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Collisional cooling with multi-particle interactions

Stefan Luding (1,2) and Alexander Goldshtein (3)

Abstract An extension to kinetic theory and hydrody-
namic models is proposed that accounts for the existence
of multi-particle contacts and leads to a correction of the
cooling rate. The other hydrodynamic terms remain un-
changed. In the presence of multi-particle contacts a class
of different models leads to deviations from the classical
inelastic hard sphere (IHS) results. For the homogeneous
cooling state (HCS), as examined here, the theoretical re-
sults are found to be in perfect agreement with the nu-
merical simulations.
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Kinetic theory and the related hydrodynamic models
are helpful tools for the modeling and understanding of
transport processes in classical, elastic gases for low and
moderate densities [1,2]. The hard sphere (HS) model is
the corresponding approach to be implemented as a nu-
merical model [3,4]. A successful theoretical approach in
the spirit of Boltzmann or Chapman and Enskog [1,2]
requires the basic assumptions: (i) The collisions are in-
stantaneous and (ii) subsequent collisions are uncorrelated
(“molecular chaos”). Conditions (i) and (ii) lead to the
Boltzmann equation, and in the equilibrium state, the ve-
locity distribution is (iii) a Maxwellian.

When dissipation is added, one has the inelastic hard
sphere (IHS) model, where the coefficient of restitution
r quantifies dissipation, elastic systems have r = 1, and
1 —72 > 0 determines the amount of energy lost in a two-
particle collision in the center of mass system. The range
of applicability of the theory for the THS was addressed in
several papers [5-8]; here we just assume that (iii) are
approximately valid, for the sake of simplicity.

In this study we restrict ourselves to the homogeneous
cooling state (HCS) and focus on a mean-field hydrody-
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namic approach [5-7,9-11], neglecting spatial structures
like clusters or shear modes. This idealization is reasonable
for either weak dissipation, low density or small system
size. The qualitative prediction for the long-time decay of
energy by Haff [12] is confirmed and it was shown that the
distribution function is isotropic in velocity space and it
is close to a Maxwellian as long as the system is homoge-
neous [8,13,14].

In the THS model collisions are always instantaneous,
see condition (i), due to the rigid interaction potential. On
the first glance, this makes the model (and kinetic theory
too) inadequate for the description of real materials for
which the interaction potential may be steep, but is never
perfectly rigid, see Fig. 1. During the contact of two real
particles, kinetic energy is stored in elastic (reversible)
potential energy that, in the static limit, can be recovered
after very long times. The conclusion is thus that one has a
fraction of the total energy, i.e. the elastic energy, which is
not dissipated, in the real system. This fraction is missing
in all idealized models HS, THS, and also in the kinetic
theory, and has to be defined. Thus we will propose and
examine possible ways to cure this problem of the hard
sphere model, but keeping kinetic theory still applicable.

time time

Fig. 1. Schematic plot of the trajectories of two soft (left) and
two hard (right) particles against time. The beginning and the
ending of the interaction are marked by dashed and dotted
vertical lines, respectively, and the time ¢. during that kinetic
energy is stored as elastic energy in the contact is marked as
shaded region. In the left figure it corresponds to the contact
duration, in the right figure it is a memory time of hard spheres,
similar in magnitude, with the same meaning “contact dura-
tion”.

The first step is to define or identify possible multi-
particle contacts. In a real system (or in a soft-particle
model) one just counts the number of contacts a particle
has. Within the extented THS model, a particle remembers
its last contact. A new contact occuring within a time ¢,



after that, see the shaded area in Fig. 1, is thus a multi-
particle contact. The memory time t. is referred to as
“contact duration” in the following.

In low density systems, where the mean free flight time
is much larger than the contact duration, multi-particle
contacts are rare. However, assumption (i) can also be
valid in high density situations where the free path is much
smaller than the particle diameter: This is possible in the
case of an extremely short contact duration, when colli-
sions remain practically instantaneous. Thus we conclude
that the free path, i.e. the density, is not an appropri-
ate measure for the occurence of multi-particle contacts.
We rather define, as a more objective criterion, the ra-
tio 7. = t./tg between the “contact duration” ¢, and the
typical time between collisions tg as obtained by the En-
skog theory [1,7,15]. Small and large 7. values correspond
to pair- and multi-particle collisions, respectively, in our
framework [15].

Up to now, the elastic HS model is not changed at all
concerning particle trajectories or whatsoever. The only
modification is, that every particle that had a collision a
short time ago keeps this event in memory for the “contact
duration” t. and every new contact occuring within this
time is now defined as an elastic contact. This allows to
split the total energy in the system into a kinetic and
an elastic (potential) contact energy [16], like in a real
system. If a part of the kinetic energy is transfered to
contact energy, it cannot be dissipated anymore, so that
energy dissipation in the ITHS model has to be reduced in
the presence of multi-particle contacts. This qualitative
reduction of energy dissipation in dense systems has been
observed in soft-particle molecular dynamics simulations
[17]. The initial configuration of the simulation has thus
to account for the history, back ¢. in time.

Recently, the transition of a granular gas to its solid
counterpart has been investigated [16, 18]. A general model
was defined, in which the coefficient of the normal resti-
tution is given by

r=r(z) = {71‘0

where z is a variable and z. is the respective cut-off value.
Above the threshold, one has the usual inelastic hard sphere
mode with constant restitution coefficient, below the cut-
off an elastic system with r = 1 is assumed. The vari-
ables proposed were either the time between collisions (TC
model), the distance travelled since the last collision (LC
model), or the relative velocity of two particles prior to a
collision (VC model). In order to keep the following anal-
ysis simple, we focus on the special case of a piecewise
constant restitution and disregard any continuous depen-
dency of r on z, a reasonable simplification in the spirit
and the framework of the kinetic theory and numerical
event-driven simulations, where changes of the particle ve-
locities occur as instantaneous, discontinuous events.
Variants of the general model have been used [14, 16,
19-23], mainly to avoid the “inelastic collapse”, an arte-
fact of the rigid particle model, which allows an infinite
number of collisions to occur within a finite time. In the
real system this can never occur due to the fact that the
contacts take a finite time so that lasting multi-particle
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contacts can form. The model in Eq. (1), avoids the in-
elastic collapse, since the dense parts of the system, where
the collapse tends to occur first, are transformed into elas-
tic regions where the inelastic collapse is unlikely. Thus the
inelastic collapse is replaced by “static”, dense regions of
the material: The particles rattle around in their cages
with a high collision rate and practically all collisions are
elastic.

The different variants of the cut-off model will be dis-
cussed separately in the following, because they lead to
different forms of the collision integral. The general form
of the energy balance equation is

d

EE = -2I(E,z.) , (2)

with the dimensionless time 7 = (2/3) At/tg(0), scaled by
A = (1—72)/4, and the collision rate ¢,' = L2yg(v)y/ =L

m’
with T = 2K/(3N). In these units, the energy dissipa-
tion rate I is a function of the dimensionless energy E =
K /K (0) with the kinetic energy K, and the cut-off param-
eter z.. In this representation, the restitution coefficient is
hidden in the rescaled time via A, so that IHS simulations
with different r scale on the master-curve in the following
plots. The classical dissipation rate £/ [12] is extracted
from I, so that

I(E,z.) = J(E,z.)E*? | (3)

with the correction-function J — 1 for . — 0. Our the-
oretical results will be compared with numerical simula-
tions and with previous results [16]. For the derivation of
the dimensionless equation (2) from the kinetic theory in
its dimensional form, see Refs. [16, 23].

For the classical THS model in the HCS, Eq. (2) is
solved by E, = (1+7)~2, a master curve, independent of
the coefficient of restitution r and all other system param-
eters. We checked via simulations that different r values
scale on the same master-curve, as long as no clustering
is obtained. We will proceed to develop our theory in the
dimensionless variables and will examine in detail the de-
viations from the classical HCS.

The wvelocity cut-off (VC) model can be rationalized
based on the picture of elasto-plastic particles which do
not suffer inelastic (plastic) deformation if they collide be-
low a certain threshold velocity v.. (In static contact, the
relative velocity vanishes and thus is automatically smaller
than v.), see [14] for a recent application. The deviation
from the classical inelastic hard sphere HCS,

J(B,v:) = (14 &) exp (-€%) , (4)

is obtained from the computation of the collision integral
[18], with the nondimensional quantity

_3mwl 2V 5)
- 8K(t) \42) E
which relates the critical velocity to the actual mean fluc-
tuation velocity. The dimensionless cut-off velocity is V,, =
ve/2v7(0). For v, = 0 and thus £ = 0, the classical homo-
geneous cooling state is recovered, i.e. J(E,0) = 1.
Event driven numerical simulations [11,16] are com-
pared to the numerical solution of our theory in Fig. 2.
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We obtain perfect agreement between theory and simula-
tions in the examined range of v.-values. The fixed cut-off
velocity has no effect when the collision velocities are very
large, vr > v., but strongly reduces dissipation when the
relative velocity at collision is comparable to or smaller
than v.. Thus, in the homogeneous cooling state, there
is no effect initially, but the long time behavior changes
from the classical decay E o t~2 to a logarithmic decay
as shown below.
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Fig. 2. Energy E plotted against time 7 for a simulation with
N = 19683 particles, density v = 0.08245, coefficient of resti-
tution 7o = 0.99 and different V. as given in the inset. The
symbols are simulations and the lines give the solution of Egs.
(2,3), using Egs. (4,5).

In order to understand the long time behavior of the
VC model, Egs. (2), (3), and (4) yield

dy _ 39
0 =Y exp(—y) ,

(6)
after susbtitution y = V2/E and § = 2V,t. in the asymp-
totic limit for y > 1 and 6 > 1. The two leading terms of
the asymptotic solution of this equation are

y =1n(0) + (3/2) In(In(8)) . (7

Finally, combining the leading term of y with the defini-
tion, leads to E o« V2/In(2V.t), a non-trivial logarithmic
asymptotic decay of energy, in agreement with the two-
dimensional results presented in Ref. [24]. Even when no
clusters would occur in the system for large times, we be-
lieve it will be quite challenging to find this asymptotic
behavior with simulations.

The free path cut-off (LC) model was used first by Mc-
Namara and Young [19] to avoid the inelastic collapse,
and was extended to its simple hydrodynamic analogon
expressed in terms of the density by Kamenetsky et al.
[22,23] to describe the gas solid transition caused by the
compression of a granular gas. The physical idea is that
particles that are near to each other — their distance is
below a certain cut-off length A., which can be regarded
as some surface roughness — are supposed to be in contact
with each other, so that their contact potential energy
cannot be dissipated.

The deviation from the classical inelastic hard sphere
HCS is J(E,\.) = J(A;) « E°, a constant independent
of the energy and thus independent of time. Thorough
calculation [18] yields

J(Ae) = exp(—ke,) , (8)

with ex = A(N/V)(4a)%gaqa(v) = Ac/+/TA, and constant
k = 7.37. This result can be understood, since in the ho-
mogeneous cooling regime, one has constant density and
thus constant mean free path, so that a free path cut-off
model has a time independent effect. Due to its lack of in-

teresting new phenomena for the HCS, we will not discuss
the LC model further.

The TC model was invented in order to model elastic
material properties, like the “detachment” effect [17], in
the framework of the THS model. In soft assemblies of
particles this resembles multi-particle contacts and avoids
the inelastic collapse in dense THS systems [16, 25, 26]; the
physical idea behind was discussed in the introduction.
In technical terms, a collision is elastic if any one of two
colliding particles had a collision within a time ¢, before
the actual time.

The deviation from the classical HCS is, see the cum-
bersome mathematics in Ref. [18],

J(E,t.) = exp (¥(z)) , 9)

with the series expansion ¥(z) = —1.268z + 0.01682z2 —
0.0005783z% 4+ O(z*) in the collision integral, with z =
Vrtitg (OVE = /71.(0)VE = /r7, [18]. This is close
to the result ¥ = —2z/+/7, proposed by Luding and
McNamara, based on probabilistic mean-field arguments
[16]. Here, the argument of the exponential is proportional
to the collision rate t5' o VE, different from the other

models, so that J o exp(—const.\/E).

Simulation results are compared to the theory in Fig. 3.
The agreement between simulations and theory is almost
perfect in the examined range of t.-values, only for large
deviations from the HCS solution and for large t.-values,
a few percent discrepancy are observed

The results can be explained as follows. The fixed cut-
off time has no effect when the time between collisions
is very large tg > t., but strongly reduces dissipation

when the collisions occur with high frequency t5' < ;1.
Thus, in the homogeneous cooling state, there is a strong
effect initially, but the long time behavior tends towards
the classical decay F o 2.

Additional simulations with a set of system-sizes and
for different (also very small ) restitution coefficients will
be discussed elsewhere [18]. Note however, that our con-
clusions are valid for all system sizes examined and for ar-
bitrary restitution coeflicients before the inhomogeneities
evolve.

In summary, a general class of cut-off models was pre-
sented, aiming towards the enhancement of classical ki-
netic theory with respect to the realistic behavior of dis-
sipative particles in the presence of multi-particle inter-
actions. Only the TC model is discussed in detail below.
Analytical expressions for the collisional cooling rate in
the energy balance equation of the hydrodynamic equa-
tion is provided for the multi-particle contacts, evading
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Fig. 3. Deviation from the HCS, i.e. rescaled energy E/E.,
plotted against 7 for simulations with different 7.(0) as given
in the inset, with ro = 0.99, and N = 8000. Symbols are sim-
ulation results, the dashed line is the first order correction,
the solid line results from the third order, and the dotted line
correspond to the results from [16].

the singularity of the inelastic collapse. Our theoretical re-
sults were verified by event-driven numerical simulations
of the HCS and perfect agreement was obtained. For re-
alistic material behavior combinations of the models and
also refinements may be neccessary. Our model leads to
a correction of the energy dissipation term, in the frame-
work of a hydrodynamic continuum theory. We regard it
thus as much simpler than the model proposed in Ref. [27]
that also takes the finite contact duration into account,
but leads to changes of all hydrodynamic equations.

The TC model, and to some extent also the other
models, are based on the assumption that the elastic, re-
versible, potential contact energy of real particles cannot
be dissipated in the same way as the kinetic energy. If one
has multi-particle contacts in the system, a lot of energy
is stored in their contacts — and thus cannot be dissipated.

Future interesting work involves combinations of the
models and the extension of the simple cut-off models to
more complicated material laws, e.g., introducing some
velocity dependent restitution coefficient r(v) or contact
duration t.(v). In the same spirit, the cut-off law can be re-
placed by continuous functions instead of step-functions,
however, since experimental data are missing, we prefer
the simple event-based model which is consistent with the
kinetic theory. In addition, the present theory should be
applied to hydrodynamic models of inhomogeneous sys-
tems, where the cut-off criterion is a function of the posi-
tion, in order to prove its general applicability. As another
verification, the model could be compared to soft-sphere
simulations and experiments.
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