly leads to [34]

1
oij = anff- (12)
b

The sum goes over all the forces acting over the boundary
of the assembly. A is the area enclosed by the boundary
and 7 is the point of application of the boundary force
f* given by Eq. (10). The boundary of the assembly is
given by an irregular polygon whose vertices are denoted
by B; = (2%,y?), where i = 1,3, b = 1,..., Ny, and N,
is the number of edges. Using the equilibrium condition
¥; = 0 in Eq. (10), we obtain

flb = —0'1A$g§?1 + 0'3A£1311)£3, (].3)

where Az? = 22™! — 2%. The point of application of this

force is given by the center of the edge:

1 R 1 .
= §(m1{+1 + mll’)zl + 5(1‘2"'1 + mg)m;;. (14)

Replacing Egs. (13) and (14) into Eq. (12) leads to

1 [—al Sy @+ ah)Adh 03 T, (28 + 2f) Ak
24 | =01 33, (23T + 28) Azl 03 Y, (a5t + 25)Axd
(15)
By expanding this sums and using the formula for the
area of irregular polygons

1
A=13 @tatn

b

—ayag), (16)

one obtains

_ g1 0
o= [ 0 o ] . (17)
Thus, the stress controlled test is restricted to stress
states without off-diagonal components. We can simplify

the notation introducing the pressure p and the deviatoric
stress q in the components of the stress vector

- P 1o+ o3
= = — . ].
7 [q] 2[01—03] 18)
The stress should be accompanied with a microme-

chanical expression for the strain tensor. This is given
by the average of the gradient of the displacement field



over the assembly [35]. Different from round grains, the
length of the contact region at the polygons is not neces-
sarily much smaller than their diameter. There is there-
fore a displacement field which should be different from
the case of a packing of spheres. However, It is shown
in [36] that the incremental strain tensor can be trans-
formed into a line integral of the displacement field on
the external boundary of the polygonal packing, so that
it does not depend on the displacement field inside of the
packing. By assuming rigid body motion at the bound-
ary particles, the line integral leads to a sum over the
boundary segments of the sample

1
deij = 51 > (dulN? + dulNp). (19)
b

Here dii® is the displacement of the boundary segment,
that is calculated from the linear displacement dZ and
the angular rotation d$ of the polygons belonging to it,
according to

di® = dit + dé x L. (20)

From the eigenvalues de; and dez of de;; we define the
volumetric and deviatoric components of the strain as
the components of the incremental strain vector:

- _|del| _ der + des
a=|g]=-lare) (21)

By convention de > 0 corresponds to a compression of the
sample. We assume a rate-independent relation between
the incremental stress and incremental strain tensor. In
this case the incremental relation can generally be writ-
ten as [37]:

dé = M(8,5)ds, (22)

where @ is the unit vector defining a specific direction in
the stress space:

-~ do
0= = [gﬂfz] . |d6| = VapE +dE.  (23)

The constitutive relation results from the calculation
of dé(@), where each value of 6 is related to a particular
mode of loading. Some special modes are listed in Table
I.

The comparison of the incremental response with the
constitutive models requires to select the theoretical
framework which fits best to the numerical data. Many
constitutive models can be found in the market, but they
are essentially divided into two groups [37]: The incre-
mental nonlinear models assume that the dependence
of M on 0 is non-linear, prototype of this class being the

hypoplastic models [38]. The second group corresponds
to the incremental piece-wise linear models, such as
the elastoplastic models. In these models the space of
the stress directions can be divided into subspaces where
the incremental relation is strictly linear [39].

A special feature of the incremental nonlinear models
is that they depart from the superposition principle. i. e.
if one decomposes an incremental load as dé = do+dos,
the strain response of the total load is different from the
sum of the strain responses of the two incremental loads
[37, 38]. Numerical simulations with polygonal packings
show that the superposition principle is accurately satis-
fied [40], suggesting that the incremental piece-wise lin-
ear models are more appropriate to interprete our sim-
ulations. This conclusion is also supported by the fact
that the strain envelope response consists of two pieces
of ellipses, as we will see later.

In order to compare the incremental response to the
elastoplastic models, it is necessary to assume that the
incremental strain can be separated into an elastic (re-
coverable) and a plastic (unrecoverable) component:

dé = dé® + deév, (24)
dé¢ = D7(5)da, (25)
de? = J(0,5)d5. (26)

Here, D! is the inverse of the stiffness tensor D, and
J =M — D7! the flow rule of plasticity [41]. They will
be obtained from the calculation of dé¢(f) and deP(6).

B. Calculation of the incremental response

The method presented here to calculate the strain re-
sponse has been used on sand experiments [42]. It was
introduced by Bardet [43] in the calculation of the incre-
mental response using discrete element methods. This
method will be used to determine the elastic dé¢ and
plastic dé? components of the strain as function of the
stress state & and the stress direction 6. First, the sam-
ple is isotropically compressed until it reaches the stress
value 01 = 03 = p — q. Then, it is subjected to axial
loading in order to increase the axial stress o1 to p + g.

[ 6] TEST | |
0° |isotropic compression| dp >0 dgq=0
45° axial loading do1 >0 dos =0
90° pure shear dp=0 dg>0
135° lateral loading do1 =0 dos >0
180°| isotropic expansion | dp <0 dg=0
225° axial stretching |do1 <0 dos =0
270° pure shear dp=0 dg<0
315°| lateral stretching |doi =0 dos <0

TABLE I: Principal modes of loading according to the orien-
tation of 0



Loading the sample from & to & + d& the strain incre-
ment dé is obtained. Then the sample is unloaded to &
and one finds a remaining strain dé?, that corresponds
to the plastic component of the incremental strain. For
small stress increments the unload stress-strain path is
almost elastic. Thus, the difference dé® = dé — déP can
be taken as the elastic component of the strain. This
procedure is implemented on different clones of the same
sample, choosing different stress directions and the same
stress amplitude in each one of them.
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FIG. 4: Stress - strain relation resulting from the load - unload
test. Grey solid lines are the paths in the stress and strain
spaces. Grey dash-dotted lines represent the yield direction
(Upper) and the flow direction (Lower). Dashed line shows
the strain envelope response and the solid line is the plastic
envelope response.

FIG. 5: Elastic strain envelope responses dé®(f). They are
calculated for a pressure p = 0.001k,, and taking deviatoric
stresses with ¢ = 0.0p (inner), 0.1p, ...,0.7p (outer).

The method is based on the assumption that the strain
response after a reversal loading is completely elastic.
Numerical simulations have shown that this assump-
tion is not strictly true, because sliding contacts are
always observed during the unload path [20, 44]. In
our simulations, we observe that for stress amplitudes of
|da| = 0.001p the plastic deformation during the rever-
sal stress path is less than 1% of the corresponding value
of the elastic response. Within this margin of error, the
method proposed by Bardet can be taken as a reasonable
approximation to describe the elastoplastic response.

Fig. 4 shows the load-unload stress paths and the cor-
responding strain response when an initial stress state
with o3 = 1.25 x 1073k, and o3 = 0.75 x 1073k, is
chosen. The end of the load paths in the stress space
maps into a strain envelope response dé(f) in the strain
space. Likewise, the end of the unload paths maps into
a plastic envelope response dé?(f). This envelope con-
sists of a very thin ellipse, nearly a straight line, which
confirms the unidirectional aspect of the irreversible re-
sponse predicted by the elastoplasticity theory [41]. The
yield direction ¢ can be found from this response, as the
direction in the stress space where the plastic response
is maximal. In this example, this is around ¢ = 87.2°.
The flow direction 1 is given by the direction of the max-
imal plastic response in the strain space, which is around
76.7°. The fact that these directions do not agree re-
flects a mon-associated flow rule, that is also observed in
experiments on realistic soils [42].

Another interesting aspect of the incremental stress-
strain relation concerns the elastic response dé® = dé —



déP. Fig. 5 shows the elastic envelope response for dif-
ferent stress ratios. For stress values such as ¢/p < 0.4
the stress envelope responses collapse on to the same el-
lipse. This response can be described by the isotropic
linear elasticity by introducing two material parameters
i.e. the Young modulus E and the Poisson ratio v [45].
For stress values satisfying q/p > 0.4 there is a reduction
of the stiffness, and a rotation of the principal directions
of the elastic tensor. In this case, the elastic response can
not be described using these two parameters.

III. ANISOTROPY

It is not surprising that isotropic linear elasticity is not
valid in the deformation of samples subjected to devia-
toric loads. Indeed, numerical simulations [31, 32, 46-48]
and photo-elastic experiments [49, 50] on granular mate-
rials show that loading induces a significant deviation
from isotropy in the contact network. The structural
changes of contact network involve creation of contacts
whose branch vectors are oriented nearly parallel to the
loading direction, opening of contacts perpendicular to
the loading direction, and redistribution of contacts by
rolling and slippage. The first two processes reduce the
strength under lateral compression below the strength
under further horizontal load, so that the elastic response
becomes anisotropic [31, 32, 46, 48]. The rearrangements
by sliding contacts play an important role in the plas-
ticity, which has not been much explored by date. In
this section we present a statistical investigation of the
anisotropy of the contact network and the sub-network of
sliding contacts. The calculations were performed taking
10 different assemblies of 20 x 20 polygons.

A. Anisotropy of the contact network

The anisotropy of the granular sample can be char-
acterized by the distribution of the orientations of the
branch vectors £. Each branch vector connects the cen-
ter of mass of the polygon to the center of application of
the contact force. Parts (a) and (b) of Fig. 6 shows the
branch vectors of the polygonal packing for two differ-
ent stages of loading. The structural changes of micro-
contacts are principally due to the opening of contacts
whose branch vectors are oriented nearly perpendicular
to the loading direction. The onset of anisotropy can
be investigated by defining Q(p)A¢p as the number of
contacts per particle whose branch vector is oriented be-
tween the angles ¢ and ¢ + Ay, measured with respect
to the direction along which the sample is loaded. The
right part of Fig. 8 show this distribution for three dif-
ferent stages of loading. Note that anisotropy is absent
for small deviatoric loads, and it appears only near to
failure. For all stress values, the orientational distribu-
tion can be accurately described by a truncated Fourier
series expansion.
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FIG. 6: The lines show the branch vectors of the contact
network for o1 = o3 = 0.001k, (a) and o1 = 0.65 x 103k,
and o3 = 0.35 x 107%k,, (b). The branch vectors of the sub-
network of sliding contacts are shown for the isotropic (c) and
the anisotropic (d) case. The width of the lines represents the
normal force.

Q) ~ ]2\[—7? [ao + a1 cos(2¢) + a2 cos(4yp)]. (27)

Here N = Nyay is the average coordination number of
the polygons, whose initial value Ny = 6.0 reduces as the
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FIG. 7: Fabric coefficients of the contact network. They are
defined in Eq. (27). The lines show the spline interpolation
of the data.



load is increased. The parameters a; and as are related
to the second and fourth order fabric tensors defined in
other works to characterize the orientational distribution
of the contacts [30, 46, 51]. We will call them fabric coef-
ficients. The dependence of the fabric coefficients on the
stress ratio ¢/p is shown in Fig. 7. We observe that for
stress states satisfying ¢ < 0.4p there are almost no open
contacts. Above this limit a significant number of con-
tacts are open, leading to an anisotropy in the contact
network. Fourth order terms in the Fourier expansion
are necessary in order to accurately describe this distri-
bution.

Of course, the onset of anisotropy depends on the
initial distribution of contact forces, and its evolution
during loading. Fig. 8 shows the distribution of con-
tact forces in the polygonal assemblies for three different
stages of loading an the corresponding orientational dis-
tributions. For low stress ratios, the contact forces is
rather concentrated around their mean value. This dis-
tribution is qualitatively different from the heterogeneous
distribution of forces observed in polydisperse disks pack-
ings [8, 52]. This is due to the particular geometry of the
polygonal packing, where the absence of voids and the
low polydispersity of the grains reduces the disorder of
the contact network.

From Fig. 8 we observe that loading induces an in-
crease of the fluctuations of contact forces and hence
opening of contacts when the normal force f, vanishes.
in particular, for stress values satisfying ¢ < 0.4p there is
almost no open contacts. Above this limit a significant
number of contacts are open, leading to an anisotropy
in the contact network. This is different from the find-
ings obtained for disks packings, where due to the round
nature of the particles that do not resist against defor-
mations as the polygons do, the anisotropy starts to grow
already for small deviatoric deformations [31, 32].

B. Anisotropy of the sliding contacts

Let’s classify the branch vectors of the contact net-
work in two classes, the first class corresponds to the
non-sliding contacts, which are able to carry the load in
the material. The second class is given by the sliding con-
tacts, which allow the rearrange of the contact network
during loading.

The sliding condition at the contacts is given by |f;| =
W fn, where f,, and f; are the normal and tangential com-
ponents of the contact force, and p is the friction co-
efficient. When the sample is isotropically compressed,
we observe a significant number of contacts reaching the
sliding conditions. If the sample has not been previously
sheared, the sub-network of sliding contacts is isotropic
as shown the part (c) of Fig. 6. This isotropy is bro-
ken when the sample is subjected to deviatoric loads, as
shown part (d) of Fig. 6. The onset of anisotropy is inves-
tigated by introducing the polar function Q°(y), where
Q%(p)Ap is the number of sliding contacts per particle

a=0.1p

q=0.65p

f" 270

FIG. 8: Left: force distribution for the stress ratios ¢/p =
0.1,0.35,0.65. Here f; and f, are the tangential and normal
components of the force. They are normalized by the mean
value of f,. Right: orientational distribution of the contacts
Q(¢p) (outer) and of the sliding contacts Q°(y) (inner). ¢
represents the orientation of the branch vector.

whose branch vector is oriented between ¢ and ¢ + Agp.

Fig. 8 shows the orientational distribution of sliding
contacts for different stress ratios. For low stress ratios,
the branch vectors £ of the sliding contacts are oriented
nearly perpendicular to the loading direction. Increasing
the deviatoric strain results in an increase of the number
of the sliding contacts and the average of the orientations
of the branch vectors with respect to the load direction
decreases with the stress ratio. Close to the failure, some
of the sliding contacts whose branch vectors are nearly
parallel to the loading direction open, giving rise to a
butterfly shape distribution, as shown in Fig. 8.

The orientational distribution of the sub-network of
sliding contacts can be approximated by a truncated
Fourier expansion:

Q(p) ~ 12\/'_7(; [co + c1 cos(2¢p) + ca cos(4gp)]. (28)

Fig. 9 shows the dependence of these fabric coefficients,



measuring the induced anisotropy of the sub-network of
sliding contacts. By integrating Eq.(28) over all orien-
tation one can see that ¢y is related to the fraction of
sliding contact as ns; = cp/ag. where q is defined by Eq.
(27). The last two coeflicients measure the second and
the fourth order degrees of anisotropy of the sub-network
of sliding contact. The complex dependence of this co-
efficients on the stress is given by the fact the number
of sliding contact increases for small stress ratio, and an
important fraction of them are open before failure, as it
was shown in Fig. 8. Note also that for extremely small
deviatoric loads the fabric coefficients ¢; and ¢ are dif-
ferent from zero. This reflects a surprising fact: At the
very beginning of the loading, most of the sliding con-
tacts whose branch vector is oriented nearly parallel to
the direction of the loading, leave the sliding condition.
We will see that this abrupt induced anisotropy has an
interesting effect on the plastic deformations.

IV. ANISOTROPIC ELASTICITY

In this section we investigate the effect of the
anisotropy of the contact network on the elastic response
of the material. The most general linear relation between
the incremental stress and the incremental elastic strain
for anisotropic materials is given by

doij = Dijridesy, (29)

where D;jy; is the stiffness tensor [31, 32, 45]. Since the
stress and the strain are symmetric tensors, one can re-
duce their number of components from 4 to 3, and the
number of components of the stiffness tensor from 16 to 9.
Elasticity involves an elastic potential energy, whose exis-
tence implies the so-called Voigt symmetry of the elastic
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FIG. 9: Fabric coefficients of the distribution of the branch
vectors of the sliding contacts. They are defined in Eq. (28).
The lines show the spline interpolation of the data.
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tensor D;jr; = Dyyi; [63]. This symmetry reduces the
constants from 9 to 6. In the particular case of isotropic
materials, it has been shown that the number of constants
can be reduced to 2 [45]:

1
de?]. = E[(l — V)do’z'j — Véijdakk]- (30)

Here E is the Young modulus and v the Poisson ra-
tio. In the general case of anisotropic materials, the 6
constants are given by two Young moduli, two Poisson
ratios and two shear moduli. If we consider deformations
whose stress tensor has no off-diagonal components, only
the Young moduli and the Poisson ratios are needed:

def | EL e doy
[deg]_[_% Elli] e

From the elastic part of the strain envelope response
one can determine these constants as shown in the Ap-
pendix. Figs. 10 and 11 show these variables for differ-
ent stress values. The averaged values on five different
samples of 20 x 20 polygons are used in these calcula-
tions; the bars representing the standard variation of the
data. For the stress values where the contact network is
isotropic both Young moduli and Poisson ratio are the
same, as corresponds to the isotropic linear elasticity.
For stress ratio where the contact network depart from
isotropy both Young moduli and Poisson ratios are dif-
ferent. Note that the reduction of the Young modulus E;
reflect the reduction of the stiffness under lateral com-
pression, which is due to the opening of contacts whose
branch vectors are almost perpendicular to the loading
direction .

The correlation between the parameters of the stiffness
tensor and the fabric coefficients of Eq. (27) is evaluated

= — _ 1
i3 £ E3 _
1.4r \\ b
+ p=0.008 ky
o p=0.004ky N\
1.2F o p=0.002 k, N\ R
% p=0.001 ky
x= A\
o 1r A\ 1
Ellkn =1.6-0.26 n + 0.75 n, \ \
0.8F \\ i
~ - \
E2/kn 1.6-1.99 n + 7.23 n, \
0.61 \\,
|
0_44 L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

alp

FIG. 10: Young moduli. The lines are the linear fits of E(n;)
according to Eq. (33).



0.351

0.3¢ ~ Var )
Vi = 0.07-0.14 n - 1.62 n,

025/ V5, =007+036n -204n,

5 ool + p=0.008 k, /
6 p=0.004ky /
o p=0.002k, / y
0.15F * p=0.001 kp 13
//
0.1F

0.05k

alp

FIG. 11: Poisson ratios. The lines are the linear approxima-
tion of v(n;). See Eq. (33).

by introducing three parameters measuring the degree of
anisotropy-

ng = 1- aop, ny = ai, n2 = ag, (32)

where a; are the fabric coefficients defined by Eq. (27).
By integrating this equation over all orientations one ob-
tains that ng = (Ng — N)/Ny, which represents the per-
centage change of the average coordination number. The
last two terms in Eq. (32) measure the second and the
fourth order degrees of anisotropy. From Fig. 7 one ob-
tains that 1 — ag ~ 1.6a;. Thus, one can take n; and ns
as the two independent internal variables measuring the
anisotropy of the contact network. The dependence of
the parameters of the stiffness tensor on these variables
is evaluated by developing the Taylor series around the
isotropic case where n; =0

E;, = Ey+ Eilnl + Eiznz + O(Hin]’),
vij = v+ v}jnl + vfjnz + O(n;ny). (33)

The variables n; are calculated as functions of ¢/p by
performing spline interpolation of the fabric coefficients
a; in Fig. 7. Then, the coefficients in Eq. (33) are calcu-
lated from the best fit of those expansions. Figs. 10 and
11 show that the linear approximation is good enough to
reproduce the dependence of the stiffness on the stress
ratio. We observe a slight dependence of the stiffness
on the pressure level which tends to vanish in the limit
of small values of p/k,. Since we use a linear relation
for the contact force one would expect no dependence on
the pressure. This is a spurious effect resulting from the
interpenetration between the polygons. Due to the over-
lapping, the area occupied by all polygons under isotropic
pressure is lower than the sum of their areas. This is re-
flected by a dependence of the stress on the pressure in
a factor which is proportional to p/ky. In order to avoid
this effect it is necessary to take small values of p/k,.

11
V. PLASTIC DEFORMATION

We now turn to the description of the plastic part of
the strain response. Fig. 4 shows that the plastic en-
velope response lies almost on a straight line, as is pre-
dicted by the hardening elastoplasticity theory [11]. This
motivates us to obtain the flow rule of Eq. (26) by intro-
ducing the same parameters describing the plasticity in
this theory: The yield direction ¢, the flow direction 1,
and the plastic modulus h. The yield direction is defined
from the plastic envelope response as the direction in the
stress space leading to maximal plastic deformation

|de?(¢)] = max|de?(6)]. (34)

The flow direction is the orientation of the plastic re-
sponse at its maximum value

¥ = £(de?(9))- (35)

The plastic modulus is obtained from the maximal plastic
response.

h |d&|
The incremental plastic response can be expressed in
terms of these quantities as follows: Let us define the
unitary vectors ¢ and ¢*. The first one is oriented in
the direction of ¢ and the second one is the rotation of

z/AJ of 90°. The plastic strain is written as:

a@0) = 7 [m @)+ @9], G

where k1(60) and k3(6) are defined by the dot products:

k1(6) h(de® - )
k2(0) = h(de? ). (38)

These functions are calculated from the result-
ing plastic response taking pressures with p/k, =
0.001,0.002,0.004,0.008 and deviatoric stresses with
g/p = 0.1,..,0.7. The results are shown in Fig. 12.
We found that the functions k1 (6 — @) collapse on to the
same curve for all the stress states. This curve fits well
to a cosine function, truncated to zero for the negative
values. The profile k2 depends on the stress ratio we
take. This dependency is difficult to evaluate, because
the values of this function are of the same order as the
statistical fluctuations. In order to simplify the descrip-
tion of the plastic response, the following approximation
is made:

k2(0) < k1 (6) & (cos(6 — §)) = ($-0),  (39)
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FIG. 12: Plastic components x1(8) (circles) and k2(8) (dots)
given by Eq. (38). The results for different stress values have
been superposed. The solid line represents the truncated co-
sine function.

where (z) = 20(z), with ©(z) being the Heaviside step
function. Now, the flow rule results from the substitution
of Egs.(37) and (39) into Eq. (26):

dér(9) = J(0)d& = WT‘M&. (40)
This equation establishes a bilinear relation between
the incremental stress and the plastic deformation. This
is characterized by an absence of plastic deformation for
stress increments such as ¢ - do < 0 and a plastic defor-
mation, always oriented along the flow direction %, for
stress increments such as d; dé > 0. At the microme-
chanical level, this means that the sliding contacts have
a Well defined response under incremental load: In the
case ¢-do < 0 the load typically drives them to the elas-
tic regime |fy| < pfn. Otherwise, there is a sliding at
each one of these contacts in a direction which does not
depend of the direction in the stress space along which
the load is applied. This unidirectionality of the plastic
deformation is confirmed by several experimental results
on plane strain deformation[54] and it is an essential in-
gredient of the hardening elastoplasticity [41, 55]. The
fact that this relation is obtained using a simple discrete
element model suggests that it is possible to interprete
the flow rule of plasticity from the collective response of
all sliding contacts.

A. Stress-dilatancy relation

In Soil Mechanics the plastic flow rule is interpreted in
terms of the incremental work done during loading [54]
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FIG. 13: Dilatancy versus the stress ratio. The solid curve
represents a fit with the Gutierrez & Ishihara model; The
dashed curve the relation given by the Nova & Wood model.

dW = pde + qdv. (41)

According to the Critical State Theory, under large
monotonic loads the material reaches a limit state where
it behaves purely frictional, deforming isochorically dur-
ing loading and having constant friction coefficient [54].
Numerical simulations of the biaxial test using polyg-
onal packings seems to verify this limit condition [27].
As shown in Fig. 3, the granular assembly reaches this
critical state, where the volumetric strain as well as the
stress ratio keeps approximately constant except for some
stress fluctuations, which remain for large deformations.
Neglecting those fluctuations, the incremental work done
at the critical state can be approximated by

dW, = qdy = M pdy, (42)

where M, is the frictional constant at critical state. As
far as granular materials are concerned , it is assumed
that the deformation is almost completely plastic (dé ~
déP), so that the elastic stored energy is negligible and
hence almost all the work is dissipated, i. e., dW =~ dW,.

In classical book of Taylor [56] the basic idea of the
stress-dilatancy theory is discussed. Based on few data
on Ottawa standard sand, Taylor concludes that the dis-
sipated work can be assumed to be constant, independent
to the state of loading so that

AWy ~ dW,. (43)

Replacing Taylors hypothesis in Eqgs. (41) and (42) and
neglecting the elastic energy, we obtain



d=n—-M,. (44)

Here we define d = —de?/|dvP| as the dilatancy and n =
g/p as the stress ratio. As shown Fig. 13, the dilatancy
evaluated from our data does not support the simple rule
of Eq. (44), but rather a modification of this expression
is required

d=c(n—M,), (45)

where M = 0.5 and ¢ = 1.7. According to Eq. (34), the
flow direction is therefore given by

cot(y) = ¢(M, —n)

This linear relation between the dilatancy and the
stress ratio has been observed in experimental data in
triaxial [57] and biaxial [58] tests on sand. The ma-
terial constant M, is interpreted as the stress ratio at
the critical state [54]. A physical interpretation of ¢ has
been presented by Gutierrez & Ishihara [59]. Their the-
ory is based on the fact that loading induces anisotropy,
which in turn involves non-coaxiality, that means that
the principal directions of the stress do not coincide with
those of the incremental plastic strain tensor. This non-
coaxiality implies that the dissipated work expressed as
the sum of the products of the stress invariants with the
plastic strain invariants, as in Eq. (44), is erroneous.
The correct expression should be given in terms of the
Cartesian components as dWy = oyjde};. A straight-
forward calculation leads to dWy = pde? + cqdvP, where
¢ = cos(2¥), Being ¥ the angle of non-coaxiality. Assum-
ing, as the stress-dilatancy theory, that the dissipated
energy remains constant during the loading, we obtain
dWy = pdeP + cqdyP = cMpdyP. This identity leads to
Eq. (45). Note that values of ¢ lower than unity are
predicted by this theory. Our biaxial tests simulations
However, lead to a value ¢ = 1.7. Experimental biaxial
tests report on values of ¢ ranging form 0.9 to 1.2 [60].
This range goes also beyond the limits of this theory.

An explanation of this contradiction can be done by ex-
ploring the coaxiality and power dissipation during load.
According to our simulations, the angle of non-coaxiality
is a monotonically decreasing function of the stress ra-
tio. This feature is also observed in experiments on sand
[61], proving that c is strictly not a material parameter.
Furthermore, the plastic dissipation is a monotonically
increasing function of the stress ratio. This implies that
the basic assumption of the stress-dilatancy theory, that
the incremental power dissipation stays constant, is not
applicable to our results. Lets make clear that we are
not trying to prove with our simplified model that these
theories are wrong. Our results only suggest that in the
case of extremely high densities some deviations can be
expected. Based on experimental data on dense and loose

0<yp<m (46)
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sand, Li & Dafalias conclude that the void ratio should
be integral part of the stress-dilatancy relation [62]. Ac-
cording to Gutierrez & Ishihara, not only the void ratio,
but also the also the anisotropy of the sample should be
included in this relation. A good alternative would be
to introduce the fabric coefficients of the sliding contacts
in the description of plasticity. We will explore this ap-
proach in the following sub-sections.

B. Limit of small stress ratios

Further important issues should be addressed in the
range of small stress ratios. Here the plastic deforma-
tions are much lower than the elastic ones so that the
above assumptions leading to the stress-dilatancy rela-
tion can not be applied. A modification of this theory
for small stress ratio has been presented by Nova and
Wood [55]. Their model is based on the assumption that
the response of the sample must be isotropic for small de-
viatoric loads, so that the deviatoric plastic deformation
dv? must vanish in the limit n = ¢/p — 0. In order to
satisfy this isotropy condition, Nova and Wood propose
that Eq. (45) should be replaced by d = C'/n for small
values of n; the constant C is selected by matching this
expression with Eq. (45). Contrary to this assumption,
our numerical data fits well to the Eq. (45) for small
stress ratio as shown the Fig. 13.

Extrapolating these data to n = 0 brings to light an
apparent contradiction: At ¢ = 0 the contact network is
isotropic, so that no deviatoric deformation should ap-
pear under isotropic compression. On the other hand,
taking n = 0 in Eq. (45) leads to ¥ # 0, which es-
tablished deviatoric plastic deformation under isotropic
loads. To resolve this paradox we plot the plastic part of
the strain envelope response when the sample is initially
under isotropic pressure, in Fig. 14. We see clearly that
the unidirectionality of the plastic deformations breaks
down under isotropic condition, so that the flow rule
given by Eq. (45) is not valid here. Note from Fig. 14
that further isotropic compression (# = 0) induces only
plastic volumetric deformation, which is consistent with
the initial isotropy of the polygonal packing. Under ex-
tremely small deviatoric loads the isotropy of the assem-
bly is broken, and there is plastic deviatoric deformations
with flow direction close to 45°.

This striking effect can be understood from an inspec-
tion of the orientational distribution of the sliding con-
tacts. Part (a) of Fig. 6 shows a significant number of
contacts reaching the sliding conditions even when the
sample is isotropically compressed, The initial distribu-
tion of the branch vectors is isotropic. This explains the
fact that under isotropic load only volumetric plastic de-
formations are observed, as shown in Fig. 14.

As shown in Sub-sec. IIIB, the sub-network of sliding
contacts departs from isotropy when the sample is sub-
jected to the slightest deviatoric loading. This is because
most of the sliding contacts whose branch vector is ori-



ented nearly parallel to the direction of the loading leave
the sliding condition. This is represented for ¢ = 0.1p
in Fig. 8. For low stress ratios, the branch vectors 7 of
the sliding contacts are oriented nearly perpendicular to
the loading direction. Sliding occurs perpendicular to Z:
so in this case it must be nearly parallel to the loading
direction. Then, the plastic deformation must be such
that def < del, so that Eq. (35) yields a flow direction
of 1 & 45°, in agreement with Fig. 14.

Fig. 8 shows that by increasing the deviatoric strain re-
sults in an increase of the fraction of the sliding contacts.
The average of the orientations of the branch vectors with
respect to the load direction decreases with the stress ra-
tio, which in turn results in a change of the orientation of
the plastic flow. Close to the failure, some of the sliding
contacts whose branch vectors are nearly parallel to the
loading direction open, giving rise to a butterfly shape
distribution, In this case, the mean value of the orienta-
tion of the branch vector with respect to the direction
of the loading is around ¢ = 38°, which means that the
sliding between the grains occurs principally around 52°
with respect to the vertical. This provides a crude esti-
mate of the ratio between the principal components of the
plastic deformation at ¢ = 0.65p as de} =~ —de} tan(52°).
According to Eq. (35) this gives an angle of dilatancy of
1 = 97°. This crude approximation is reasonably close to
the angle of dilatancy of 104° calculated from Eq. (46).

x 107"

FIG. 14: Plastic envelope response resulting from isotropi-
cally compressed samples with a pressure p = 0.001%,,.
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C. Normality condition

The earliest theoretical studies on plasticity came from
the study of metals [63]. They were based on the pos-
tulation of a yield surface. This surface is supposed to
enclose a domain in the stress space where only elastic
deformations are possible [11]. The existence of a finite
elastic domain leads to the normality condition, which
establishes that both plastic flow direction and the yield
direction are perpendicular to the yield surface. The
question naturally arises as to whether this condition is
valid for the plastic deformation of granular materials.
Experimentalists on soils say that yield surfaces are dif-
ficult to determine because the transition from elastic to
elastoplastic behavior is not as sharp as the theory pre-
dicts [64]. Loosely speaking, the yield surface appears
to be a pragmatic compromise which allows to describe
the dependence of plastic deformation on the deforma-
tion history, but is not a necessary feature of granular
materials [54].

This conclusion becomes clearly apparent if the yield
direction and the flow direction are calculated from the
plastic part of the strain envelope response using the Eqs.
(34) and (35). Both directions are shown in Fig. 15. The
results show that they depend only on the stress ratio
n = ¢/p. The flow direction is fitted by using Eq. (46).
The yield direction can be fitted by a similar relation,
but with different regression parameters

cot(¢) =c'(M'—n) 0<¢<m (47)

The fitting parameters M’ = 0.18 and ¢’ = 1.1 do not
correspond to the values M = 0.5 and ¢ = 1.7 one of the
flow direction. This proves that both angles are quite
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different so that the normality condition is violated. A
large amount of experimental evidence has also indicated
a clear deviation from the normality condition [64], lead-
ing to the so-called non-associated plasticity [41]. From
a micromechanical inspection one can understand this
strong deviation from the normality condition. The prin-
cipal mechanism of plasticity in granular materials is the
rearrangement of the grains by sliding at the contacts.
This is not the case for micro-structural changes in met-
als, where there is no frictional resistance [65]. Even for
small deviatoric loads there is an important fraction of
contacts reaching the sliding condition as shown in part
(c) of Fig. 6. This is reflected in the strong non-associated
behavior shown in Fig. 15 where the yield direction is
around 90° and the flow direction around 45°.

The fact that any load involves sliding contacts and
its effect on the non-associated flow rule of plasticity
contradicts several constitutive models of granular ma-
terials. For example, Nova and Wood establish that due
to the absence of sliding contacts at small stress ratios
the plastic deformation should be associated like in met-
als [55]. They introduce a threshold in the stress ratio,
above which the onset of frictional contacts breaks the
normality rule. This condition is not verified in our sim-
ulations, probably due to the fact that in reality not only
sliding contacts, but also breaking of grains can occur at
low stress ratios at contacts with largest forces [66]. The
contribution of grain fragmentation on the plastic defor-
mation is however beyond to the scope of this work.

Loss of contacts seems to play a secondary role in the
plastic deformations. The onset of anisotropy of the con-
tact networks at 7 = 0.4 is probably related to the abrupt
change of slope in Fig. 15 around this value.

D. Plastic modulus

In the last two sections we presented a close correla-
tion between the orientational distribution of the sliding
contacts and the plastic flow rule. This correlation sug-
gests that plastic deformation of granular materials can
be micro-mechanically described by introducing fabric
constants ¢; such as in Eq. (28), measuring the anisotropy
of the sub-network of the sliding contacts. This descrip-
tion would be equivalent to the relation between the
anisotropy of the contact network and the elastic stiff-
ness tensor presented in Sec. IV.

In Sub-sec. IIIB we found that the the fraction of
sliding contacts is related to the fabric coefficients as
ns = co/ag, where ¢ and ap are defined by Egs. (27)
and (28). We introduce n; as an internal variable of the
contact network, which will be used to describe the evolu-
tion of the plastic modulus with the loading. The plastic
modulus h defined in Eq. (36) is related to the incremen-
tal plastic strain as h|dé?| ~ |d&|, which is equivalent to
the relation F;|dé¢| ~ |d5| between the Young moduli
and incremental elastic strain. Thus, just as we related
the Young moduli to the average coordination number of
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FIG. 16: Inverse hardening modulus h versus fraction of
sliding contacts ms. Different stress values with ¢ =
0.01p,0.1p, ...0.7p and p/kn = 0.001,0.002,0.004, 0.008. The
lowest value of ns corresponds to ¢ = 0.01p.

the polygons, it is reasonable to connect h to the fraction
of sliding contacts ns. Fig. 16 shows that this relation
can be fitted to an exponential relation

h = h, exp(—ns/ng), (48)

where hg = 5.0 x 10%k,, and ny = 0.066. This ex-
ponential dependence contrasts with the linear relation
between the Young modulus and the number of contacts
obtained in Sec. IV. From this comparison, it follows
that when the number of contacts is such that ns; > no,
the deformation is not homogeneous, but is principally
concentrated more and more around the sliding contacts
as their number increases. For low stress ratios h ~ 10%k,,
whereas F; ~ k, so that plastic deformations, which are
inverse proportional to the plastic modulus, are two or-
ders of magnitude smaller than elastic ones. In this case
the strain response of the assembly is almost completely
elastic. Near to failure we found that A ~ 10~ 2k, so that
plastic deformations are two orders of magnitude bigger
than elastic ones. This corresponds to the well-known
rigid-plastic limit for granular materials [4]

VI. CONCLUDING REMARKS

The thrust of this work was the understanding of the
effect of induced anisotropy on the elastoplastic response
of a polygonal packing in the limit of initially vanishing
pore space. The incremental response has been decom-
posed in an elastic and a plastic part. These components
have been correlated to the fabric coefficients, measur-



ing the anisotropy of the contact network and the sub-
network of the sliding contacts.

The incremental elastic response has been described
using two Young moduli and two Poisson ratios. Be-
low the stress ratio ¢/p < 0.4, this response can be rep-
resented by only one Young modulus and one Poisson
ratio, as corresponds to the isotropic elasticity. Above
this stress ratio both Young moduli and Poisson ratios
are different. These parameters show a linear depen-
dence on the fabric coefficients of the contact network.
This result is consistent with several approaches deal-
ing with the connection between the elastic properties
of granular materials with the anisotropy of the contact
network [30, 46, 51, 67]. Our simulations suggest that
this correlation could be given by an explicit linear re-
lation between the parameters of the stiffness and the
fabric coefficients. We have remarked that the transition
to anisotropy around ¢/p = 0.4 is due to the fact that we
start with a polygonal packing with zero porosity, where
the force distribution is unusually narrow. This is not
typical in most granular materials where the force dis-
tribution is rather heterogeneous [8]. In dense polygonal
packings with finite porosity [27] and disks assemblies,
[31, 52] small loads open weak contacts and hence induce
a smooth transition to the anisotropy for small devia-
toric loads. In all cases it is concluded that one can mi-
cromechanically characterize the anisotropic elasticity by
introducing fabric coefficients, measuring the anisotropy
of the contact network.

Another interesting aspect of the incremental response
is the unidirectionality of the plastic response, which
can be described using a non-associated flow rule. From
numerical simulations of packings of disks, Bardet con-
cluded also that a non-associated flow rule describes sat-
isfactorily the incremental response [43]. This conclusion
is also supported by several experimental tests on plane
strain deformation [41, 54, 55]. Both numerical and ex-
perimental results show clearly deviations from the nor-
mality condition. This is probably connected to the fact
that any load involves sliding contacts so that the elastic
regime is vanishing small but not a finite domain as the
elastoplasticity establishes [40]. Recent numerical simu-
lations of three dimensional packings of spheres contra-
dict not only the normality postulate [68], but also the
unidirectionality of the flow rule [69], leading also to the
conclusion that a profound modification of the elastoplas-
ticity theory is required [37].

Apart from the violation of the normality condition, an
abrupt anisotropy induced by extremely small deviatoric
loads is detected in the sub-network of the sliding con-
tacts. This results in a breakdown of the unidirectionality
of the flow rule at ¢ = 0, which deserves experimental ver-
ifications. This deviation from anisotropy implies devia-
toric plastic deformations when the sample is subjected
to the smallest deviatoric load. Deviatoric plastic defor-
mation under extremely small deviatoric loads has been
also observed in numerical experiments on loose packings
of polygons [20] and packings of disks [70], leading to im-
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portant effects in the mechanical response under cyclic
loading [36]

In spite of the complexity of the plastic response, the
relation between the dilatancy d and the stress ratio 7
is given by a simple linear relation d = ¢(n — M). This
relation is not only supported by experiments, but also it
has been one of the fundamental issues in modeling the
stress-strain behavior of soils. Unfortunately the theoret-
ical assumptions of classical models (Taylor [56], Nova &
Wood [55], Gutierrez & Ishihara [59]) are not verified
in our model. This leads to the basic question: what
lies behind of this simple stress-dilatancy rela-
tionship? Although we cannot give a definitive answer,
a physical explanation would be that a granular medium
close to the plasticity limit behaves like a strange fluid,
that obeys this stress-dilatancy relation as an internal
kinematical constraint. Indeed, this constraint becomes
apparent near to failure, where plastic deformation dom-
inates, and it could be seen as the counterpart of the
well-known incompressibility condition of fluids. This
means that for such a strange fluid not the mean stress is
kinematically undetermined, but that part of the stress
which does not work and which corresponds to the com-
ponent of the stress perpendicular to the (plastic) strain
[4]. Thus the usual decomposition of the stress in devi-
atoric and isotropic part, used in the continuum fluid—
and soil-mechanics analyses is not justified [3]. This idea
underlies in our opinion the concept of the so-called mobi-
lized plane in soil plasticity [71, 72] The resulting correla-
tion between the mean orientation of the sliding contacts
and the plastic flow direction in our calculations suggests
that this internal constraint can be micromechanically in-
terpreted from the induced anisotropy of the sub-network
of the sliding contacts.

Since the mechanical response of the granular sample is
represented by a collective response of all the contacts, it
is expected that the constitutive relation of granular ma-
terials can be completely characterized by the inclusion of
some internal variables, containing the information about
the micro-structural arrangements between the grains.
We have introduced some internal variables taking into
account the anisotropy of the contact force network. The
fabric coefficients a;, measuring the anisotropy of the net-
work of all the contacts, prove to be connected with the
anisotropic stiffness. On the other hand, the fabric coef-
ficients c;, measuring the anisotropy of the sliding con-
tacts, are closely related to the plasticity.

This necessity of internal variables becomes apparent
in order to solve the basic paradox of elastoplastic mod-
els: The description of the evolution of a plastic flow rule
with the loading requires the postulation of a finite elastic
regime. The existence of this regime implies normality of
the flow rule, which contradicts the non-associated flow
rule found in experiments. In our opinion, future work
should be oriented towards the elaboration of a theo-
retical framework connecting the constitutive relation to
these internal variables. To provide a complete micro-
mechanically based description of the elastoplastic fea-



tures, the evolution equations of these internal variables
must be included in this formalism. This theory would
be an extension of the ideas which have been proposed
to introduce the fabric tensor in the constitutive relation
of granular materials [31, 32, 51, 67].
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APPENDIX: CALCULATION OF THE
PARAMETERS OF THE STIFFNESS TENSOR

In this section we present the method used to calculate
the Young moduli and the Poisson ratios of the stiffness
tensor from the elastic part of the strain envelope re-
sponse de¢(#). First we write Eq. (25) as:

de® _ | a11 aGi2 dp

dy® | [ a2 a2 dg |’
Replacing Eq. (18) into Eq. (23) one obtains that
p = |dd|cos@ and ¢ = |d&|sin6, where 6 is the direc-

tion of the stress increment. Replacing these equations
into Eq. (A.1) one obtains

(A.1)

de? = |d&|(a11 cos @ + ajo sin 0), (AQ)
d’)’p = |d&|(a21 cos @ + az sin 9), (A3)
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so that the parameters a;; are evaluated as the Fourier
coefficients of de® and dv¢:

1 2 .

ayj; = W ; de (0) cos@d@, (A.4:)
1 27 .

a12 = 1] Jo de®(0) sin 0d6, (A.5)
1 27

az = M/O dv°¢(0) cos 0db, (A.6)
1 2m

ass = - d~°(9) sin 66, (A.7)

m|d&| Jo

These Equations allow us to calculate the coefficients
a;; as a function of the elastic part of the envelope re-
sponse. The parameter of the stiffness tensor of the Eq.
(31) are expressed in term of these coefficients by replac-
ing Eqgs. (18) and (21) into Eq. (A.1) and comparing the
result to Eq. (31). It leads to

1
E._ = a1 +as1 + a2 + a2 (A8)
1
1%
_ﬁ = ai11 + a1 — a2 — a2 (Ag)
2
1%
_% = a11 — a1 +ai2 —as (AlO)
1
1
F, T~ 1T a1 + ao (A.11)
2

[1] 1. Vardoulakis and J. Sulem, Bifurcation analysis in ge-
omechanics (Blakie Academic & Professional, London,
1995), chap. chapter6, pp. 191-196.

[2] G. Gudehus, F. Darve, and I. Vardoulakis, Constitutive
Relations of soils (Balkema, Rotterdam, 1984).

[3] I. Vardoulakis, Acta Mechanica 49, 57 (1983).

[4] 1. Vardoulakis and J. Sulem, Bifurcation analysis in ge-
omechanics (Blakie Academic & Professional, London,
1995), chap. 8, pp. 281-283.

[6] M. E. Cates, J. P. Wittmer, J.-P. Bouchaud, and
P. Claudin, Phys. Rev. Lett. 81, 1841 (1998).

[6] D. Coppersmith, Phys. Rev. E 53, 4673 (1996).

[7] J. Geng, D. Howell, E. Longhi, R. P. Behringer, G. Rey-
dellet, L. Vanel, E. Clément, and S. Luding, Phys. Rev.
Lett. 87, 035506 (2001).

[8] F. Radjai, M. Jean, J. J. Moreau, and S. Roux, Phys.
Rev. Lett. 77, 274 (1996).

[9] F. Radjai, D. E. Wolf, M. Jean, and J.-J. Moreau, Phys.
Rev. Lett. 80, 61 (1998).

[10] T. Dietrich, Ph.D. thesis, Universitat Karlsruhe (1976).
[11] I. Vardoulakis and J. Sulem, Bifurcation analysis in ge-

omechanics (Blakie Academic & Professional, London,
1995).

[12] P. A. Cundall, Ingenieur-Archiv 59, 148 (1989).

[13] I. Vardoulakis, Ingenieur-Archiv 59, 106 (1989).

[14] F. Radjai, D. E. Wolf, M. Jean, and J.-J. Moreau, Phys.
Rev. Lett. 80, 61 (1998).

[15] G. Royer-Carfagni and W. Salvatore, Mech. Cohes.-Frict.
Mater. 5, 535 (2000).

[16] F. Kun and H. J. Herrmann, Comput. Methods Appl.
Mech. Engrg. 138, 3 (1996).

[17] F. Kun and H. J. Herrmann, Phys. Rev. E 59, 2623
(1999).

[18] H. J. Tillemans and H. J. Herrmann, Physica A 217, 261
(1995).

[19] F. Alonso-Marroquin, H. J. Herrmann, and I. Var-
doulakis, in Proceeding of II international symposium
of continuous and discontinuous modeling of cohesive-
frictional materials (A. A. Balkema, Stuttgart, Germany,
2004).

[20] F. Alonso-Marroquin and H. J. Herrmann, Phys. Rev.
Lett. 92, 054301 (2004).



[21] G. Royer-Carfagni, in Novel approaches in civil engineer-
ing (Springer-Verlag, Berlin, 2004), pp. 177-185.

[22] C. Moukarzel and H. J. Herrmann, Journal of Statistical
Physics 68, 911 (1992).

[23] A. Okabe, B. Boots, and K. Sugihara, Spatial Tessella-
tions. Concepts and Applications of Voronoi Diagrams
(John Wiley & Soms, Chichester, 1992), wiley Series in
probability and Mathematical Statistics.

[24] P. A. Cundall and O. D. L. Strack, Géotechnique 29, 47
(1979).

[25] M. P. Allen and D. J. Tildesley, Computer Simulation of
Liquids (Oxford University Press, Oxford, 1987).

[26] E. Buckingham, Phys. Rev. 4, 345 (1914).

[27] A. Pena, A. Lizcano, F. Alonso-Marroquin, and H. J.
Herrmann (2004), submitted to Mech. Cohes-Frict.
Mater.

[28] I. Georgopoulus, F. Alonso-Marroquin, I. Vardoulakis,
and Labuz (2002).

[29] P. A. Vermeer, Geotechnique 40, 223 (1990).

[30] M. Madadi, O. Tsoungui, M. Latzel, and S. Luding, Int.
J. Sol. Struct. 41, 2563 (2004).

[31] S. Luding, Int. J. Sol. Struct. 41, 5821 (2004).

[32] S. Luding, in modeling of cohesive-frictional materials
(A. A. Balkema, Leiden, 2004), pp. 195-206.

[33] S. Luding and H. J. Herrmann, in Bericht Nr. II-7 (Inst.
fiir Mechanik, Universitidt Stuttgart, 2001), pp. 121-133.

[34] K. Bagi, J. Appl. Mech. 66, 934 (1999).

[35] K. Bagi, Mech. of Materials 22, 165 (1996).

[36] F. Alonso-Marroquin, Ph.D. thesis, University of
Stuttgart (2004), Logos Verlag Berlin ISBN 3-8325-0560-
1

[37] F. Darve, E. Flavigny, and M. Meghachou, International
Journal of Plasticity 11, 927 (1995).

[38] D. Kolymbas, Arch. Appl. Mech. 61, 143 (1991).

[39] G. Gudehus, Can. Geotech. J. 20, 502 (1979).

[40] F. Alonso-Marroquin and H. Herrmann, Accepted to J.
of Eng. Math. (2004), cond-mat/0403065.

[41] P. A. Vermeer, in Constitutive Relations
(Balkema, Rotterdam, 1984), pp. 175-197.

[42] H. B. Poorooshasb, I. Holubec, and A. N. Sherbourne,
Can. Geotech. J. 4, 277 (1967).

[43] J. P. Bardet, Int. J. Plasticity 10, 879 (1994).

[44] F. Calvetti, C. Tamagnini, and G. Viggiani, in Numer-
ical Models in Geomechanics (Swets & Zeitlinger, Lisse,
2002), pp- 3-9.

[45] L. Landau and E. M. Lifshitz, Theory of Elasticity, Vol-
ume 7 of Course of Theoretical Physics (Pergamon Press,
Moscou, 1986).

[46] C. Thornton and D. J. Barnes, Acta Mechanica 64, 45
(1986).

of soils

18

[47] P. A. Cundall, A. Drescher, and O. D. L. Strack, in IU-
TAM Conference on Deformation and Failure of Gran-
ular Materials (Balkema,Rotterdam, Delft, 1982), pp.
355-370.

[48] S. Luding, R. Tykhoniuk, and A. Thomas, Chem. Eng.
Technol. 26, 1229 (2003).

[49] A. Drescher and G. de Josselin de Jong, J. Mech. Phys.
Solids 20, 337 (1972).

[60] M. Lé&tzel, S. Luding, H. J. Herrmann, D. W. Howell, and
R. P. Behringer, Eur. Phys. J. E 11, 325 (2003).

[61] M. Léatzel, Ph.D. thesis, Universitit Stuttgart (2002).

[62] C. Goldenberg and I. Goldhirsch, Granular Matter 6, 97
(2004).

[53] J. R. Ray, Phys. Rev. B 40, 423 (1989).

[564] D. M. Wood, Soil behaviour and critical state soil me-
chanics (ISBN: 0-521-33782-8, Cambridge, 1990).

[55] R. Nova and D. Wood, Int. J. Num. Anal. Meth. Ge-
omech. 3, 277 (1979).

[56] D. W. Taylor, Fundamentals of soils mechanics (John
Willey, New York, 1948).

[57] P. W. Rowe, Proc. Roy. Soc. A269, 500 (1962).

[68] M. A. Stroud, Ph.D. thesis, University of Cambridge
(1971).

[59] M. Gutierrez and K. Ishihara, Soils and Foundations 40,
49 (2000).

[60] R. Lagioia, A. M. Puzrin, and D. M. Potts, Computers
and Geotechnics 19, 171 (1996).

[61] I. Vardoulakis and I. O. Georgopoulos, Soils & Founda-
tions (2004), in press.

[62] X.S. Liand Y. F. Dafalias, Geotechnique 50, 449 (2000).

[63] D. Drucker and W. Prager, Q. Appl. Math. 10, 157
(1952).

[64] T. F and K. Ishihara, Soils and Fundations 14, 63 (1974).

[65] R. Hill, Journal of Geotechnical Engineering 6, 239
(1958).

[66] G. R. McDowell, M. D. Bolton, and D. Robertson, J.
Mech. Phys. Solids 44, 2079 (1996).

[67] R. J. Bathurst and L. Rothenburg, J. Appl. Mech. 55,
17 (1988).

[68] Y. Kishino, Italian Geotechnical Journal 3, 3 (2003).

[69] F. Calvetti, G. Viggiani, and C. Tamagnini, in Constitu-
tive modelling and analysis of boundary value problems in
Geotechnical Engineering (Hevelius Edizioni, Benevento,
2003), pp. 187-216.

[70] R. Garcia-Rojo and H. J. Herrmann, Granular Matter
(2004), cond-mat 0404176, accepted for publication.

[71] H. Matsouka, Soils and Foundations 14, 47 (1974).

[72] H. Matsuoka and T. Nakai, in 9th ICSMFE, Speciality
Session 9 (1977), pp. 153-162.



