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ABSTRACT 
 
The mechanical response of frictional powders under quasi-static loading is studied by means of 
two- and three-dimensional discrete element methods, compared directly with each other. The 
response of the system is characterized by elastic behavior for very small deformations, softening, 
plastic yield and critical state flow at large strain. The maximal yield stress is reached for some 
finite deformation of a few percent, but the decay to the critical steady state flow regime is much 
slower in the 3D situation than in the 2D systems examined here. The critical state regime is thus 
reached much later and at considerably higher dilation level in 3D. Possible reasons for this 
qualitative difference are discussed but more studies are needed to identify them properly. 
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I. INTRODUCTION 
 
Elementary powder tests, see Ref. [11,13] and references therein, are a straightforward way to 
determine empirical laws and to determine the parameters for constitutive laws. One possibility to 
perform these experiments is the bi- or tri-axial setup, see Ref. [12] and references therein, where 
the system is confined in a cuboid container and the powder is subject to slow, quasi-static 
deformations, different in two or three directions, respectively. The deformations can be performed 
in a single sweep or periodically, over many cycles [2,10] in order to investigate the elasto-plastic 
response.  

An alternative to experiments is the simulation of the system using the discrete elements 
method (DEM), where the trajectory of individual grains is obtained by the calculation of the 
interaction forces between particles and integrating the equations of motion [1]. In the simplest case 
visco-elastic rules can be imposed at each contact, different for the normal and the tangential 
direction [7,8], but also plastic deformations, adhesion/cohesion and Coulomb friction are 
implemented in more advanced models.  

In both experiments and simulations, the plastic behavior of powder samples depends on the 
applied strain and on the history of the material [9]. Under bi- or tri-axial deformation, the response 
of the system is characterized by elastic behavior for very small deformations, softening, plastic 
yield and critical state flow at large strain. When the original stress-state is restored, the structure of 
the system is in general different from the original: Hysteretic behavior is observed under repeated, 
cyclic loading and is, in fact, a very relevant characteristics of granular materials. The extensive use 
of non-cohesive, dry granular materials in foundations of buildings and as roadbeds indicates the 
urge for developing more efficient methods to understand the effects caused by quasi-static, 
possibly cyclic loading.  
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When materials accumulate strain in every cycle, their behavior is called ratcheting – if the strain 
accumulation stops after several cycles, the behavior is called shake-down. The concept of 
ratcheting was introduced in soil mechanics in order to describe the gradual accumulation of a 
small permanent deformation [6]. Ratcheting is however a much more general concept that has also 
been studied, driven by the need of understanding steel behavior [4] or biophysical systems such as 
molecular motors [3]. In a 2D granular packing of discs, subjected to stress controlled cyclic 
loading, strain accumulations were identified as shakedown, or ratcheting, depending on the 
amplitude of the stress variations. This particular phenomenon has been intensively investigated in 
2D [2,5] and more recently also in 3D [10].  

Since the accumulation of strain and the change of the structure is strongest in the first 
loading period, in this paper, rather than applying cyclic deformations with small strains, we focus 
on the first load period only but apply very large strain and compare directly 2D and 3D results 
against each other. 
 
II. DEM MODEL 
 
The elementary units of granular materials, the “mesoscopic” particles, deform locally under stress 
at the contact point. The realistic modeling of this deformation would be computationally very 
expensive. Thus the interaction force is related to the overlap of two particles. As a further 
simplification, these two particles interact only if they are in contact (short range forces), and the 
force between them is decomposed into a normal and a tangential part. 
The normal force is, in the simplest case, a linear spring that takes care of repulsion, and a linear 
dashpot that accounts for dissipation during contact.  

0
n

if kδ γ δ= + � ,        (1) 

with spring constant k and some damping coefficient 0γ . The half period of a vibration around the 
equilibrium position can be computed, and one obtains a typical contact duration (response time) 

/π ω=ct , with 2
0( / )ω η= −ijk m , the eigenfrequency of the contact, the reduced mass 

/( )= +ij i j i jm m m m m , and the rescaled damping coefficient 0 0 /(2 )ijmη γ= . The energy dissipation 
during a collision, as caused by the dashpot is quantified by the restitution coefficent 

0/ exp( ),n cr tη′= − = −�� �  where the prime denotes the normal velocity after a collision.  
The tangential force involves dissipation due to Coulomb friction, but also some tangential 
elasticity that allows for stick-slip behavior on the contact level [7]. In the static case, the tangential 
force is coupled to the normal force, Eq. (1), via Coulomb’s law, i.e. � �� �

�� �µ≤ , where for the limit 
sliding case one has the dynamic friction with � �� �

�� �µ= . The dynamic and the static friction 
coefficients follow, in general, the relation

��µ µ≤ . However, for the following simulations, we will 
apply

��µ µ µ= = . The static case requires an elastic spring in order to allow for a restoring force, 
i.e., a non-zero remaining tangential force in static equilibrium due to activated Coulomb friction.  
If a contact exists with non-zero normal force, the tangential force can be active too, and we project 
the corresponding tangential spring into the actual tangential plane. This is necessary, since the 
frame of reference of the contact may have slightly rotated since the last time-step. � �� �� �ξ ξ ξ′ ′= − ⋅

� � �
, 

where ξ′
�

 is the old spring from the last iteration, and ��  is the normal unit vector. This action is 
relevant only for an already existing spring; if the spring is new, the tangential spring-length is 
zero, but its change is well defined for the next time-interval. The tangential velocity is 

� �� �� �� ��� � � � �= − ⋅� � � , with the total relative velocity of the contact surfaces of the particles (i,j): 

ˆ ˆi j i i j ja n a nω ω= − + × + ×
� � � � �

��� � �  .       (2) 

Next, we calculate the tangential test-force as the sum of the tangential spring and a tangential 
viscous force (in analogy to the normal viscous force): 
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ξ γ= − −
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with the tangential spring stiffness kt and a tangential dissipation parameter 
�γ . As long as 

�
� �


� �≤
�

, 
with � �


 �� �µ= , one has static friction and, on the other hand, if 
�
� �


� �>
�

, sliding, dynamic friction 
becomes active, with � �


 �� �µ= . Sliding is active as long as 
�
� �

�� �µ>
�

, and is changed to sticking 
only as soon as 

�
� �


� �≤
�

 is reached. The corresponding states (static or dynamic) are kept in 
memory, to be used in the following time-step – and for contact statistics. 
In the static case, the tangential spring is incremented, 

� � �� �ξ ξ′ = + ∆
� � � , with the time step 

���∆  of 
the DEM simulation, to be used in the next iteration, and the tangential force, Eq. (3), is used. 
In the latter, sliding case, the tangential spring is adjusted to a length, which is consistent with 
Coulombs condition 

( )( )ξ γ′ = − +
� ��� �

� 
 � �	 � � �  ,       (4) 

with the tangential unit vector, 
� �

� � �� � �=
� �

, defined by the direction of the tangential test force 

above, and thus the magnitude of the sliding Coulomb force is used. Inserting the new spring length 
into Eq. (3) leads to

�
� �


� �≈ . Note that 
�
��
�

 and 
��
�  are not necessarily parallel in three dimensions.  

If all forces are known, acting on a selected particle (either from other particles, boundaries or 
external forces like gravity or a background damping 


� 
 �� �γ= −
� � ), the problem is reduced to the 

integration of Newton's equations of motion for the translational and rotational degrees of freedom: 

ω= =
� �� � �

�

�
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,       (5) 

with the gravitational acceleration �� , the mass 
��  of the particle, its position 

��
� , the total force 

�
� ��
� �=�
� �

, acting on it due to contacts with other particles or with the walls, its moment of inertia 

�� , its angular velocity 
�ω� , and the total torque � �

� � ��
� � �= ×�

� ��
, with the center-contact “branch” 

vector �
��
�

. 
The DEM simulations consider both two- and three-dimensional bi- and tri-axial geometries, 

where the walls are either strain- or stress-controlled. For the initial preparation of the sample, the 
particles (with radii randomly drawn from a homogeneous distribution in 2D [7] and from a 
Gaussian distribution in 3D [10]) were initially arranged on a square lattice (big enough for them 
not to overlap) with rather large velocities in order to allow them to escape from the ordered 
structure. Then the box is compressed by imposing a confining pressure, 0p , in order to achieve a 
homogeneous, isotropic initial condition. Inhomogeneities in the distribution of large and small 
particles were observed when the compression was performed too fast and only from one side. The 
3D simulations presented below were compressed from all sides at the same time to avoid this 
effect. The preparation stage is finished when the kinetic energy becomes much smaller than the 
potential energy stored in the contacts. A periodic, strain-controlled loading with period t0 is then 
applied through a side of the box, while keeping the other stresses constant.  
 
III. SIMULATION RESULTS  
 
In order to compare the two- and three-dimensional DEM simulation, we first assure that the time 
step ∆tMD used for integration is small, so that ∆tMD<<tc<tb< t0, where tc is the typical duration of a 
contact interaction or vibration, tb is the relaxation time scale due to dissipation, and t0 is the period 
of the applied strain. Second, we will compare dimensionless quantities like strain and stress 
(rescaled by the constant confining stress p). For examples of the model system, see Fig. 1 for a 
snapshot of typical systems in 2D and 3D.  
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Figure 1: Snapshot of the model systems in 2D (left) with N=1950 particles, see [7,8] for details, and in 3D (right) with 
N=20000 particles. The color code blue/green/red indicates particles feeling weak/medium/strong forces. 
 
Deformations can be applied directly, by controlling strain, or indirectly by controlling/varying 
stress. The former approach was used in Refs. [7,8] for 2D samples, the latter for the 3D cyclic 
loading case [10]. Here, the old 2D results [7,8] are compared to new 3D data with a strain-
controlled compression in one direction and a constant stress, σ σ= =zz yyp , in the other 
direction(s). The strain and stress are split in their volumetric (isotropic) and deviatoric components 
indicated by the subscripts V and D, respectively. For the stress in 2D, we use 

( ) ( )/ 2 / 2σ σ σ σ= + ≅ +V xx yy xx p  and ( ) ( )/ 2 / 2σ σ σ σ= − ≅ −D xx yy xx p ; the stresses in 3D are 

( ) ( )/ 3 2 / 3σ σ σ σ σ= + + ≅ +V xx yy zz xx p  and ( )( ) ( )2 / 3 2 / 3σ σ σ σ σ= − + ≅ −D xx yy zz xx p . An 

equivalent definition is used for the deviatoric strain εD , based on the deformation of the volume in 
the three directions. The volumetric strain is defined as 0 1ε = −V V V , where V is the volume of the 
sample and the subscript 0 indicates the value at the beginning of the test. The volumetric strain 
based on the trace of the strain tensor is identical to the volume-based definition for small 
deformations. Simulations with slower deformation and with larger systems are in progress and will 
be presented elsewhere. The simulation parameters are described in more detail in Refs. [7,8,10] – 
the coefficient of friction µ = 0.5 is the same in 2D and 3D, but the particle number is N=1950 and 
N=1728 in 2D and 3D, respectively. Some of the differences in the packings (2D/3D geometry and 
aspect ratio, system-size, particle size distribution, and preparation procedure) are likely to have an 
effect on the packing and on the behavior as presented below – a better understanding of this is also 
work in progress. The 3D system is comparable in particle number but considerably smaller 
concerning system size measured in particle diameters – system size dependence of the present 
results needs further investigation [10].  
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Figure 2: Stress and strain relations in the model systems, where the solid and dashed lines are 2D and 3D results, 
respectively: (top left) volumetric strain plotted against deviatoric strain – negative values mean compression, positive 
values dilation; (top right) scaled isotropic stress plotted against deviatoric strain and (bottom left) plotted against 
volumetric strain; (bottom right) deviatoric stress plotted against deviatoric strain. 
 
In Fig. 2 the stresses and strains are plotted in various combinations. The volumetric strain first 
decreases (compression) and then increases (dilation) until it reaches a saturation level (critical state 
flow). While the compression level and the rate of dilation are comparable in 2D and 3D, the 
saturation level is much higher and reached at much larger deformations (about 25%) in the 3D 
system, i.e., the 3D system is more dilatant than its 2D counterpart and also needs more strain to 
reach the critical state regime. The stress-strain relations consist of an initial, linear elastic part 
starting from the origin – for very small deformations. In this regime 2D and 3D behave 
qualitatively similarly, the scaled deviatoric stress is almost in quantitative agreement (data not 
shown here). At increasing deformation the stress reaches a maximum and decreases down to the 
critical state flow level. The stress decrease appears rapid in 2D and rather smooth and slow in 3D, 
the peak isotropic stress is larger in 2D than 3D while the peak deviatoric stress is smaller in 2D 
than in 3D. The critical state level of the isotropic stress is comparable in 2D and 3D while the 
deviatoric critical state stress level is slightly larger in 3D. Finally, the stress fluctuations appear 
much stronger in 2D than in 3D even though the particle number is comparable in both samples. 
 
IV. SUMMARY AND CONCLUSIONS 
 
In summary, quasi-static bi- and tri-axial deformation of frictional powders show an elastic regime, 
a yield-stress, and critical state flow in both 2D and 3D simulations. Shakedown and ratcheting 
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after many cycles of load were observed previously in 2D and 3D model granulates, both consisting 
of polydisperse, frictional spheres [10]. The present results indicate qualitative differences between 
2D and 3D systems. The critical state regime is reached at larger deformation and at a considerably 
higher dilation level in 3D. Reasons for the differences can be the system size, the geometry and 
the aspect-ratio as well as different definitions of stress and strain in different dimensions, and the 
coordination numbers and the porosity/density are very different in 2D and 3D. Smaller systems 
have more particles that are in contact with the wall and in systems with different aspect ratio, 
shearbands can be influenced differently by the corners. Furthermore, the size distribution could be 
responsible, this is unlikely in our opinion as long as the distribution is wide enough to avoid 
crystallization effects. The geometry and local structure are different in 2D and in 3D due to the 
additional degree of freedom, which could lead to different behavior given that material parameters 
like friction are identical. The last possible reason for the systems to behave differently is the 
preparation procedure. This could not be objectively controlled and tuned, so that an 
overconsolidation in 2D and a critical consolidation in 3D can partially explain the slow softening 
in 3D. 
Thus, the present study is only the first step towards a more detailed exploration of the influence of 
various other material- and system-parameters, involving variations of the strain and stress 
amplitudes, of the friction model, boundary conditions, and others. Comparison with experiments 
for validation is the next natural step towards the better understanding of the quasi-static 
deformation of frictional powder systems. 
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